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Abstract 

This paper proposes a model using associative 
processors (APs) for real-time spoken language 
translation. Spoken language translation re- 
quires (1) an accurate translation and (2) a real- 
time response. We have already proposed a 
model, TDMT (Transfer-Driven Machine Trans- 
lation), that translates a sentence utilizing ex- 
amples effectively and performs accurate struc- 
tural disambiguation and target word selection. 
This paper will concentrate on the second re- 
quirement. In TDMT, example-retrieval (ER), 
i.e., retrieving examples most similar to an in- 
put expression, is the most dominant part of the 
total processing time. Our study has concluded 
that we only need to implement the ER for ex- 
pressions including a frequent word on APs. Ex- 
perimental results show that the ER can be dras- 
tically speeded up. Moreover, a study on com- 
munications between APs demonstrates the scal- 
ability against vocabulary size by extrapolation. 
Thus, our model, TDMT on APs, meets the vital 
requirements of spoken language translation. 

1 Introduction 
Research on speech translation that  began in the 
mid-1980s has been challenging. Such research has 
resulted in several prototype systems (Morimoto et 
al., 1993; Kitano, 1991; Waibel et al., 1991). Speech 
translation consists of a sequence of processes, i.e., 
speech recognition, spoken language translation and 
speech synthesis. Each process must be accelerated 
in order to achieve real-time response. This pa- 
per focuses on the second process, spoken language 
translation, which requires (1) an accurate trans- 
lation and (2) a real-time response. We have al- 
ready proposed a model that utilizes examples and 
translates a sentence by combining pieces of trans- 
fer knowledge, i.e., target language expressions that 
correspond to source language expressions that  cover 
the sentence jointly. The model is called Transfer- 
Driven Machine Translation (TDMT) (Furuse and 

Iida, 1992; Furuse et al., 1994) (see subsection 2.1 for 
details). A prototype system of TDMT which trans- 
lates a Japanese spoken sentence into English, has 
performed accurate structural disambiguation and 
target word selection 1. 

This paper will focus on the second requirement. 
First, we will outline TDMT and analyze its com- 

putational cost. Second, we will describe the con- 
figuration, experimental results and scalability of 
TDMT on associative processors (APs). Finally, we 
will touch on related works and conclude. 

2 TDMT and its Cost Analysis 
2.1 O u t l i n e  o f  T D M T  

In TDMT, transfer knowledge is the primary knowl- 
edge, which is described by an example-based frame- 
work (Nagao, 1984). A piece of transfer knowledge 
describes the correspondence between source lan- 
guage expressions (SEs) and target language expres- 
sions (TEs) as follows, to preserve the translational 
equivalence: 

S E  => TEl  (Era, E12,...), 
: 

TE, (E,1, E,2,...) 
Eij indicates the j - th  example of TEi. For exam- 

ple, the transfer knowledge for source expression "X 
no Y" is described as follows~: 
X n o Y  => 

Y' o f X '  ((ronbun[paper],daimoku[title]),...), 
Y' for X '  ((hoteru[hotel],yoyaku[reservation]),...), 
Y' in X '  ((Kyouto[Kyoto],kaigi[conference]),...), 

1 T h e  t r a n s l a t i o n  s u c c e s s  r a t e  for  825 s e n t e n c e s  u s e d  as  
learning data  in a conference registration task, is about 
98%. The translation success rate for 1,056 sentences, 
amassed through arbitary inputs in the same domain, is 
about 71~. The translation success rate increases as the 
number of examples increases. 

2X and Y are variables for Japanese words and X I 
and Y~ are the English translations of X and Y, respec- 
tively; "no" is an adnomina] particle that corresponds to 
such English prepositions as "of," "for," "in," and so on. 

101 



T D M T  utilizes the semantic distance calculation 
proposed by Sumita and Iida (Sumita and Iida, 
1992). Let us suppose that an input, I,  and each 
example, Eij, consist o f t  words as follows: 

I = ( I 1 , ' " , I ~ )  

E~ = ( E ~ I , . . . , E ~ , )  

Then, the distance between I and Eij is calculated 
as follows: 

d(I, Eij) = d ( (X l , . . . , I , ) , (E i j l , . . . ,E i j , ) )  
t 

= Z × 
k = l  

The semantic distance d(Ik, Eijk) between words 
is reduced to the distance between concepts in a the- 
saurus (see subsection 3.2 for details). The weight 
Wk is the degree to which the word influences the 
selection of the translation 3. 

The flow of selecting the most plausible T E  is as 
follows: 

(1) The distance from the input is calculated for all 
examples. 

(2) The example with the minimum distance from 
the input is chosen. 

(3) The corresponding T E  of the chosen example is 
extracted. 

Processes (1) and (2) are called ER (Example- 
Retrieval) hereafter. 

Now, we can explain the top-level T D M T  algo- 
rithm: 
(a) Apply the transfer knowledge to an input sen- 

tence and produce possible source structures in 
which SEs of the transfer knowledge are com- 
bined. 

(b) Transfer all SEs of the source structures to the 
most appropriate TEs by the processes (1)-(3) 
above, to produce the target structures. 

(c) Select the most appropriate target structure 
from among all target structures on the basis 
of the total semantic distance. 

For example, the source structure of the following 
Japanese sentence is represented by a combination 
of SEs with forms such as (X no Y), (X ni Y), (X 
de Y), (X ga Y) and so on: 

dainihan no annaisyo n|  
{ second version, particle, announcement, particle, 

kaigi de happyou-sareru ronbun 
conference, particle, be presented, paper, 

no daimoku ga notte-orimasu 
particle, title, particle, be written } 

2.2 T h e  Ana ly s i s  o f  C o m p u t a t i o n a l  Cos t  

Here, we briefly investigate the T D M T  processing 
time on sequential machines. 

For 746 test sentences (average sentence length: 
about 10 words) comprising representative Japanese 

3In the TDMT prototype, Wk is 1/t. 

1-- 

Rate 
(%) 

Other 
[ ]  processing 

time 

Example- 
, r e t r i e v a l  

time 

0 -2  2~4 4~6 6~88~1010 ~ 
Translation time Iseconds~ 

in sequential TDMT " 
Figure 1: Rates for ER time in sequential T D M T  

sentences 4 in a conference registration task, the av- 
erage translation time per sentence is about 3.53 
seconds in the T D M T  prototype on a sequential 
machine (SPARCstation2). ER is embedded as a 
subroutine call and is called many times during the 
translation of one sentence. The average number of 
ER calls per sentence is about 9.5. Figure 1 shows 
rates for the ER time and other processing time. 
The longer the total processing time, the higher the 
rate for the ER time; the rate rises from about 43% 
to about 85%. The average rate is 71%. Thus, ER is 
the most dominant part of the total processing time. 

In the ATR dialogue database (Ehara et al., 1990), 
which contains about 13,000 sentences for a confer- 
ence registration task, the average sentence length is 
about 14 words. We therefore assume in the remain- 
der of this subsection and subsection 3.5 that  the av- 
erage sentence length of a Japanese spoken sentence 
is 14 words, and use statistics for 14-word sentences 
when calculating the times of a large-vocabulary 
T D M T  system. The expected translation time of 
each 14-word sentence is about 5.95 seconds, which 
is much larger than the utterance time. The ex- 
pected number of ER calls for each 14-word sen- 
tence is about 15. The expected time and rate for 
ER of the 14-word sentence are about 4.32 seconds 
and about 73%, respectively. 

Here, we will consider whether a large-vocabulary 
T D M T  system can attain a real-time response. 
In the T D M T  prototype, the vocabulary size and 
the number of examples, N, are about  1,500 and 
12,500, respectively. N depends on the vocab- 
ulary size. The vocabulary size of the average 
commercially-available machine translation system 
is about 100,000. Thus, in the large-vocabulary sys- 

4We have 825 test sentences as described in footnote 1 
in section 1. These sentences cover basic expressions that 
are used in Japanese ability tests conducted by the gov- 
ernment and Japanese education courses used by many 
schools for foreigners (Uratani et al., 1992). The sen- 
tences were reviewed by Japanese linguists. In the ex- 
periments in this paper, we used 746 sentences excluding 
sentences translated by exact-match. 
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tern, N is about 830,000 (-~ 12,500 × 100,000/1,500) 
in direct proportion to the vocabulary size. For the 
sake of convenience, we assume N = 1,000,000. 
The ER time is nearly proportional to N due to 
process (1) described in subsection 2.1. Therefore, 
the expected translation time of a 14-word sentence 
in the large-vocabulary system using a SPARCsta- 
tion2 (28.5 MIPS) is about 347.2 (=[ER time]+[other 
processing timeS]=[4.32 x 1,000,000/12,500]+[5.95 - 
4.32]=345.6+1.63) seconds. ER consumes 99.5% of 
the translation time. 

A 4,000 MIPS sequential machine will be avail- 
able in 10 years, since MIPS is increasing at a rate 
of about 35 % per year; we already have a 200 
MIPS machine (i.e. DEC alpha/7000). The trans- 
lation time of the large-vocabulary system with the 
4,000 MIPS machine is expected to be about 2.474 
(~_ 347.2 x 28.5/4,000) seconds. Of the time, 2.462 
(_~ 345.6 x 28.5/4,000) seconds will be for ER. There- 
fore, although the 1500-word TDMT prototype will 
run quickly on the 4,000 MIPS machine, sequential 
implementation will not be scalable, in other words, 
the translation time will still be insufficient for real- 
time application. Therefore, we have decided to uti- 
lize the parallelism of associative processors. 

Careful analysis of the computational cost in the 
sequential TDMT prototype has revealed that the 
ER for the top 10 SEs (source language expressions) 
accounts for nearly 96% of the entire ER time. The 
expected number of ER calls for the top 10 SEs of 
each 14-word sentence is about 6. Table 1 shows 
rates of the ER time against each SE in the trans- 
fer knowledge. Function words, such as "wa", "no", 
"o", "ni" and "ga", in the SEs are often used in 
Japanese sentences. They are polysemous, thus, 
their translations are complicated. For that rea- 
son, the number of examples associated with these 
SEs is very large. In sum, the computational cost 
of retrieving examples including function words is 
proportional to the square of the frequency of the 
function words. In an English-to-Japanese version 
of TDMT, the number of examples associated with 
the SEs, which include function words such as "by", 
"to" and "of", is very large as well. 

With this rationale, we decided to parallelize ER 
for the top 10 SEs of the Japanese-to-English trans- 
fer knowledge. 

Table 1: Rates of ER time against each SE 

SE 
X wa Y 
X no Y 
X o Y 
X ni Y 
x g.a Y 

Rate(%) 
25.20 
20.60 
19.61 
11.13 
8.90 

Accumulative(%) 
25.20 
45.80 
65.41 
76.54 
85.44 

5This time does not depend on N. 

3 T D M T  Using Assoc iat ive  
Processors  

3.1 E R  on Associat ive Processors  (APs)  

As described in the previous subsection, parallelizing 
ER is inevitable but promising. Preliminary experi- 
ments of ER on a massively parallel associative pro- 
cessor IXM2 (Higuchi et al., 1991a; Higuchi et al., 
1991b) have been successful (Sumita et al., 1993). 
The IXM2 is the first massively parallel associative 
processor that clearly demonstrates the computing 
power of a large Associative Memory (AM). The AM 
not only features storage operations but also logical 
operations such as retrieving by content. Parallel 
search and parallel write are particularly important 
operations. The IXM2 consists of associative pro- 
cessors (APs) and communication processors. Each 
AP has an AM of 4K words of 40 bits, plus an IMS 
T801 Transputer (25 Mttz). 

3.2 S e m a n t i c  D i s t a n c e  C a l c u l a t i o n  o n  A P s  

As described in subsection 2.1, the semantic distance 
between words is reduced to the distance between 
concepts in a thesaurus. The distance between con- 
cepts is determined according to their positions in 
the thesaurus hierarchy. The distance varies from 0 
to 1. When the thesaurus is (n + 1) layered, (k/n) 
is connected to the classes in the k-th layer from the 
bottom (0 _< k _~ n). In Figure 2, n is 3, k is from 
0 to 3, and the distance d is 0/3 (--0), 1/3, 2/3 and 
3/3 (=1) from the bottom. 

The semantic distance is calculated based on the 
thesaurus code, which clearly represents the the- 
saurus hierarchy, as in Table 2, instead of travers- 
ing the hierarchy. Our n is 3 and the width of each 
layer is 10. Thus, each word is assigned a three- 
digit decimal code of the concept to which the word 
corresponds. 

Here, we briefly introduce the semantic distance 
calculation on an AM (Associative Memory) refer- 
ring to Figure 3. The input data is 344 which is the 

S 

"Wl " "W2" "W3" "W4" 
" 

thesaurus root 

Figure 2: Thesaurus (portion) and distance 
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Table 2: Semantic distance by thesaurus code. 
The input code and example code are CI = 
CI1CI2CI3, CE = CE1CE2CE3. 

Condition Example 
CIICI2CI3 = CEICE2CE3 347 , 347 
CI1CI2 = CEaCE2,CI3 # CE3 347 , 346 
CI1 = CEI, CA # CE2 34 7 ,3 3 7  
CI1 # CE~ 347,  247 

Dist. 
0 

1/3 
2/3 

1 

Thesaurus code 

I . . . . . . . .  I ( ~ ' t ~ :  , ] Input data 

ddress 

uchiawasc 
[ meeting ] 

i Mark 
teisha / v 

[ stopping ] / J  . . . . . . . . .  3 1 6 
kaigi / .  3 4 4 0 2 

[ conferen~ . . . . . . . . . .  

....... i i i  

J i i 
Associative Memory 

Figure 3: Semantic distance calculation on an Asso- 
ciative Memory 

thesaurus code of the word "uchiawase[meeting]". 
Each code (316, 344) of the examples such as 
"teisha[stopping]", "kaigi[conference]", and so on is 
stored in each word of the AM. The algorithm for 
searching for examples whose distance from the in- 
put is 0, is as follows6: 
(I) Give a command that  searches for the words 

whose three-digit code matches the input. (The 
search is performed on all words simultaneously 
and matched words are marked.) 

(II) Get the addresses of the matched words one by 
one and add the distance, 0, to the variable that 
corresponds to each address. 

The search in process (I) is done only by the AM 
and causes the acceleration of ER. Process (II) is 
done by a transputer and is a sequential process. 

3.3 C o n f i g u r a t i o n  of  T D M T  Using  A P s  

According to the performance analysis in subsection 
2.2, we have implemented the ER of the top 10 SEs. 

Figure 4 shows a TDMT configuration using APs 
in which the ER of the top 10 SEs are imple- 
mented. The 10 APs (AP1 ,AP2 , " . ,AP10)  and 
the transputer (TP) directly connected to the host 
machine (SPARCstation2) are connected in a tree 
configuration 7. 

SAn algorithm that searches for examples whose dis- 
tance from the input is 1/3, 2/3 or 3/3, is similar. 

7The tree is 3-array because the transputer has four 
connectors. The TDMT main program is described with 
Lisp language and is executed on the host machine. The 
ER routine is programmed with Occam2 language, which 
is called by the main program and runs on the TP and 

Transputer~ 
(TP) J 

Figure 4: Configuration of TDMT using 10 APs 

The algorithm for ER in the TDMT using APs is 
as follows: 

(i) Get input data  and send the input data  from 
the host to TP. 

(ii) Distribute the input data  to all APs. 
(iii) Each AP carries out ER, and gets the minimum 

distance and the example number whose dis- 
tance is minimum. 

(iv) Each AP and the TP receive the data from the 
lower APs (if they exist), merge them and their 
own result, and send the merged result upward. 

With the configuration shown in Figure 4, we 
studied two different methods of storing examples. 
The two methods of storing examples are as follows: 
H o m o - l o a d i n g  ( H M )  Examples associated with 

one SE are stored in one AP. That  is, each AP 
is loaded with examples of the same SE. 

H e t e r o - l o a d i n g  ( H T )  Examples associated with 
one SE are divided equally and stored in 10 
APs. That  is, each AP is loaded with exam- 
ples of 10 different SEs. 

3.4 E x p e r i m e n t a l  R e s u l t s  

Figure 5 plots the speedup of ER for TDMT using 
APs over sequential TDMT, with the two methods. 
It can be seen that  the speedup for the HT method 
is greater than that  for the HM method, partly be- 
cause the sequential part of ER is proportional to the 
example number in question. With the HT method, 

30 I I I | I I 

2 5 -  HT [] 

20 ~ 

m lO 

5 
0 I I I I I I 

0-2 2-4 4-6 6-8 8-10 10- 
Translation time in sequential TDMT (seconds) 

Figure 5: Speedup of ER in TDMT using APs over 
sequential TDMT 

on transputers in the APs. 
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the average speedup is about 16.4 (=[the average time 
per sentence in the sequential TDMT]/[the average time 
per sentence in the HT method]~ 2489.7/152.2(msec.)). 
For the 14-word sentences, the average speedup is 
about 20.8 (2 4324.7/208.0(msec.)) and the ER time 
for the top 10 SEs is about 85.4 milliseconds out of 
the total 208.0 milliseconds. 

Figure 6 shows a screen giving a comparison be- 
tween T D M T  using APs and sequential TDMT.  

FIle(F) Translate(T) Display(D) 

Sentence Number ]....8 ....... 

Input Sentence : : ~ J ~ " ~ ' ~ $  ~ U ' ~ T ~  ~, 

Trat~lation Result P ~ ~ . ~  th the ~.!.strat!gn. for~ 

~ r a l J  

Sentence ~mber i 20 

Input Sentence [ ~ : : ! ~ ' C ' ~ ' ~  ......................................................................................................................... ii'iiiii"iiiiiiii" 

Translation R e s u l t ~  . . . . . . .  

Figure 6: A comparison of T D M T  using APs and se- 
quential T D M T  - -  This is a snapshot of a race between 
two machines. The sentence numbers and run times cor- 
respond to sentences that have been translated. The 
average times cover all sentences that have been trans- 
lated. 

3.5 Sea lab i l i t y  

In this subsection, we consider the scalability of 
TDMT using APs in the HT method. Here, we 
will estimate the ER time using 1,000,000 examples 
which are necessary for a large-vocabulary T D M T  
system (see subsection 2.2). 

Assuming that the number of examples in each 
AP is the same as that  in the experiment, 800 (= 
1,000,000/12,500) APs are needed to store 1,000,000 
examples. Figure 7 shows 800 APs in a tree struc- 
ture (~L=I 3 ~ _> 800; L(minimum)=6 layers). In the 
remainder of this subsection, we will use the statis- 
tics (time, etc.) for the 14-word s sentences. 

The translation time is divided into the ER time 
on APs and the processing time on the host machine. 
The former is divided into the computing time on 
each AP and the communication time between APs. 

The ER time on APs in the experiment is about 
85.4 milliseconds as described in subsection 3.4. The 
computing time per sentence on each AP is the same 
as that  in the experiment and is approximately 84.1 
milliseconds out of the 85.4 milliseconds. The com- 
munication time between APs is vital and increases 

SThis is the average sentence length in the ATR dia- 
logue database. See subsection 2.2. 

•Transputer] ~machinel ~ 0 : AP 
J I ~_ (Associative 

~ ~ ~"~rocessor) 

/iViV P'../iVi Vi"../i Vi",. 

Figure 7: Configuration of large-vocabulary T D M T  
using 800 APs 

as the number of APs increases. There are two kinds 
of communication processes: distribution of input 
data  9 and collection of the resulting data of ER 1°. 

The input data distribution time is the sum of 
distribution times TP--* AP1, AP1 --* AP2, . . ' ,  
AP4--~AP5 and APs--*AP6, that  is, 6 multiplied by 
the distribution time between two APs that are di- 
rectly connected (see Figure 7), because a transputer 
can send the data to the other transputers directly 
connected in parallel (e.g., APs--*APs, A P ~ A P 7 ,  
APs--+APs). The average number of ER calls is 
about 6 and the average distribution time between 
directly-connected APs is about 0.05 milliseconds. 
Therefore, the total input data distribution time per 
sentence in the configuration of Figure 7 is nearly 1.8 
(= 0.05 x 6 × 6) milliseconds. 

The time required to collect the resulting data 
is the sum of the processing times in process (iv), 
which is explained in subsection 3.3, at the TP, 
APt ,  " - . ,AP4 and APs, illustrated in Figure 7. It 
takes about 0.04 milliseconds, on average, for each 
AP to receive the resulting data from the lower 
APs and it takes about 0.02 milliseconds, on av- 
erage, for the AP to merge the minimum distance 
and the example numbers. Therefore, it is ex- 
pected that the total collection time is about 2.2 
(= (0.04 + 0.02) × 6 × 6) milliseconds. 

Thus, the total communication time is about 4.0 
(= 1.8 + 2.2) milliseconds. Consequently, the pro- 
cessing time on APs is about 88.1 (= 84.1 +4.0) mil- 
liseconds. This is 3,920 (2 345.6/0.0881) times faster 
than the SPARCstation2 n .  It is clear then that the 
communication has little impact on the scalability 
because it is controlled by the tree depth and small 
coefficient. 

Therefore, the T D M T  using APs becomes more 
scalable as the number of examples increases and 
can attain a real-time response. 

9Process (ii) described in subsection 3.3. 
1°Process (iv) described in subsection 3.3. 
//See the data described in subsection 2.2. 

105 



4 R e l a t e d  w o r k s  

Up to now, some systems using a massively par- 
allel machine in the field of natural language pro- 
cessing, such as a parsing system (Kitano and 
Higuchi, 1991b) and translation systems, e.g., Dm- 
SNAP (Kitano et al., 1991), ASTRAL (Kitano and 
Higuchi, 1991a), MBT3n (Sato, 1993), have been 
proposed. They have demonstrated good perfor- 
mance; nonetheless, they differ from our proposal. 
For the first three systems, their domain is much 
smaller than our domain and they do not perform 
structural disambiguation or target word selection 
based on the semantic distance between an input 
expression and each example. For the last system, 
it translates technical terms i.e. noun phrases, but 
not sentences. 

5 C o n c l u s i o n  

This paper has proposed TDMT (Transfer-Driven 
Machine Translation) on APs (Associative Proces- 
sors) for real-time spoken language translation. In 
TDMT, a sentence is translated by combining pieces 
of transfer knowledge that are associated with ex- 
amples, i.e., source word sequences. We showed that 
the ER (example-retrieval) for source expressions in- 
cluding a frequent word, such as a function word, 
are predominant and are drastically speeded up us- 
ing APs. That the TDMT using APs is scalable 
against vocabulary size has also been confirmed by 
extrapolation, i.e., a 10-AP sustained performance 
to an 800-AP expected performance, through analy- 
sis on communications between APs. Consequently, 
the TDMT can achieve real-time performance even 
with a large-vocabulary system. In addition, as our 
previous papers have shown, the TDMT achieves 
accurate structural disambiguation and target word 
selection. Thus, our model, TDMT on APs, meets 
the vital requirements for real-time spoken language 
translation. 
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