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LMT (logic-based machine translation) is an experimental English-to-German MT system, being 
developed in the framework of logic programming. The English analysis uses a logic grammar 
formalism, Modular Logic Grammar, which allows logic grammars to be more compact, and which has 
a modular treatment of syntax, lexicon, and semantics. The English grammar is written independently 
of the task of translation. LMT uses a syntax-to-syntax transfer method for translation, although the 
English syntactic analysis trees contain some results of semantic choices and show deep grammatical 
relations. Semantic type checking with Prolog inference is done during analysis and transfer. The 
transfer algorithm uses logical variables and unification to good advantage; transfer works in a simple 
left-to-right, top-down way. After transfer, the German syntactic generation component produces a 
surface structure tree by application of a system of tree transformations. These transformations use an 
augmentation of Prolog pattern matching. LMT has a single lexicon, containing both source and 
transfer information, as well as some idiosyncratic target morphological information. There is a 
compact external format for this lexicon, with a lexical preprocessing system that applies defaults and 
compiles it into an internal format convenient for the syntactic components. During lexical preprocess- 
ing, English morphological analysis can be coupled with rules that synthesize new transfer entries. 1 

1 INTRODUCTION 

The purpose of this paper is to describe an experimental 
English-to-German machine translation system, LMT 
(logic-based machine translation), 2 which has evolved 
out of previous work by the author on logic grammars. 

The translation system is organized in a modular 
way. The grammar for analysis of the source language 
(English) is written completely independently of the 
task of translation. In fact, this grammar produces 
logical forms that can be used for other applications 
such as database query systems and knowledge-based 
systems, and has been used in the systems described in 
McCord (1982, 1987), Teeple (1985), Bernth (1988), and 
Dahlgren (1988). The components of LMT dealing spe- 
cifically with translation do not index into the grammar 
rules, as, for example, in the LRC system (Bennett and 
Slocum 1985). 

An interesting sort of modularity exists in the English 
grammar itself, whereby syntax, lexicon, and semantic 
interpretation closely interact, yet manage to be clearly 
separated. The lexicon exerts control over syntactic 
analysis through the use of slot frames in lexical entries 
and slot filling methods in syntax, as well as through 

type checking with semantic types taken from lexical 
entries. Yet the syntax rules look completely syntactic; 
e.g., no specific semantic types or word senses are 
referred to. The syntactic analysis trees look like sur- 
face structure trees, with annotations showing gram- 
matical relations (including remote relations due to 
extraposition). The terminal nodes of these trees are 
logical terminals (explained below), which contain word 
sense predications and can be used in building logical 
forms as semantic representations of sentences. These 
logical forms are built by a separate semantic interpre- 
tation component which deals with problems of scoping 
of quantifiers and other modifiers. 

Given that the English grammar can produce both 
syntactic structures and logical forms, an issue in de- 
signing LMT was what structures to use as input to 
transfer. The initial idea was to use the logical forms. 
The main argument for this was that 1. the logical form 
analyses express the complete meaning of the source 
text, and 2. there is no doubt that for perfect transla- 
tions, one must in general have a complete semantic 
analysis of the source text (and employ world knowl- 
edge to get it). The logical form analyses are expres- 
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sions in a logical form language (LFL)  (McCord 1985a, 
1987). Although the formalism for LFL is intended to be 
language universal, there is actually a ,different version 
of LFL for every natural language, because most of the 
predicates are word senses in the natural language being 
analyzed. The original scheme, then, :for LMT was to 
analyze English text into English LFL forms, then 
transfer these to German LFL form.,;, then generate 
German text. 

This scheme is neat, and may be investigated again 
later; but for the sake of practicality, the compromise 
has been to use the syntactic analyses produced by the 
grammar as the point of transfer. Useful MT systems 
must generally work with rather large domains, and the 
trouble with the use of logical forms is that too many 
decisions must be made and too much world knowledge 
is needed to produce correct analyses for a large do- 
main. For example, LFL expressions for degree adjec- 
tives like "good"  are focalizers (McCord 1985a, 1987), 
where the base argument shows the base of comparison 
for the adjective. In general, it may be difficult to 
determine such arguments. In the syntactic structure, 
arguments of focalizers are not yet determined; but for 
the purposes of translation, such scoping problems can 
often (though not always) be ignored. They can often be 
sidestepped because the same ambiguity exists in the 
target language. For example, "He  is good" can easily 
translate into Er ist gut  without deciding "good with 
respect to what?".  Another point is that in the case of 
languages as close as English and German, it is simply 
more direct to transfer syntactic structure to syntactic 
structure. For more discussion of the practicality of a 
syntactic transfer method, see Bennett and Slocum 
(1985). 

It should be emphasized that the syntactic analysis 
trees produced by the grammar do contain some of the 
ingredients of semantic interpretation. As mentioned 
above, terminal nodes contain word sense predications. 
Although the arguments of focalizer predications are 
not yet filled in, the arguments of verb and noun senses 
(corresponding to complements), are filled in (inasmuch 
as they can be determined by the syntax of the sen- 
tence, plus a few heuristics). Semantic type checking 
involves Prolog inference and is used for constraining 
word sense selection, complementation, and adjunct 
attachment. Also certain preference heuristics, de- 
scribed in Section 2 below, are used for modifier 
attachment. 

Translation of a sentence by LMT proceeds in five 
steps. 

1. Lexical preprocessing; 
2. English syntactic analysis; 
3. English-to-German transfer; 
4. German syntactic generation; 
5. German morphological generation. 

During Step 1, lexical preprocessing, the words of an 
input sentence are looked up in the LMT lexicon, in 

combination with English morphological analysis (both 
inflectional and derivational). Morphological deriva- 
tions are used to synthesize new transfer entries. For 
example, the derivation of "reuseable" from "use"  and 
the existence of a transfer entry use--> verwenden allow 
automatic synthesis of a new transfer entry reuseable 
wieder verwendbar. 

Step 1, and Step 5 as well, are the topics of a 
companion paper (McCord and Wolff 1988). The 
present paper deals mainly with the syntactic compo- 
nents of LMT; but enough description of the lexicon is 
given to make the discussion self-contained. 

Step 2, F, nglish syntactic analysis, is dealt with in 
Section 2. Several aspects of the English grammar are 
described: the Modular Logic Grammar formalism, use 
of metarules in the grammar, special syntactic tech- 
niques, and the methods used for semantic type check- 
ing. 

Section 3 provides an overview of the LMT lexicon 
and its relation to the English grammar. 

Step 3 is dealt with in Section 4, "The Transfer 
Component of LMT."  The transfer component con- 
verts an English syntax tree into the German transfer 
tree. This is a syntax tree that (normally) has the same 
shape as the English tree, but has different node labels. 
Its nonterminal nodes are labeled by feature structures 
appropriate for German syntax and morphology; and its 
terminal nodes are (normally) citation forms of German 
words, together with feature structures that determine 
the inflections of the words during Step 5. 

The transfer algorithm works in a simple way, in one 
top-down, left-to-right pass, yet manages to get a lot 
done, making German word choices and essentially 
producing all required German feature structures (like 
case markers). This is facilitated by use of logical 
variables and unification. Lexical transfer information 
resides in Prolog clauses (in internal representation), 
used by the transfer algorithm for simultaneous deter- 
mination of German target words and associated inflec- 
tional markings for complements of these target words. 

Step 4, German syntactic generation, is described in 
Section 5. This phase takes the German transfer tree 
and produces a German surface structure tree by apply- 
ing a battery of tree transformations in a cycle, as in 
transformational grammar. The pattern matching used 
by these transformations is mainly Prolog unification, 
but there is an augmentation for matching sublists. 
Transformations are expressed in a special notation 
involving this augmented pattern matching and are 
compiled by the system into normal Prolog clauses. The 
number of transformations used in the system is rather 
small (currently 44), because the general idea of LMT is 
to get as much right as possible during the transfer step. 

As mentioned above, Step 5, German morphological 
generation, is described in detail in McCord and Wolff 
(1988), but some comments are given here in Section 6. 

Section 7 briefly describes the status of the system as 
of November 1988. It is worth noting here that LMT, 
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although fairly large by now, is written entirely in 
Prolog (except for a few lines of trivial system code). No 
need has been seen for other methods, even for quick 
access to large dictionary disk files. The version of 
Prolog used is VM/Prolog (written by Marc Gillet), 
running on an IBM mainframe. The features of Prolog 
(especially logical variables and unification) have been 
very useful in making LMT easy to write. 3 

2 THE ENGLISH ANALYSIS GRAMMAR, MoDL 

The term grammar is being used in this paper in the 
broad sense of a system that associates semantic represen- 
tations with sentences (and may also associate syntactic 
analyses). A modular logic grammar (MLG) (McCord 
1985a, 1987) has a syntactic component (with rules 
written in a certain formalism), and a separate semantic 
interpretation component (using a certain methodology). 
The English MLG used in LMT is called ModL, and has 
evolved since 1979. Many of the ingredients have been 
described previously (McCord 1981, 1982, 1985a, 1987), 
so the background description given here is abbreviated 
(but fairly self-contained), and the emphasis is on new 
ingredients. 

2.1 THE MLG FORMALISM 

Metamorphosis grammars (MGs) (Colmerauer 1975, 
1978) are like type-0 phrase structure grammars, but 
with logic terms for grammar symbols, and with unifi- 
cation of grammar symbols used in rewriting instead of 
equality checks. In an MG in normal form, the left-hand 
side of each rule is required to start with a nonterminal, 
followed possibly by terminals. Definite clause gram- 
mars (DCGs) (Pereira and Warren 1980), are the special 
case of normal form MGs corresponding to context-free 
phrase structure grammars; i.e., the left-hand side of 
each rule consists of a nonterminal only. In MGs (and 
DCGs), any of the grammar symbols can have argu- 
ments, and these can be used to constrain the grammar 
as well as to build analysis structures. MGs (in normal 
form) can be compiled directly into Horn clauses (Col- 
merauer 1978) (hence run in Prolog for parsing and 
generation), by adding extra arguments to nonterminals 
representing difference lists of word strings being ana- 
lyzed. In MGs, the right-hand side of a rule can also 
contain ordinary Horn clause goals, which translate into 
themselves in the compilation to Horn clauses. 

The MLG syntactic formalism is an extension of the 
DCG formalism. The three most important extra ingre- 
dients (to be explained in this subsection) are the 
following: 

1. A declaration of strong nonterminals preceding the 
listing of syntax rules; 

2. Logical terminals; 
3. Shifted nonterminals. 

The second and third ingredients are allowed on the 
right-hand sides of syntax rules. There are several other 

minor types of extra ingredients in the MLG formalism, 
which will be mentioned at the end of the subsection. 

The syntax rule compiler of an MLG compiles the 
syntactic component directly into Prolog (as is common 
with MGs, so that parsing is top-down), but takes care 
of analysis structure building, so that the grammar 
writer does not have to bother with the bookkeeping of 
adding nonterminal arguments to accomplish this (as in 
MGs). Also, since systematic structure building is in the 
hands of the rule compiler, it is easier to write meta- 
grammatical rules. 

The MLG rule compiler has two options for structure 
building. The compiled grammar can operate in a one- 
pass mode, in which LFL representations are built 
directly during parsing, through interleaved calls to the 
semantic interpreter, and no syntactic structures are 
built. Or it can operate in a two-pass mode, in which 
syntactic structures are built during parsing, and these 
are given to the semantic interpreter in a second pass. 
The two-pass mode is used for LMT, since we want 
syntactic analysis trees. In the following discussion, the 
one-pass mode will be ignored--for details, see 
McCord (1985a, 1987). 

Now let us look at the three distinctive ingredients of 
MLGs mentioned above. Strong nonterminals represent 
major syntactic categories, and they are declared by a 
clause 

strongnonterminals(NT 1.NT2 . . . . .  NTn.nil). 

(The dot operator is used for lists.) Each NTi is of the 
form A/k where A is an atom, the principal functor of 
the strong nonterminal being declared, and k is a 
nonnegative integer, less than or equal to the number of 
arguments of the nonterminal. The first k arguments of 
the nonterminal are called its feature arguments; their 
significance is explained below. 4 A nonterminal not 
declared strong is called weak. A syntax rule whose 
left-hand side is a strong (weak) nonterminal is called a 
strong (weak) rule. 

The most significant way in which the strong/weak 
distinction is used by the MLG rule compiler is in 
automatic analysis structure building. Nodes for the 
analysis tree get built corresponding to the application 
of strong rules, but not weak rules. Specifically, when a 
strong nonterminal 

A(X: . . . .  ~ n )  

is expanded in the derivation of a sentence, a tree node 
of the form 

syn(A(Xl ... .  ,X~k),B,Mods) 

is built for the analysis tree. The first argument of the 
syn term is the label on the node, consisting of the 
nonterminal together with its feature arguments. Thus 
feature arguments are made available in the syntactic 
description of the sentence, and may be used by other 
modules--such as transfer in LMT. (The significance of 
feature arguments for MLG metarules i s  indicated 
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below.) The second argument B of syn  has to do with 
bracketing of the phrase analyzed by A, and will be 
explained below. The last argument Mods is the list of 
daughter nodes. 

The second way in which MLGs differ from DCGs is 
that the right-hand sides of rules can contain logical 
terminals. These are building blocks fi~r analysis struc- 
tures, just as ordinary terminals are building blocks for 
the word strings being analyzed. The terminal nodes of 
syntactic analysis trees are logical terminals. In fact, the 
terminal node members of Mods in the syn term above 
are just the logical terminals encountered while expand- 
ing the strong nonterminal A, possi~bly through the 
application of subordinate weak rules, but not through 
other applications of strong rules. 

Logical terminals are terms of the form Op-LF. Here, 
LF is a logical form (an LFL expression), usually a word 
sense predication, like see(X,Y). The term Op, called 
an operator, determines how the logical terminal will 
combine with other logical terminals during semantic 
interpretation to build larger logical forms. For a de- 
scription of the way MLG semantic interpretation 
works, see McCord (1985a, 1987). 

As indicated above, the MLG semantic interpreter is 
not used in LMT. Because of this, the operator compo- 
nents of logical terminals are not important here; how- 
ever, the logical form components are used. The argu- 
ments of word sense predications show deep relations 
of words to other parts of the sentence, including 
remote dependencies, and play a central role in the 
transfer algorithm, as we will see in Section 3. It should 
also be noted that the grammar Mod.L has been shaped 
strongly by the need to produce logical form analyses. 

The last distinctive ingredient of MLGs is the shift 
operator, denoted by %. Its purpose is to allow the 
production of left-embedded structures while using 
right-recursive rules (necessary because of the top- 
down parsing). Before describing the shift operator 
generally, let us look at an example. 

Left-recursive constructions occur in English noun 
phrases like "my oldest brother's wife's father's car". 
A noun phrase grammar fragment with shift that handles 
this is as follows: 

np ~ determiner: np 1. 
npl  ~ premodifiers: noun: np2. 
np2 ~ apostrophe_ s: np % npl. 
rip2 ~ postmodifiers. 

Here, np is declared a strong nonterminal and all others 
are weak. (The colon operator on the right-hand side of 
MLG rules denotes the usual sequencing.) The occur- 
rence of an apostrophe-s triggers a shift back to the state 
n p l ,  where we are looking at the premodifiers (say, 
adjectives) of a noun phrase. In making the transition, 
though, the provisional syntactic structure being built 
for the noun phrase is changed: A|I daughters con- 
structed so far are made the daughters of a new node 
with label np (the left operand of the shift operator), and 
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this new node is made the initial daughter in the new 
provisional syntactic structure. 

In general, the right-hand side of an MLG syntax rule 
can contain a shifted nonterminal, which is of the form 
LaboI%NT, where Label is a term (to be used as a node 
label), and ~ is a weak nonterminal. The idea, in rather 
procedural terms, is: 1. Take the list of daughters built 
so far for the active tree node (corresponding to the 
most recently activated strong rule), and make it the 
complete daughter list of a new node Mod with label 
Label; and then 2. proceed with NT, using Mod as the 
initial daughter of the active tree node. 

It should be noted that the syntactic analysis struc- 
tures built automatically for MLGs differ from deriva- 
tion trees in three ways: a. Weak rules do not contribute 
nodes to analysis trees (but strong rules do); b. shifted 
nonterminals can contribute nodes in the special way 
just indicated; and c. terminal nodes are logical termi- 
nals, not word string terminals. 

It was mentioned above that there are several minor 
types of extra ingredients in the MLG formalism. Five 
of these will be described here briefly. 

1. There is an "escape" to the DCG formalism: A 
grammar symbol of the form -NT does analysis with 
a DCG nonterminal NT, defined by its own DCG 
rules. (DCG rules are written with the symbol ---~, 
whereas MLG rules are written with f t . )  This is 
useful, for the sake of efficiency, when MLG struc- 
ture building is not necessary. 
2. In order to look at right context, one can refer to 
the next terminal T (without removing T from the 
word stream) by using the symbol +-T. (Ordinary 
references to terminals are indicated by +T.) 
3. Also, one can examine the complete right context 
with a DCG nonterminal NT by use of the symbol 
- ~ r .  

4. As with DCGs, one can specify a Prolog goal Goal 
on the right-hand side of a rule. Our notation for this 
is $Goa2. Such goals are executed when the compiled 
grammar is executed. But there is another type of 
Prolog goal, denoted by !Goal, which gets executed 
immediately at compile time. This is convenient, 
e.g., for specifying feature selection goals whose 
immediate compilation constrains feature structures 
through unificationmwith more efficient execution 
during parsing. Writing such constraints directly may 
not be as perspicuous, or as flexible if one wants to 
change the representation of feature structures. 
5. Although syntactic structures are handled auto- 
matically by the rule compiler, it is occasionally 
convenient to be able to refer to them. A symbol 
1~  > S y n ,  where NT is a strong nonterminal, binds 
Syn to the syntactic structure of the phrase analyzed 
by ~ (and is otherwise treated like an occurrence of 
NT) 5. There is a similar method for referring directly 
to bracketing symbols (dealt with in the next sec- 
tion). 
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2.2 METAGRAMMATICAL RULES 

There are two grammatical constructions that are so 
pervasive and cut across ordinary grammatical catego- 
ries to such an extent, that they invite treatment by 
metagrammatical rules: coordination and bracketing. 
Coordination is construction with "and" ,  "o r" ,  "but" ,  
etc. Bracketing consists of the enclosure of sentence 
substrings in paired symbols like parentheses, other 
types of brackets, dashes, and quotes. Also, in text 
formatting languages, there are paired symbols used for 
font changes and other formatting control. LMT is being 
written to process the source text for the IBM SCRIPT/ 
GML formatting language (as well as ordinary text), so 
it is important to handle such formatting control sym- 
bols. (Note that "bracketing" symbols can be nested 
[as in this sentence].) Use of metarules allows one to 
make coordination and bracketing more "invisible" to 
the parser and translator. 

Coordination has been treated metagrammatically in 
several systems. In the logic programming framework, 
treatments include those in Dahl and McCord (1983), 
Sedogbo (1984), and Hirschman (1986). The first of 
these systems implemented coordination metarules in 
an interpreter for the logic grammar, whereas the last 
two implement them in a syntax rule compiler. Brack- 
eting with ordinary parentheses is treated in the LRC 
system (Bennett and Slocum 1985) by reliance on 
LISP's handling of parentheses. 

There is a limited treatment of coordination and 
bracketing through metarules in the MLG rule compiler. 
Specifically, the implementation is for coordination and 
bracketing of complete phrases, where a phrase is a 
word string analyzed by a strong nonterminal. Any 
phrase (type) can be coordinated, any number of times, 
using the usual coordinating conjunctions, commas, and 
semicolons, as well as the "both-and", "either-or" 
constructions. Bracketing of a phrase (with nesting to 
any level) is allowed in contexts where the phrase could 
occur grammatically anyway (as in this sentence). In 
addition, appositive parentheticals, as in " I  know that 
man (the one over there)", where a phrase type is 
repeated in parentheses, are treated by the metarules. 

The current restriction to coordination of complete 
phrases (without identifying gaps) is not quite as severe 
as it might seem, because 1. there are quite a few phrase 
types (including verb phrases, verb groups, and noun 
groups), and for these, all appropriate associations of 
variables are made; and 2. examples with real gaps often 
do at least get parsed because of optional constituents 
(as in "John saw and Mary heard the train", where 
"John saw" is parsed as a complete phrase because the 
object of " saw"  is optional). 

The second argument of the Prolog term syn(Label, 
B,Mods) representing a syntax tree node is used to 
accommodate bracketing. The term B is a list of sym- 
bols, like quote.pa~ren.nfl, each representing a pair of 
brackets enclosing the phrase represented by the node. 
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This "factored out" representation of brackets al- 
lows the translation component of LMT to handle 
brackets in a way that is transparent to most of the 
rules. The result is that if a phrase is bracketed in a 
certain way in the English source, then the correspond- 
ing phrase will automatically be bracketed in the same 
way in the German translation. 

Coordination and bracketing are handled in an inte- 
grated way by the rule compiler. For each strong 
nonterminal, the following is done (a simplified version 
is given here). For the sake of concreteness, let us say 
that the nonterminal has name n t  and that it has five 
arguments: 

nt(F,G,H.I,J) 

(before compilation), where the first two arguments F 
and G are declared to be the feature arguments. The 
existing syntax rules for n t  are compiled essentially as 
in McCord (1985a), but the name given to the head 
predicate is changed to ntbase,  representing the simple 
(noncoordinated, nonbracketed) form of the phrase. In 
addition, the metarules create four additional Prolog 
rules--for the original nt ,  not for ntbase. The first 
additional rule is: 

nt(F,G,H,I~I, syn(Lab,B1,Mods), g,z) *-- 
copylabel(nt(F,G),nt(F1,G 1)) & 
bbrackets(B, U,V) & 
preconj(PC,Mods,Modsl, V,W) & 
ntbase(F1,G1,H,I~, B, SynO, W.X) & 
ntconj(F1,G1, F,G,H,I,J, PC, 

Syn0,syn( Lab,B 1,Mods 1 ), X,Y) & 
ebrackets ( B 1. Y,Z). 

In each of these predications besides copylabel, the last 
two arguments represent difference lists for word 
strings. The purpose of eopylabel is to create a new 
version of the label nt(F,G) which can differ in some 
subterms, to allow for differences in the feature struc- 
tures of the coordinated phrases. (Feature arguments 
for constituents of coordinated phrases are thus allowed 
to differ, but the other arguments in repeated calls of 
ntbase must match.) The procedure bbrackets ("be- 
gin-brackets") reads the list B (possibly empty) of 
brackets from the word list (represented by difference 
list (U,V).) A possible preconjunction PC (like "both")  
is gotten by preeonj.  Then the simple nonterminal 
ntbase is called. Then ntconj gets the remainder of the 
coordinated phrase, and ebraekets closes off the brack- 
ets. 

There are three rules for the continuation nteonj.  
The first of these (to be given below) gets most types of 
conjunctions, makes another call to ntbase,  and finally 
calls nt~onj recursively. The second allows termina- 
tion. The third is like the first, but gets other types of 
conjunctions. Thus, with termination in the middle o f  
these three rules, a preference 6 is created for certain 
types of coordination at the given phrase level. The 
details of this preference coding will not be given here. 
The first rule for ntconj is: 
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ntconJ(F0,G0, F,G,H,I,J, PC, 
syn(nt(F0,G0)xdl,Mods0),Syn, U~X) *- 

optionalcommma(U,T.V) & 
coord(T,PC,a,nt,0p,LF ) & 
copylabel(nt(F,G),nt(F1,G1)) & 
ntbase(F1,G1,H,I~, nil, 

syn(nt(F1,G1)~il,Modsl), V,W) & 
combinelabels(T,nt(F0,G0).ut(F1,G 1),nt(F2,G2)) & 
ntcor~(F2,G2, F,G,H,I¢.I, nil, 

syn(nt(F2,G2),*, 
syn(nt(F0,G0 ),nil,Mods0 ). 
0p-LF. 
syn(nt(F1,G 1) ~il,:~/Iods 1).nil), 

Syn, w~x). 

Here coord tests that the terminal T is a coordinating 
conjunction, allowing preconjunction PC, being of con- 
junction type (a ,nt) ,  and having associated logical 
terminal Op-LF. Conjunctions used in the first nteonj  
rule are given conjunction type (a,nt) ,  and those used 
in the third rule are given type (b,nt) .  This distinction is 
related to specific conjunctions by the rules for coord. 
The procedure combinelabels  combines features of 
conjuncts (this includes the treatment of number for 
coordinated noun phrases). Finally, nteonj  is called 
recursively to get possible further coordinated phrases. 

The second rule for ntconj  (termination) is trivial, 
and will not be given. The third is essentially like the 
first, but requires the conjunction type (b,nt)  in the call 
to coord. 

Note that some category-specific information for 
coordination does have to be written, mainly in the rules 
for copylabel  and oombinelabels  (since these depend 
on the nonterminal nt). However,  default rules exist for 
these in ModL, so that one does not have to write 
special rules for all categories. On the whole, the 
amount of rule writing is greatly reduced by the meta- 
rules. 

As mentioned above, the rules produced by the 
metarules were given here in simplified form. The 
actual, more complex, forms deal with the following 
three things. 

I. A more complete treatment of bracketing and 
punctuation within coordinated phrases. The above 
rules allow bracketing only at the beginning and end 
of a complete, coordinated phrase; therefore extra 
calls to begin-bracket and end-bracket procedures 
are needed. Also there are actually t w o  termination 
clauses for n tcor~- -a  clause dealing with appositives 
introduced by commas, and a simple termination 
clause. 
2. Appositive parentheticals (mentioned above). 
These are handled by an additional clause for nteonj. 
3. A partial tabular parsing facility. The purpose of 
this facility is to allow parsing (and translation) of 
inputs that are not complete sentences, while using 
top-down parsing. The only nonterminal called by 
the driver of ModL is s, for a complete sentence. It 
happens that most types of phrases can begin a 
sentence in the ModL grammar. When s fails but the 
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input is a well-formed phrase of some type, a syntac- 
tic structure for the input usually gets built neverthe- 
less during the parse. Thus it is worth saving results 
of phrase analyses that span the whole input. The 
rule compiler takes care of this by adding at the end 
of the main rule for each strong nonterminal (cf. the 
rule for n t  above) a call to a procedure savesyn,  
which saves the corresponding syntactic structure 
when the analyzed phrase spans the whole input 
string. (Saving is done by assertion into the Prolog 
workspace.) Therefore, when a sentence analysis 
fails, these saved partial results may be used. 

Experiments were made with general tabular parsing 
(see, e.g., Pereira and Shieber 1987), but it was found 
that this does not speed up parsing with the particular 
grammar ModL, especially considering that only the 
first parse is normally used in LMT. 

2.3 SYNTACTIC AND SEMANTIC TECHNIQUES IN MODL 

The syntactic component of ModL is basically an 
extension of that in McCord (1982), which was written 
as a DCG. In particular, slot filling techniques are used 
in ModL for handling complementation. However, 
there are some improvements in the basic techniques, 
which will be described in this section. 

2.3.1 POSTMODIFIERS AND ORDERING CONSTRAINTS 

As in the earlier grammar, the analysis of the comple- 
ments of an open class word (verb, noun, or adjective) 
is directly controlled by a slot frame which appears in 
the lexical entry of the open-class word. There is a weak 
nonterminal pos tmods ,  which takes as input the slot 
frame of the word, chooses slots (nondeterministically, 
and not necessarily in the order in which they appear in 
the slot frame), and tries to fill the slots by slot filling 
rules indexed to specific slot names. The procedure 
pos tmods  also finds adjunct postmodifiers. Slot fillers 
(complements) correspond to arguments of the word 
sense predication for the open-class word, and adjuncts 
correspond to outer modifiers of it in logical form. 

By itself, the free choice of slots and adjuncts for 
postmodification allows for free ordering of these post- 
modifiers; but of course the ordering should not be 
completely free, and some constraints are needed. An 
improved method of expressing such constraints has 
been developed for ModL. 

The same procedure postrnods is used for all three 
open class categories, but let us illustrate its use for 
verbs. The following ModL rule (simplified) for the 
nonterminal predicate  gets a verb and its postmodi- 
tiers. 

predicate( Infl,VS ~X,C ) 
vc(Infl,VS,Y,Slots): 
voice( Infl~,Y,Slots,Slots 1): 
$theme(X,Slots,Z): 
postmods(vp,nil,Slots 1,VS,Z,C ). 

(Recall that the $ sign signals that its operand is a Prolog 
goal.) Here Infl is the inflectional feature structure of 
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the verb, VS is the verb sense, X is the marker 7 for the 
grammatical subject of the verb, and C is the modifier 
context for predicate (to be explained below). 

The nonterminal vc (verb compound), which is the 
only strong nonterminal in this rule, gets the head of the 
predicate. (The feature arguments of vc are declared to 
be its first two arguments.) A verb compound normally 
consists of a single word, but could be a compound like 
"time share". And of course since vc is a strong 
nonterminal, coordinated forms are allowed. Verb com- 
pounds do not include auxiliary verbs as premodifiers; 
these are treated as separate, higher verbs with their 
own complementation. The call to vc determines the 
marker Y for the logical subject of the verb, and the slot 
list Slots of the verb. 

The procedure voice handles the passive transforma- 
tion (when the verb analyzed by vc is a passive past 
participle) as a slot list transformation, and theme 
computes the marker Z for implicit subjects in comple- 
ments like "John wants to leave", and "John wants Bill 
to leave". For these, see the discussion in McCord 
(1982). 

The first rule for postmods,  which gets slot fillers (as 
opposed to adjuncts), is as follows, slightly simplified 
(we leave off the treatment of the modifier context 
argument for now). 

postmods(Cat,State,Slots,VS,Z) 
Sselectslot(Slot,State,Slots,Slots 1 ): 
filler(Slot,Z): 
postmods ( Cat,Slot.State,Slots 1,VS,Z). 

What is of interest here (compared with McCord 1982) 
is the use of the State argument, whose purpose is to 
constrain the free ordering of postmodifiers. In the 
earlier grammar, states were a linearly ordered set of 
symbols isomorphic to the natural numbers, and the 
idea was that postmodification by a given slot (or 
adjunct type) can advance the state to a certain level, or 
leave it the same, but can never go backwards. The 
trouble with this (as implemented) was that postmods 
could try filling a "late state" slot when an obligatory 
"early state" slot has not been filled yet. (This does not 
cause any wrong parses, but it is inefficient.) 

The cure involves looking not only at the postmodi- 
tiers that have already been found, but also at the 
obligatory slots that are still pending. The state is now 
just the list of slots and adjunct types that have already 
been used. (Building up of this list can be seen in the 
above rule for postmods.) 

The procedure selectslot selects a Slot from the 
current list Slots, with Slotsl  as the remainder. In so 
doing, it looks at the current state as well as the 
remaining slots to exercise the constraints. 

The specific constraints themselves are expressed in 
the most straightforward way possible--as ordering 
relationships S1 << S2 , where Sl and S2 are slots 
or adjunct types. Slots are represented as terms 
slot(S,Ob,Re,X), where 1. S is the slot name (like obj or 
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lobj), 2. Ob indicates whether the slot is obligatory or 
optional, 3. Re indicates whether the slot has a real 
filler, or a virtual filler (because of left extraposition), 
and 4. X, is the marker for the slot filler. Adjunct types 
are simple symbols (like avel for adverbial clause), 
which divide adjuncts into broad types. Specific order- 
ing constraints are: 

slot(lobj,*~,*) << slot (obj,*x,*). 
slot (obJ,*~,*) << slot (S,*~r,*) *-- S =/iobJ. 
slot(*,*~r,*) << avcl. 

The idea of soleotslot is then simple. It selects a slot S 
nondeterministically from the current slot list Slots, 
leaving remainder Slots l ;  but it checks that 1. there is 
no member Sl  of State such that S << S1, and 2. there 
is no obligatory slot 82 in Slots1 such that S2 << S. 

The basic idea of factoring out the control of constit- 
uent ordering into simple ordering relationships has 
been used in other systems, for example in the systemic 
grammar system of Hudson (1971), and more recently in 
the ID/LP formalism (Gazdar and Pullum 1982). 

2.3.2 PREFERENCE ATTACHMENT 

A second improvement in ModL concerns preference 
attachment of postmodifiers in the sense of Wilks, 
Huang and Fass (1985), and Huang (1984a, 1984b). The 
problem is simply stated: When we have parsed part of 
a sentence, as in "John saw the way to send a f i l e . . . " ,  
and we see a further phrase "to Bill", then does this 
attach to "file",  "send" ,  "way" ,  or " saw"?  I.e., 
which final phrase of the partial sentence does it mod- 
ify? If the initial segment were instead "John described 
the way to create a f i l e . . . " ,  then the answer would be 
different. 

The method of handling this in ModL is basically 
similar to that in the work of Huang, Wilks, and Fass 
cited above, but seems slightly simpler and more gen- 
eral, because of the systematic use of postraods in 
ModL. The implementation involves the modifier con- 
text argument (the last argument) of postmods.  

It should be mentioned first that the modifier context 
is used not only for handling preference attachment, but 
also for left extraposition. The modifier context con- 
tains a pair of topic terms (T,T1) used as in McCord 
(1982) to represent a left-extraposed item T, with T1 
equal to nil  or T according as T is or is not used as a 
virtual filler (or adjunct) by postmods.  

A modifier context is a term of the form 
o(T,T1,Pend), where (T,T1) is a topic pair and Pond is 
a pending stack. The latter is a list whose members are 
pending frames, which are terms of the form Cat.Sense. 
Slots, giving a phrase category (verb, noun, or adjec- 
tive), the sense of the head, and the current slot list of 
the head (some slots may already be used). A pending 
frame describes what is possible for further modifiers of 
a given head word (adjunct modification depends on the 
category Cat and the particular head word (sense) 
Sense). 
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Using modifier contexts, an essentially complete 
version of the slot-filling rule for post~mods is: 

postmods (Cat,State,Slots,VS,Z,c(T,T2,Pend)) 
$ selectslot( Slot,State ,Slots ,Slots 1 ): 
filler(Slot,Z,c(T,Tl,(Cat.VS.Slotsl).Pend)): 
postmods ( Cat,Slot.State,Slots 1, 

VS,Z,c(T1,T2,Pend)). 

Thus, in the call to filler, the current pending frame is 
stacked onto the pending stack. A rule for filling, say, 
an object slot with a noun phrase would pass this larger 
modifier context argument into the noun phrase, where 
the higher context is then available. 

On a given level for postmods,  the most pressing 
question is how to attach prepositional phrases. Slot 
filling is always preferred over adjunct modification on 
a given level. Thus, if the given head word has a 
prepositional object slot pobj (Prep)  matching the given 
preposition, then only this will be tried. 

To decide whether a pp can attach as an adjunct 
modifier, the pp rule (as soon as it sees the preposition) 
looks at the pending stack to determine whether there 
are pending prepositional case slots (pobj) that could 
take the given preposition, and, if so, the pp aborts. 
Adjunct attachment of a pp can also be blocked by 
semantic type requirements made by the preposition on 
the modified phrase and the object of the preposition 
(even the combination of these two). A discussion of 
semantic type checking is given at the end of this 
subsection. Currently the grammar does not try to 
compare semantic types for preferences; but this could 
be done since the pending stack, with all the higher head 
word senses, is in place. 

2.3.3 NOUN COMPOUNDS 

A third improvement in the grammar is the treatment of 
noun compounds. Noun compounds were treated in a 
limited way in McCord (1982) by allowing noun premod- 
ifiers of the head noun to fill slots in the head noun, as 
in "mathematics student". In the syntactic structure, 
these noun premodifiers were all shown on the same 
level, as daughters of the noun phrase, although the slot 
filling attachment to the head corresponds logically to a 
right branching structure. But of course noun com- 
pounds in English can exhibit any pattern of attach- 
ment, with the patterns corresponding to the ways one 
can bracket n symbols. This is important to capture. 

The shift operator allows one to produce all patterns 
of attachment--left branching, right branching, and all 
combinations in between--while using right recursive 
rules. The following small grammar produces all possi- 
ble bracketings: 

np --* +N. 
np ---* +N: np%npl. 
npl  ---* np. 
npl  ~ np: np%npl. 

Here, np is a strong nonterminal and n p l  is weak. 
Recall that + N signals that N is a terminal. 

In ModL, a somewhat more complicated form of this 
fragment is used in the noun compound rules. Each 
subcompound gets a slot list and a marker associated 
with it, and there is a procedure a t tach  (an extension of 
that in McCord 1982), which allows one subcompound 
to attach to another. Adjectives are included in the pot, 
but the rules for attaching them are of course different. 
The potential to get any pattern of attachment exists in 
the rules, but again preferences are implemented. 
Roughly, the idea is this: As a new noun (or adjective) 
N is read, if 1. the structure NO already built has a head 
that is a noun, and 2. N can attach to NO, then one 
requires this immediate attachment, building a left 
branching structure. Otherwise, one continues with 
right branching and attaches the larger compound to 
NO. This scheme prefers left branching for a sequence 
of nouns, if a t t ach  allows it, but prefers a right branch- 
ing structure for a sequence of adjectives followed by a 
noun. 

Currently, a t tach  does not deal with "creative" 
attachments, where the relationship between the two 
subcompounds is not mere slot-filling or apposition, but 
where the combination involves some extraneous rela- 
tionship, as in "music box" and "work clothes". But 
an extended version of a t tach  which handles such 
combinations could still be used in the existing algo- 
rithm. 

2.3.4 SEMANTIC TYPE CHECKING 

Semantic type checking is done during parsing with 
ModL. In earlier versions of the system, semantic type 
checking was accomplished by Prolog unification of 
type trees, representing types in a hierarchy allowing 
cross-classification. It appears that in practice this 
scheme is not flexible and convenient enough; a more 
general type checking scheme based on Prolog infer- 
ence has been implemented. 

Let us illustrate the new scheme with type checking 
for noun phrase fillers of verb slots. In the format for a 
slot mentioned above 

slot(S,Ob,Re,X) 

X is the marker for a possible filler of the slot. A marker 
is of the form 

Y:Sense:SynFeas & Test. 

Here, Y is the logical variable associated with the noun 
phrase filler. During lexical preprocessing, Y is unified 
with the argument of the verb sense predication corre- 
sponding to this slot, or part of this argument.S When a 
filler is found during parsing, Y is also unified with the 
main logical variable for the noun phrase (normally the 
first variable in the noun sense predication). The com- 
ponent Sense of the marker is the sense name of the 
head noun of the filler. (In earlier versions of ModL, 
this component was a semantic type for the noun 
sense.) The component SynFeas is a term representing 
syntactic and morphological features of the noun 
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phrase. Finally, Test is a Prolog goal that is executed 
after the head noun is found. Normally, Test will 
contain a variable unified with Sense, so that a test is 
made on the noun sense. 

As a simple example, if a verb requires that its object 
be a~i.mat~, then the object slot can have the marker 

Y:S:SF & isa(S,animate).  

If the head noun has sense m a n l ,  and the clauses 

i s a ( m a n l  ~human). 
isa(S,animate)  <- isa(S~human). 

are in the Prolog workspace, then the test in the marker 
will succeed. 

The lexical preprocessing scheme of LMT allows 
convenient specification of type requirements on slot 
fillers (and on other kinds of modifiers) and type state- 
ments for word senses. Such type conditions can be 
given in lexical entries in a compact format that does not 
explicitly involve isa clauses. This will be described in 
the next section. 

Design of LMT: A Proiog-Based Machine Translation System 

3 TaE LMT LEXICON 

Some MT systems have three separate lexicons, for 
source, transfer, and target; but LMT has only one, 
unified lexicon, indexed by source language (English) 
words. The entry for a word contains monolingual 
English information about the word, as well as all of its 
transfers. A transfer element can contain monolingual 
German information about the target word. 

For example, a simple entry for the word "view" 
might be 

view < v(obJ) < n(nobj) 
< gv(acc,be +tracht) 
< gn(gen,ansichtzf.n). 

Here, < is just an operator that connects the compo- 
nents of the entry. The monolingual English information 
is on the first line, showing that view is a verb taking an 
object and is also a noun with a (possible) noun object 
(appearing in postmodifier form as an of-pp comple- 
ment). The transfer information is on the second and 
third lines. This shows that the translation of the verb 
form is the inseparable-prefix verb betrachten, where 
the German complement corresponding to the English 
object takes the accusative case. And the translation of 
the noun form is Ansicht, where the noun complement 
takes the genitive case, and Ansicht is a feminine noun 
(f) of declension class n. 

There are two advantages of the unified lexicon 
design: 1. Lexical look-up is more efficient since only 
one index system is involved, and 2. it is easier for the 
person creating the lexicon(s) to look at only one 
lexicon, seeing all pertinent information about a source 
language word and its transfers. 

It might be argued that it is inefficient to store 
monolingual target language information in transfer 
elements, because there is redundancy, e.g., when two 

noun transfers are German compound nouns with the 
same head. However, the format for specifying German 
noun classes and other German morphological informa- 
tion in the LMT lexicon is very compact, so the 
redundancy does not involve much space or trouble. 
More will be said below about the specification of 
German morphological information. 

The principle that source language analysis in LMT is 
independent of the task of translation is not really 
violated by the unified lexicon, because purely English 
elements in lexical entries can easily be distinguished 
(as will be seen from the description below), and the 
remaining elements can be discarded, if desired, to 
obtain a monolingual English lexicon for other applica- 
tions. 

Another feature of the LMT lexicon is that the 
storage format is not the same as the format seen by the 
syntactic components. Both formats are Prolog clauses, 
but the lexical preprocessing step of LMT does lexical 
compiling of lexical entries, converting the external 
storage format into the internal format used by the 
syntactic components. Lexical compiling is applied not 
only to entries obtained by direct look-up (for words 
that are found directly in the lexicon), but also to 
"derived" entries, obtained by morphological analysis 
in conjunction with look-up. There are two reasons for 
doing lexical compiling. One is that it allows for com- 
pact, abbreviated forms in the external lexicon based on 
a system of defaults, whereas the compiled internal 
form is convenient for efficient syntactic processing. 
Another reason is that the lexical compiler can produce 
different internal forms for different applications. In 
fact, the internal form produced for applications of 
ModL involving logical forms is different from the form 
produced for LMT. 

Lexical preprocessing is done on a sentence-by- 
sentence basis. Only the words actually occurring in an 
input sentence are processed. The internal form clauses 
produced for these words are deleted from the work- 
space, once the sentence is translated. Thus the parser 
sees only lexical clauses relevant to the words of the 
sentence, and in general the Prolog workspace is not 
overloaded by the more space-consuming internal- 
format clauses. Currently, the external lexicon is stored 
in the Prolog workspace (there being about 1,600 
entries), but Prolog procedures for look-up in a large 
lexicon of the same form stored on disk have been 
written--along the lines described in McCord (1987). 

Now let us look briefly at the external format. 9 A 
lexical entry consists of an English Word and its 
Analysis, represented as a Prolog unit clause 

Word < AnalYSlS. 

(Here, the predicate for the unit clause is the operator 
<.) A word analysis consists of subterms called analysis 
elements connected by operators, most commonly the 
operator <. In the example for view above, there are 
four analysis elements. In general, analysis elements 
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can be English elements, transfer elements, or (German) 
word list transformations. English elements will be 
discussed (briefly) in the current section; transfer ele- 
ments will be described in the next section, and word 
list transformations in Section 6. 

English analysis elements are of three types: 

1. base analysis elements, 
2. (irregular) inflectional elements, and 
3. multiword elements. 

The above example for view has two English base 
analysis elements, the v (verb) and n (:noun) elements. 
Currently, there are 11 parts of speech allowed in base 
analysis elements--v (verb), modal,  n (noun), p ropn  
(proper noun), p ron  (pronoun), adj (adjective), det 
(determiner), prop (preposition), subconj (subordi- 
nating conjunction), adv (adverb), and qua,l (qualifier). 
Let us look in particular at the form of' verb elements. 

The general, complete format (without use of de- 
faults) for a verb element is 

v(VSense,VType,SubjType,Slots ) 

Here, VSense is a name for a sense of the index word as 
a verb, VType is the semantic type of the verb (an 
inherent feature), SubJType is the semantic type re- 
quirement on the (logical) subject, and Slots is the slot 
list. An example to look at, before seeing more details, 
is the following simplified v element for the verb 
"give":  

v(give 1,action,human,obj:concrete.iobJ :animate). 

The semantic type VType of the verb can in general be 
any conjunction of simple types (represented normally 
by atoms). The type requirement SubjType on the 
subject can be an arbitrary Boolean combination of 
simple types. 

The slot list Slots is a list (using the dot operator) of 
slot names (the final nfl in the list is not necessary), 
where each slot name may have an associated type 
requirement on its filler. Like the SubjTy-pe, a type 
requirement for a slot can be an arbitrary Boolean 
combination of simple types. 

An abbreviation convention allows one to omit any 
initial sequence of the arguments of a v element. If the 
sense name is omitted, it will be taken to be the same as 

• the citation form. Omitting types is equivalent to having 
no typing conditions. For an intransitive verb with no 
typing and only one sense, the element could be simply 
v, with no arguments. 

Given a (possibly inflected) verb V and a v element 
for the base form of V, the lexical compiler translates 
the v element into a one or more unit clauses for the 
predicate verb, with argument structure 

verb (V,Pred,lnfl,VSense ~r~qubJ, 
SlotFrame). 

Before saying what the arguments of verb are in gen- 
eral, we give an example for the inflected verb "gives" 
produced from the sample v element above: 

42 

verb(gives, give 1 (X:XS:XF,Y:YS:YF,Z:ZS:ZF), 
fin(pers3,sg,pres,*), give 1, 
X:XS:XF & isa(XS,human), 
slot(0bj,op,*,Y:YS:YF & isa(YS,concrete)) . 
slot(iobj,op,*,Z:ZS:ZF &isa(ZS,animate)) . nil) . 

In general the arguments of verb are as follows: V is the 
actual verb (possibly a derived or inflected form), and 
In£1 is an allowable inflectional feature structure. 
(There are as many verb clauses as there are allowable 
inflectional forms forV. For example, ifV is made, then 
the inflection could be finite past or past participle.) The 
verb sense VSense becomes the predicate of the verb 
sense predication Pred, described in the next para- 
graph. The argument XSubj is the marker for the 
subject. The slot list in the v element is converted into 
SlotFrame, consisting of slots in the fuller form slot- 
(S,Ob,Re,Y) described in the preceding section. (There 
can be optional and obligatory forms of the same slot.) 

The verb sense predication Pred has argumentg cor- 
responding to the markers for the verb's complements 
--its subject and its slots--in the order given, but there 
is an option in the compiler: When ModL is being used 
to create LFL forms, these arguments will just be the 
logical variable components of the markers for the 
complements. But when ModL is used in LMT, the 
arguments will be the complete markers except for their 
semantic type tests. (Thus the arguments are of the form 
Y:Sense:Syr~eas, as described in Section 2.3) This 
ready access to features of complements, by direct 
representation in the word sense predication, is very 
useful for transfer in LMT and will be illustrated in the 
next section. 

The lexical compiler handles semantic type condi- 
tions by converting them into Prolog goals involving 
isa. For example, for each component type T of the 
semantic type VType of a verb (given in a v element), 
the unit clause isa(VSense,T) is added to the work- 
space. Thus, in the case of "gives" above, 
isa(givel ,act ion)  is added. Type conditions as isa 
clauses relating to specific word senses are handled 
dynamically, but relations between types such as 

tsa(S,animate) <- isa(S~human) 

are stored permanently. A type requirement for a verb 
complement (subject or slot list member), being a 
Boolean combination of simple types T, is converted 
into a similar Boolean combination, Test, of goals 
isa(S,T), where S is the sense component of the com- 
plement's marker; and Test is made the test component 
of this marker. 

The second kind of English analysis element (men- 
tioned above) is an inflectional element. Eleven kinds of 
these are allowed (McCord and Wolff 1988). An exam- 
ple of an inflectional element is yen(V),  which indicates 
that the index word is the past participle of the verb V. 
This appears in 

become < v(predcmp) < ven(become). 
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where become is shown as the past participle of itself. 
The third kind of English analysis element is the 

multiword element. Multiword elements (existing in 
transfer also) are used for handling idiomatic phrases in 
LMT. Multiword forms are allowed for all but three 
( m o d a l  propn,  and qual ) of the 11 parts of speech. 
Their names are like the base analysis element names, 
but with a initial m. An example of an entry with a 
multiverb element is the following (simplified) entry for 
" take":  

take < v(obJ) < mv(=.care.of, obj). 

The mv element allows a treatment of the phrase "take 
care of X".  Forms based on inflections of the index 
word, such as "took care of",  are handled automati- 
cally by the morphological system. Multiword elements 
have much the same format as single word elements 
except that sense names cannot be specified, and the 
first argument is always a multiword pattern (like 
= .care.of). Lexical preprocessing verifies that the 
pattern actually matches a sublist of the sentence before 
compiling the multiword element. 

Some kinds of idiomatic phrases are treated through 
the use of slots in base analysis elements. For example, 
there is a verb slot ptcl(P)  that allows particles, spec- 
ified by P, for the verb. The particle P might be an 
ordinary particle like "up"  or "back"  as in "take up",  
"take back", or it could be a phrasal particle, like 
into.consideration,  for handling "take into consider- 
ation". Note that "into consideration" does behave 
much like an ordinary particle, since we can say "take 
X into consideration", as well as "take into consider- 
ation X",  if X is not too light a noun phrase. A base 
analysis element for " take"  that allows both ordinary 
particles and the multiparticle "into consideration" is 

v(obj.ptcl(all  I into.considerat ion)) .  

This shows that " take"  is a verb with an object slot and 
a particle slot. The particle allowed could be any 
ordinary single-word particle (indicated by all ) or 
(indicated by I) the multiword particle "into consider- 
ation". 

Idiomatic phrases can also be treated by German 
word list transformations. These are described in Sec- 
tion 6. 

In addition to the unified LMT lexicon we have been 
describing, there is an auxiliary interface of ModL to 
the UDICT monolingual English lexicon Byrd (1983, 
1984). This contains around 65,000 citation forms, with 
a morphological rule system to get derived forms of 
these words. The ModL lexical compiler also can 
convert UDICT analyses to the internal form required 
by the ModL grammar. 

4 THE TRANSFER COMPONENT OF LMT 

The transfer component takes an English syntactic 
analysis tree syn(Lab,B,Mods) and converts it to a 

German tree syn(GLab,B,GMods) which normally has 
the same shape. Before discussing the transfer method 
in general, let us look at an example. The English 
sentence is "The woman gives a book to the man". The 
syntactic analysis tree produced by ModL is: 

s(fin(pers3,sg,pres,ind),glve,*,top) 
np(X:woman:*&*) 

detp(X:woman:*&*) 
the(P,Q) 

woman(X:woman:*) 
vp ( fin(pers3,sg,pres,ind),give ) 

give(X:woman:*,Y:book:*,Z:man:*) 
np(Y:book:*&*) 

detp(Y:book:*•*) 
a(P1,Q1) 

book(Y:book:*) 
ppnp(to,Z:man:*&*) 

np(Z:man:*&*) 
detp(Z:man:*&*) 

the(P2,Q2) 
man(Z:man:*) 

Each n0nterminal node label in the tree consists of the 
strong nonterminal responsible for the node together 
with its feature arguments (as indicated in Section 2. I). 
The feature arguments for the np nodes are just the 
markers for these noun phrases. For the sake of sim- 
plicity in the display of this tree, the syntactic feature 
structures and semantic tests of np markers are just 
shown as stars. The terminals in the syntactic analysis 
tree are actually logical terminals, but we do not display 
the operator components, since these are not re levant  
for LMT. Also, we do not display the node labels for 
noun compounds (nc) and verb compounds (vc) unless 
these compounds have more than one element. 

To get a good idea of the working of the transfer 
algorithm, let us look at the transfer of the verb "give" 
in this example, and the effect it has on the rest of the 
transfer. The terminal in the above tree involving give is 
a verb sense predication of the form described in the 
preceding section as the second argument of verb. The 
most relevant thing to notice in the syntax tree is that 
the variables X, Y, and Z in the give predication are 
unified with the logical variables in markers of the 
corresponding complements of gi~re. Transfer of the 
give form simultaneously chooses the German target 
verb and marks features on its (German) complements 
by binding X, Y, and Z to the proper German cases. The 
internal form of the transfer element in the lexical entry 
for "give" might look like the following unit clause.10 

gverb(give(nom:*,acc:*,dat:*),geb). 

In transfer, the first argument of gvorb is matched 
against the give form in the tree, and we get bindings 
X = nora, Y = ace, and Z = dat, which determine the 
cases of the complements. In general, logical variables 
associated with complements are used to control fea- 
tures on the transfers of those complements. The trans- 
fer tree is as follows: 
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vp(ind:slin(pers3,sg,pres,ind): Xl,nil) 
np(n(on),nom,sg:pers3-sg-f~2) 

det(nom,pers3-sg-f~2) 
d + det(nom,pers3-sg-f~X2) 

frau/1 + nc(n(cn),nom,pers3-sg-f~X2) 
vp(ind:vp ;fin(pers3,sg,pres,ind): Xl,nil) 

get) + vc(ind:vp;fln(pers3-sg-f~pres, ind):Xljail) 
np(n(on),aco,sg:pers3-sg-nt~X3) 

det(acc,pers3-sg-nt~X3) 
ein + det(acc,pers3-sg-nt~X3) 

buch/h + nc(n(cn),acc, per~33-sg-nt~X3) 
ppnp(vp(inchvp;fln(pers3,sg,pres, ind):Xl jall),dat) 

np(n(cn),dat,sg:pers3-sg-m$C4) 
det(dat,pers3-sg-m~4) 

d + det(dat,pers3-sg-rn~X4) 
mann/h + nc(n(cn),dat,pers3-sg-m,X4) 

The three noun phrases in this tree have, the correct case 
markings as a result of the above verb transfer, so that 
we will eventually get die Frau, ein Buch, and dem 
Mann. ~ A transformation (to be discussed below) 
moves the dative noun phrase, and the eventual trans- 
lation (after inflection) is Die Frau gibt dem Mann ein 
Buch. 

The top-level procedure, t ransfer ,  of the transfer 
component works in a simple, recursive way, and is 
called in the form 

transfer (Syn,MLab,GSyn) 

where MLab is the German node label on the mother of 
the node 8yn being transferred. (In the top-level call, 
MLab is equal to the symbol top.) 

The definition of t ransfer ,  somewhat simplified, is: 

transfer(syn(ELab,B,EMods),MLab, 
syn(GLab,B,GMods)) ~-- 

tranlabel( ELab,MLab,GLab ) & 
tranlist(EMods,GLab,GMods). 

transfer(0p-EPred,MLab,GWord + GLab) ~- 
tranword(EPred,MLab,GWord,GLab). 

tranlist(EMod.EMods,MLab,GMod.GMods ) ~-- 
transfer(EMod,MLab,GMod) & 
tranlist(EMods,MLab,GMods). 

tranlist(nil,*,nil). 

Thus, transfer translates a syn structure (a nontermi- 
nal node of a tree) by translating the node label (by a call 
to tranlabel) and then recursively translating the 
daughter nodes. Terminal nodes (words) are translated 
by a call to tranword. 

Note that t r ans fe r  does the transfer in a simple 
top-down, left-to-right way. The German feature struc- 
tures (showing case markings, for instance) that get 
assigned to nodes in the left-to-right processing are 
often partially instantiated, and do not get fully instan- 
tiated until controlling words are encountered further to 
the right. For example, the German feature structure 
assigned to the subject noun phrase in the above exam- 
ple does not get the case field assigned until the verb is 
processed. The use of logical variables and unification 
makes this easier. 

The clauses for t ranlabel  (which transfers node 
labels) are mainly unit clauses. The basic problem is to 
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transfer an English feature structure to a German fea- 
lure structure, allowing for differences in a suitable 
way. For example, the number of an English noun 
phrase is often the same as the number of the corre- 
sponding German noun phrase, but not always. The 
main tranlabel clause that transfers a noun phrase label 
is: 

tran]abel(np(Case:Sense:nf(NType,Num,*,*)&*), 
MLab, 
np (NType,Case,Num~dj Decl)). 

The first component, NType, of the German np feature 
structure (and the first component of the n f  ("np 
features") syntactic feature structure for the English 
noun phrase) is the nominal type, which encodes cate- 
gorization of the head nominal. Nominal subcategories 
include common nouns, pronouns, proper nouns, and 
adjectives. Adjectives are further subcategorized as 
verbal (verb participles) and nonverbal, and the com- 
parison feature (positive, comparative, superlative) for 
adjectives is also shown in NType. 

The second component, Case, of the German np 
structure is unified with the first component of the 
English marker. As indicated above, this gets unified 
with an actual German case by application of a verb 
transfer rule. 

The third component, Num, of the German np 
structure encodes number, person, and gender of the 
German noun phrase. The t ranlabel  rule above unifies 
Num with a component of the English n f  structure; but, 
as we will see below, Num is of such a form that 1. its 
occurrence in the English analysis is independent of 
German, and 2. the actual number of the German noun 
phrase can come out different from that of the English. 

The last component has to do with adjective declen- 
sions (strong vs. weak). This is discussed in McCord 
and Wolff (1988). 

The German feature structure for a noun compound 
(nc) (including a simple head noun) has a similar form to 
an np structure. 

How is the Num field used to treat differences in 
number between English and German? This is actually 
a compound term of the form ANum:CStruet, where 
ANum is the actual number (sg or 91) of the English 
noun phrase (which may be a coordinated noun phrase), 
and CStruet is a term that reflects the coordination 
structure. For example, for the noun phrase "the man 
and the woman",  the number structure is ph (Nl&N2) ,  
where the subphrase "the man" has number structure 
sg:N1 and "the woman" has number structure sg:N2. 

Before transfer, the second components of the num- 
ber structures of simple noun phrases are just variables, 
but during transfer these get bound by t r a n w o r d  to 
structures of the form Pers-Num-Gen showing person, 
number and gender Of the German translations. The 
person and gender of the simple German noun phrase 
come directly from the lexical transfer entry for the 
head noun. The question is how the number of the 
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German noun phrase (possibly coordinated) is deter- 
mined. For a simple noun phrase, the default is to unify 
the German number with the English number, but 
transfer entries can override this, as in the case of 
scissors/Schere. Given this determination of the Ger- 
man numbers of the simple np components of a coor- 
dinated rip, the German number of the whole can be 
determined from the second component of the number 
field. In the case of coordination with and/und, the 
result will simply be plural in German (as in English). 
For coordination with or/oder, though, German is dif- 
ferent from English. In English, the number of the 
disjunction is the same as that of its last component, 
whereas in German the disjunction is plural if and only 
if at least one of its components is plural. 

Thus, for the noun phrase "the men or the woman", 
the English number structure is sg:(NllN2),  where the 
number of "the men" is phN1, and the number of "the 
woman" is sg:N2. After transfer, this structure for the 
translation die Maenner oder die Frau becomes sg: 
(pers3-pl-mlpers3-sg-f). The second component of 
this determines a final number of pl for the translation. 
On the other hand, the English noun phrase "the knife 
or the scissors" is plural, but the translation, das 
Messer oder die Schere, has number structure ph 
(*-sg-*l*-sg-*) and so is singular. 

In the sample transfer tree above, one can see other 
examples of the transfer of feature structures, for which 
t ranlabel  is responsible. In the vp feature structures, 
the second component is of the form Infl:Inf11, where 
Infl is the English inflection and Infl l  is to be the final 
German inflection. The default is for Inf11 to become 
equal to In.f1, but this does not always happen. The 
English inflection might be overridden by a transforma- 
tion. For example, LMT translates "The man wants the 
woman to buy a car" into Der Mann will, da[3 die Frau 
einen Wagen kauft. The infinitive v'p complement of 
"wants"  is transferred to an infinitive German vp, but 
this and its sister np subject are transformed into a finite 
clause complement of "will".  

The transformation mentioned in the previous para- 
graph (needed for transforming an np + infinitive-v-p 
structure to a finite clause) is triggered by the lexical 
transfer element for the controlling verb "want" .  Spe- 
cifically, the trigger (or rule switch) is the German 
"case"  corresponding to the last (vp) complement of 
"want" .  Any case assigned to a v-p complement is 
unified by t ranlabel  with the last field of the German vp 
feature structure (see the sample transfer tree above for 
examples of such vp structures). Transformations can 
recognize such cases and be triggered by them. 

The procedure 

tranword(EWord,MLab,GWord,GLab) 

is the interface to the transfer portion of the lexicon. It 
takes a terminal EWord representing an English word 
sense predication dominated by a node with associated 
German label MLab, and assigns to these the German 

translation GWord and its associated feature structure 
GLab. (Often GLab will be taken to be the same as 
MLab.) The procedure tr~ia-~word, in looking at the 
label MLab, can call various more specific transfer 
procedures, like gverb and gnoun,  associated with 
various parts of speech. Clauses for these are produced 
by the lexical compiler from transfer elements in the 
external lexicon. We have already seen a sample clause 
for gverb. 

Lexical transfer elements can be either of single word 
or muitiword form. Each type of English analysis ele- 
ment (associated with a particular part of speech) has a 
corresponding type of transfer element, whose name is 
obtained by prefixing the letter g, except that 1. proper 
nouns just translate to themselves, 2. modals are sub- 
sumed under gv, and 3. qualifiers are subsumed under 
gary.  Multiword transfer forms exist for all the multi- 
word source forms, and have names of the form rag- 
part-of-speech (like ragadv). 

As in the case of English analysis elements, there is 
a system of abbreviations and defaults for the external 
forms of lexical transfer elements. Let us illustrate the 
situation for verbs (in single word form). The full form 
of a gv element (external form for gverb clauses) is 

gv(VSense,SubJ Case,CompCases,Target ). 

The first argument is the verb sense. Its default is the 
index word. The second argument is the German case 
for the German complement corresponding to the En- 
glish logical subject (which is usually, but not always, 
the German logical subject). Its default is nora (nomi-" 
native). The third argument is the list of cases for the 
other complements (given in order corresponding to the 
slots of the v element for the same sense of the index 
word and having the same number of complements). If 
this argument is omitted, the verb should be intransi- 
tive. The last argument is the German target verb. 

The cases appearing in the second and third argu- 
ments of gv can have associated semantic type require- 
ments (arbitrary Boolean combinations) on the corre- 
sponding complements. An example illustrating this is 
the following external form entry for "ea t " ,  used to 
translate "ea t"  into essen or fressen, according as the 
subject is human or nonhuman. 

eat < v(obJ) 
< gv(nom:human,acc,ess ) 
< gv(nom:( anlmate&-human),acc J~ess ). 

Normally, a gv element is compiled into a (possibly 
conditional) clause for gverb, where the clause head has 
the form 

~ e ~ ( ~ e d , T ~ g ~ ) .  

Here, Prod is an English verb sense predication of the 
same form described for the second argument ofvorb in 
the preceding section. The logical variable components 
of the arguments of Prod are bound (in the gvorb 
clause) to the German cases appearing in the gv element 
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(in the order given). Any semantic type requirements 
attached to these cases are converted into Prolog goals 
that are combinations of isa tests on the sense variable 
of the associated marker, and these goals are put on the 
condition side of the gvorb clause. For example, the gv 
elements for "ea t "  above are compiled into the follow- 
ing gverb clauses: 

gverb(eat(nom:S:*,acc:*),ess) *-- 
isa(S,human). 

gverb(eat(nom:S:*,acc:*);fress) *-- 
isa(S,animate) & -]isa(S~uman). 

The German case symbols that can appear in transfer 
entries include not only the standard fbur cases (nora, 
ace, dat, and gen), but also prepositional case symbols 
(for pp complements of German verbs),, which are of the 
form pc(Prep,Case). This form signifies that the spe- 
cific preposition Prop appears, followed by a noun 
phrase with case Case. The Case component of pc can 
be omitted when a default case is to be used. For 
example, an entry for "search (something) for (some- 
thing)" could be 

sesa'ch < v(obj.pobJ(for)) 
< gv( acc.pc(nach),durch + such). 

The gvorb clause compiled for this gv element is the 
unit clause: 

gverb(search(nom:*,acc:*,pc(nach):*),durch+ such). 

There are also special genitive cases that allow for the 
variation in ein Stack des wei[3en Papiers/ein Stack 
wei[3es Papier (' 'a piece of the white paper"/' 'a piece of 
white paper"). In the first phrase the complement of 
Stack is a real genitive, but in the second phrase the 
complement takes the same case as StaXek itself. 

One allowance that has to be made is that the subject 
of the English verb may not correspond to the subject of 
the German verb. This occurs with the translation of 
"l ike" into gefallen, where we can translate " I  like the 
car" into Mir gefaellt der Wagen. An internal-form 
transfer entry for the verb "l ike" is 

gverb(like(dat:*,nom:X),ge + fall,*:X). 

The extra argument of gvorb is the marker (minus test) 
of the German subject. In such instances, t r a~word  
must make sure that the German verb (if finite) agrees 
with the actual German subject. 

Care is taken in the trazaword rules involving gvorb 
to handle auxiliary verbs correctly. One problem is to 
get the correct case marking on the German subject and 
the correct inflection on the highest auxiliary, even 
though the English subject may not correspond to the 
German subject of the main verb. 

In particular, care with case marking must be taken 
in the translation of passives. In a German passive, the 
grammatical subject may correspond to a direct object 
in the active form, but it may not correspond to an 
indirect object (as it may" in English). Thus, LMT 
translates "The car was given to the man" into Der 

Wagen wurde dem Mann gegeben, but translates "The 
man was given a car" into Dem Mann wurde ein Wagen 
gegeben (where ein Wagen is the grammatical subject). 
Currently, LMT translates the English passive only by 
the use of werden. The use of sein and active forms will 
be tackled eventually. 

In the translation of the perfect "have" ,  the haben/ 
sein distinction is made by feature markings on the 
English verb complement o f " h a v e " .  It could be argued 
that this is an exception to the principle that the English 
grammar is written independently of the task of trans- 
lation, but the distinction made by the required features 
is largely semantic. 

How does LMT treat situations in which there is not 
a word-for-word correspondence in translations? Of 
course transformations can add, delete, or rearrange 
words, and examples of these will be discussed in the 
next section. But, in keeping with the principle of 
getting as much right as possible during transfer, vari- 
ous methods are used in transfer, too. 

One method is that the result arguments of lexical 
transfer elements can contain compound terms that 
represent word sequences. The most general form is 
Wl#W2,  which represents Wl  followed by W2 (with a 
separating blank). This form is used, for example, in 
cases where the verb translation is a reflexive verb. The 
verb "refer to" translates to sich beziehen auf, and the 
external form of its transfer element is: 

gv(pc( auf, acc),sich#be + zieh). 

The lexical compiler converts this to the internal form: 

gverb(refer(nom:F,pc(auf,acc):*), 
refl(*:F)#be+zieh). 

The term refl(X) representing the reflexive contains 
the feature structure of the German subject, so that it 
may be realized as the correct form of the reflexive 
pronoun by the German morphological component. 

A special compound form shows up in the represen- 
tation of separable prefix verbs, which are of the form 
Prefix:Verb. (As exhibited above for beziehen, insepa- 
rable prefix verbs are given in the form Prefix+Verb.) 
A separable prefix can become a separate word through 
a transformation that recognizes the special form and 
moves the prefix appropriately. The separable prefix 
verb device P:V can often be used also to specify 
transfers where the target is an adverb-verb combina- 
tion, when the adverb behaves transformationally like a 
separable prefix. 

One could say that the translation of noun com- 
pounds involves a many-to-one correspondence, since 
noun compounds are given as a group of words in 
English, but often as a single word in German. The 
procedure t ranlabel  is responsible for marking the nc 
feature structure of each noun premodifier of a noun. 
The case feature of such a noun premodifier is marked 
by a special case symbol comb (combining form), which 
signals that the noun is part of a noun compound and 
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will be given a special form by the German morpholog- 
ical component. 

The most important means for handling noncompo- 
sitional translation in LMT is through the use of multi- 
word elements in the lexicon. As indicated in the 
preceding section, all but three of the eleven parts of 
speech allow multiword forms, in transfer as well as in 
source analysis elements. As an example, to translate 
"take care of" into sich kiimmern um, the relevant 
portion of the external form entry for " take"  could be 

take < mv(=.care.of, obJ) 
> mgv(pc(um),sich#kfimmer). 

The connecting operator > tells the lexical compiler to 
process its right operand only if its left operand has 
"succeeded" (i.e., the m v  pattern has matched). 

The patterns in multiword elements can contain 
variables. For example, the phrase "at least N" ,  where 
N is a number (like "5"  or "five"),  can be considered 
a multi-determiner. This can be translated into min- 
destens M, where M is the German form of N, by the 
multiword elements in an entry for "least" (showing 
only the relevant part of the entry). 

least < mdet(at.=.N)-enum(N) 
> mgdet(mindestens#M)-gnum( N,M ). 

Prolog goals associated with multiword elements are 
indicated by attaching them with the operator -. The 
lexical compiler handles such goals in source elements 
differently from goals in transfer elements. A goal for a 
source element, like c h u m ( N )  in the example, is 
treated as a test that is executed at lexical preprocessing 
time after the multiword pattern successfully matches 
part of the sentence. If this test does not succeed, the 
multiword element is not compiled. A goal for a transfer 
element, like gnum(N,M)  (which associates the En- 
glish number N to the German number M), is added by 
the lexical compiler to the right-hand side of the clause 
compiled for the multiword transfer element, and thus it 
is not executed until transfer time. (In the above exam- 
ple, this postponement is not necessary; but in general 
it is necessary because the transfer may depend on 
ingredients from the rest of the sentence that are not 
known until a complete parse is obtained.) 

Non-compositional translation can also be handled 
by the German word list transformations allowed in 
lexical entries. This facility will be described in Section 
6. For more details on lexical aspects of transfer, see 
McCord and Wolff (1988). 

5 GERMAN SYNTACTIC GENERATION 

As indicated in the Introduction, the purpose of this 
component is to generate a German surface structure 
tree from the transfer tree, and this is accomplished by 
applying a system of transformations. Before the trans- 
formations operate, however, a minor bookkeeping step 
is carried out, having to do with bracketing. Recall that 
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syntax trees (both English and German) are represented 
so far as terms 

syn(Label,B,Modlfiers) 

where B is the bracket list for the node. Transforma- 
tions operate on terms similar to this, but it is conve- 
nient if they do not have to deal with bracket lists 
explicitly. Therefore, tree terms in the above form are 
converted (by the bookkeeping step in question) to tree 
terms in the simpler form 

syn(Label,Modiflers 1) 

where Modlf iersl  is obtained by surrounding Modl_q- 
ors appropriately with the terminal pairs corresponding 
to the bracket symbols in the list B. The main procedure 
for syntactic generation, 

generate(Syn,Synl), 

applies transformations to a syn  tree Syn (in the simpler 
form), producing another syn  tree Syn l .  This works 
recursively on the tree. At each level, generate  is first 
applied recursively to the modifiers, giving a tree with a 
new modifier list. Then the transformations are applied 
in a loop: Each time through the loop, the first applica- 
ble transformation is used (hence the order of transfor- 
mations matters). The loop terminates when no trans- 
formation is applicable. Thus the definition can be given 
a s :  

generate(syn(Lab,Mods),syn(Lab2,Mods2)) ~--/& 
genlist(Mods,Mods 1) &. 
alltransforms(syn(Lab,Mods 1),syn( Lab2,Mods2 )). 

generate(Mod,Mod). 
genlist(Mod:Mods,Modl :Mods 1) ~-- 

generate(Mod,Modl) @9 
genlist(Mods,Modsl). 

genlist(nil,nil). 

alltransforms( Syn,Syn2 ) ~-- 
transform( Trans,Syn,Syn 1 ) &/& 
alltransforms(Syn 1,Syn2). 

alltransforms(Syn,Syn). 

(The symbol / denotes the cut in VM/Prolog.) 
Note that in this scheme transformations on a given 

level are applied after the recursive generation of daugh- 
ter nodes. The alternative schemes of applying them all 
before recursive generation, or applying some desig- 
nated transformations before and others after recursive 
generation, were tried in earlier versions of LMT. But 
these other schemes led to problems with a workable 
ordering of the list of transformations. Also, experi- 
ments were made with an additional system of transfor- 
mations, applied to English trees prior to transfer, but it 
was found that this complication is unnecessary. 

Specific transformations are given by rules for t rans-  
form. Its first argument is just a name for the transfor- 
mation, like verbfinal,  which is used in tracing (in a 
fuller definition of generate).  

One could write rules for t r ans fo rm directly, but in 
LMT transformational rules are written in a slightly 
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more convenient notation and then compiled into rules 
for t rans form.  The main purpose of the alternative 
format is to provide an augmentation of the pattern 
matching of Prolog in which specially marked terms can 
match sublists of lists. Specifically, when a term of the 
form %X is written syntactically as a member of a list, 
then X matches (unifies with) any sublist in that posi- 
tion. This can be used both in analyzing and construct- 
ing lists. As an example, the expression a.b.%X.e.d.n.il 
matches the list a.b.u.v.w.e.d. 11il and unifies X with 
u.v.w.nfl. (Similar conventions have been used in many 
pattern matchers dealing with lists.) In this implemen- 
tation, such extended list expressions can be embedded 
arbitrarily in Prolog terms. 

The form for a transformation given to the rule 
compiler is: 

N s f f I l o  - - 

A === > B 
*-- Condition. 

Here, A and B are arbitrary Prolog terms, containing 
possible extended list expressions. The Condition is a 
Prolog goal, and it can be omitted if desired. This rule is 
compiled into a t r ans fo rm rule of the form 

transform(Name~l,B1) ~- 
ASplit & Condition & BSplit. 

Here, the original pseudo-term A involving % elements 
has been re-expressed as an ordinary term A1 and a 
conjunction NBplit of calls to conc, which concatenates 
lists. Similarly, B is re-expressed as B1 and BSplit. 

As an example, a simplified version of the German 
dative transformation is 

dative -- 
syn(vp, %LMods.Obj.IObj.RMods ) 

syn(vp, %LMods.IObj.Obj.RMods ) 
*-- case(Obj,acc) & case(IObj,dat). 

This is compiled into the transform rule: 

transform(dative, syn(vp,Mods), syz.(vp,Modsl)) *-- 
concCLMods, Obj.IObj.RMods, Mods) @* 
case(0bj,acc) & case(I0bJ,dat) & 
conc(LMods, IObj.Obj.RMods, Modsl). 

For efficiency, the Condition is inserted between 
ASplit and BSplit, because Condition normally con- 
tains constraints whose arguments become known im- 
mediately after execution of ASplit. 

The transformation rolclauso is defined as follows 
(we give here somewhat simplified versions of the 
actual transformations). 

relclause - -  
syn(vp(dep (tel( Case,Type,PNG ) ),I,M ), Mods) 

syn(vp(dep(rel),I,M), (',' +punt). 
(drel +pro(Case,PNG)). 
%Mods. 
(',' +punc).nn). 
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Here, PNG is the person-number-gender structure for 
the noun phrase modified by the relative clause. (The via 
arguments I and M are as described in the preceding 
section.) The relclause transformation is responsible 
for adding a relative pronoun and surrounding commas 
to the relative clause. In the English analysis tree, no 
relatiw: pronoun is explicitly shown. (Note that in 
certain cases it can be omitted in the English sentence.) 
Thus, "'The man I saw is my brother" translates into 
Der Mann, den ich sah, ist rnein Bruder. There are 
variants of this relative clause transformation dealing 
with cases like "The book to which I referred is old",  
which translates to Das Buch, auf das ich mich bezog, 
ist alt. LMT also gives exactly this same translation for 
each of the English sentences: "The book which I 
referred to is old", "The book that I referred to is old",  
and "The book I referred to is old". 

There is a similar transformation compclause,  which 
adds the word da[3 and commas to a finite complement 
clause. Thus, "Hans knows Peter is my brother" trans- 
lates into Hans wei[3, da[3 Peter mein Bruder ist. 

The example just given illustrates the need to move 
the verb to the end of a dependent clause. This is done 
by the transformation verbfinal,  defined as follows: 

verbfinal - -  
syn(vp(dep(T),I,M), %Mods 1.Verb.Mod.Mods2 ) 

syn(vp(dep(T),I,M), %Mods 1.Mod.Verb.Mods2) 
.-- syrdabel(Verb,vc(*,*,*)) & 

~clausal(Mod) &--lallpunc(Mod.Mods2). 

The idea is simply that the verb Verb hops over the 
modifier Mod to its right, provided that Mod is not 
clausal (to be explained) and provided that the remain- 
ing modifiers (including Mod) do not consist solely of 
punctuation. For example, in the translation of the noun 
phrase "the man that gave the woman the book",  the 
verb gab moves all the way to the end of the relative 
clause, producing: der Mann, der der Frau das Buch 
gab. Note that verbfinal  may apply several times, until 
the verb has moved as far as it can go. (It is possible to 
be a bit more efficient by writing an auxiliary procedure 
to perform the movement.) 

The point in not hopping over clausal elements in 
verbfinal is illustrated with the translation of the noun 
phrase "the man that told me that Hans bought a car",  
which is der Mann, der mir sagte, da[3 Hans einen 
Wagen kaufte. Here, sagte hops over mir, but not over 
the da[3 clause. Roughly, clausal elements are phrases 
whose heads are verbs. 

But an interesting situation for vorbfinal arises when 
there is a clausal element that is on the right end of the 
tree but is not a sister of the verb being moved. This 
occurs in the translation of the noun phrase "the man 
that gave the woman the book I referred to".  Here gab 
should not move past the final relative clause, and the 
result should be: der Mann, der der Frau das Buch gab, 
aufdas ich reich bezog. The final clausal element could 
actually be embedded several levels. To handle this, 
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there is a transformation clauseraise,  ordered before 
verbflmal, which raises such final clauses. Its definition 
is simply: 

clauseralse - -  
syn(Lab, %Mods.syn(Lab 1,%Mods 1.Syn.nil).nil ) 

syn(Lab, %Mods .syn(Lab 1,Mods 1 ).Syn.nil ) 
~-- clausal(Syn). 

This may operate through several levels before the 
result of the raising is pertinent to verbfinal. 

The transformation verbfinal also handles (without 
extra effort) the word ordering in auxiliary verb con- 
structions, because of the treatment of auxiliary verbs 
as higher verbs. Thus, the sentence "Hans will have 
bought the car" is structured as Hans [will [have 
[bought the car]]]. Before transformations, the transla- 
tion will be structured as Hans [wird [haben [gekauft 
den Wagen]]]. The verb phrases headed by haben and 
gekauft are dependent, so verbfLual operates on them 
to give: Hans [wird [[den Wagen gekauft] haben]]. (The 
phrases hopped over are not cases of clausal elements.) 

Right movement of separable verb prefixes in inde- 
pendent clauses is similar to right movement of the verb 
in dependent clauses. This is handled by two transfor- 
mations, one to separate the prefix, the other to move it. 
In this case, too, the moved item does not hop over 
clausal elements. An example for the separable prefix 
verb aufbereiten ("edit") is in the LMT translation of 
the sentence "Hans edited the file that he had created", 
which is Hans bereitete die Datei auf, die er erstellt 
hatte. In dependent clauses, the separable prefix stays 
with the verb, although inflection has to treat it specially 
for past participles and zu infinitive forms. 

Ordering of transformations is important in that elau- 
seraise must be ordered before verbfinal and the 
separable prefix transformations. In turn, it is important 
to order the dative transformation before all of these. If 
the dative noun phrase to be moved contains a final 
clausal element, then this element should not be a 
barrier to rightward movement of a verb or separable 
prefix. If dative operates first, the final clausal element 
will go with the whole dative noun phrase, and will not 
have a chance to be raised by clauseraise, which only 
sees clausal elements on the extreme right of the clause 
in which it operates. Thus, for the sentence "Hans 
knew that Peter had given a book to the woman he 
saw", the translation is Hans wu~te, da[3 Peter der 
Frau, die er sah, ein Buch gegeben hatte. 

Another example of a transformation is verbsecond, 
which operates in independent clauses. 

verbsecond -- 

syn(vp( ind( s ) , I ,M) ,  Mod.%Modsl. 
syn(vp(ind(vp),I1,M1),%Mods2.Verb. Mods3). 
Mods4) 

syn(vp(ind(s),I3ql), Mod.Verb.%Mods 1. 
syn(vp(ind(vp),I 1,M 1),%Mods2.Mods3).Mods4) 

*- Modsl = /nil & synlabel(Verb,vc(*,*,*)). 
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As the name indicates, this moves the verb so that it is 
the second modifier of the independent clause. As a 
result, the sentence "Probably the file was created by 
Hans" translates into Wahrscheinlich wurde die Datei 
von Hans erstellt, where wurde is moved into second 
position by verbsecond. 

An interesting example of a transformation is subcl, 
which adds pronouns in examples like 

"The man wants the woman to speak with Hans 
before buying the car." 

Der Mann will, daft die Frau mit Hans spricht, bevor 
sie den Wagen kauft 

Here, the translation of the subordinate participial 
clause "before buying the car" is the finite clause bevor 
sie den Wagen kauft (before she buys the car), where 
the pronoun sie (she), referring to the subject of the 
matrix clause, is added. The English analysis shows a 
variable in the analysis of the participial clause which is 
unified with one in the subject of the matrix clause. This 
variable serves as the link to transmit the appropriate 
person-number-gender to the subordinate clause in the 
transfer tree. The transformation subcl can then easily 
add the correct pronoun. 

A final example of a transformation is possessive,  
which deals with left-branching possessive noun phrase 
constructions, as in "my oldest brother's wife's father's 
car". The possessive transformation is responsible for 
converting such structures into a sort of right branching 
mirror image, where extra definite articles are added: 
der Wagen des Vaters der Frau meines iiltesten Bru- 
ders. The definition of possessive, without its condi- 
tion, is as follows: 

possessive - -  
syn(NPLab, PossNP.NC.Mods) 
- - - >  
syn(NPLab, Det.NC.PossNP.Mods). 

The condition (not shown) tests that the components of 
the pattern are what their names suggest, assigns the 
genitive case to the possessive noun phrase PossN'P, 
and creates a definite article Det that agrees with the 
whole noun phrase. 

6 GERMAN MORPHOLOGICAL GENERATION 

The task of this component is to take the output tree 
from the syntactic generation component and to pro- 
duce the character string representing the final German 
translation. There are three substeps for accomplishing 
this. 

The first and most substantial step is the application 
of morphological procedures, mainly inflectional, to the 
individual nodes of the tree, which are of the form 
Base+Features,  producing another tree whose termi- 
nals are inflected German words. The main procedure 
for this step, gmorph,  takes such a Base+Features  
structure and produces the required inflected word. It 
accomplishes this mainly by dispatching the problem to 
various procedures like gverbf (German verb form) 
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associated with different parts of speech, as determined 
appropriately from Feat-u.res. Before calling these pro- 
cedures, though, graorph performs several "tidying- 
up" operations, such as simplifying tense and case 
structures and handling compound words (through re- 
cursive calls). 

Details will not be given here for the inflectional 
procedures for the various parts of speech, but it is 
worth saying a bit about the noun declension system in 
LMT, since the most idiosyncratic part of German 
inflectional morphology is the system for nouns. It was 
mentioned in Section 3 that German noun class infor- 
mation is exhibited along with target nouns in gn 
transfer elements of the lexicon, in a compact format. 
The transfer component marks this irfformation in the 
transfer tree (see the example tree in Section 4), where 
it can be read off by the noun inflection procedures. In 
general, a gn target is of the form 

Noun.Gender.DeclensionClass. 

For example, the transfer of b ro ther  is bruder.m.b. 
The declension class is usually specified by a single 
letter. In the case of Bruder, for example, the class b 
dictates that the plural base is formed by umlauting the 
noun, and there is a general rule for finding where to 
place the umlaut. In general, the declension class has 
implicit within it the method of getting the plural base, 
the combining form (used in forming noun compounds), 
and the complete declension pattern. In examples 
where the plural base or combining form is very irreg- 
ularly formed, the declension class may be given as a 
letter together with the required morpheme, as in 
d~a_m.nt.x.daten. 

Susanne Wolff has worked out a system of 20 noun 
classes under the preceding scheme, together with the 
morphological rules for getting declensions for each 
class. There are also some rules that compute the 
gender/class for nouns with certain common endings, so 
that for these nouns the gender/class can be omitted in 
the transfer entry. 

The second substep of German morphological gener- 
ation is the application of German word list transforma- 
tions. The tree output of the first substep (whose 
terminals are inflected German words) is converted to a 
linear list of words by this second substep. This is done 
recursively. On each level, all the daughter nodes are 
converted to word lists and these are concatenated, 
producing a tentative word list Words for the node. But 
then an attempt is made to apply a word list transfor- 
mation to Words, by calling a procedure 

gphrase(Label,Words,Words 1) 

where Label is the (principal functor of the) label on the 
current node. If this succeeds, the desired word list for 
the node is Words1; otherwise it is Words. 

Currently, g-phrase rules are used mainly for han- 
dling German contractions. For example, there is a rule 

gphrase(pp, an.dem.U, am.U). 

But these rules can also be used to handle noncompo- 
sitional translations. For example, "for example" can 
translate compositionally into far  Beispiel, and then a 
g'phrase rule can convert this to zum Beispiel. As 
mentioned in Section 3, word list transformations can 
be specified in the lexicon. There is a slightly shorter 
format (like gph(pp,a~.dsm,am))  which is compiled 
into gphrase clauses by the lexical compiler. 

It seems better on the whole, however, to treat 
noncompositional translation by means of multiword 
elements in the lexicon, since these involve both source 
and transfer elements. It is useful to involve source 
elements, because in many cases the source phrase is 
idiomatic in itself, and the parser is helped by having an 
English multiword analysis. 

The last substep, a rather simple one conceptually, is 
to convert the German word list for the whole sentence 
into a simple character string. This involves mainly the 
treatment of punctuation, blanks, capitalization, and 
text formatting symbols. For a more detailed descrip- 
tion of German morphological generation, see McCord 
and Wolff (1988). 

7 STATUS OF THE SYSTEM 

LMT handles all of the examples and constructions 
given above, and many other types of constructions not 
illustrated for lack of space. Testing and vocabulary 
development have been done with the IBM CMS Editor 
(XED]T) reference manual, as well as with a collection 
of sentences made up by ourselves and others to 
illustrate key grammatical constructions and problems 
of English-German translation. Every effort has been 
made to keep the rules of the system general. As with 
most MT systems, it is assumed that there will be some 
postediting of the output. 

In a test on a 500-sentence corpus from an initial part 
of the XEDIT manual, LMT was able to translate 95% 
of the sentences in an "understandable" 12 way, with an 
average processing time on an IBM 3081 of 364 milli- 
seconds per sentence (19.5 msec. per word), using 
VM/Prolog as an interpreter. 

The first few sentences and their LMT translation 
(with no postediting) are as follows: 

X E D I T  subcommands and macros follow the same 
rules and conventions. For purposes o f  this discus- 
sion, " subcommand"  refers to both X E D I T  subcom- 
mands and XED1T macros. The general format  o f  
X E D I T  subcommands is: (fig.) A t  least one blank 
must separate the subcommand name and the oper- 
ands, unless the operand is a number or a special 
character. For example, NEXT 8  and N E X T  8 are 
equivalent. A t  least one blank must  be used to 
separate each operand in the command  line unless 
otherwise indicated. The maximum length o f  an 
X E D I T  subcommand issued f rom an EXEC  proce- 
dure or.from an X E D I T  macro is 256 characters. 
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X E D I T  Unterbefehle und Makros folgen den glei- 
chen Regeln und Konventionen. Zum Zweck  dieser 
Diskussion bezieht sich "Unterbefehl"  sowohl a u f  
X E D I T  Unterbefehle als auch au f  X E D I T  Makros. 
Das allgemeine Format  von X E D I T  Unterbefehlen 
ist: (fig.) Mindestens ein Leerzeichen m u f  den Un- 
terbefehls-Namen und die Operanden abtrennen, es 
sei denn der Operand ist eine Zahl  oder ein spezielles 
Zeichen. Z u m  Beispiel sind NEXT8  und N E X T  8 
iiquivalent. Mindestens ein Leerzeichen muff ver- 
wendet werden, jeden  Operanden in der Befehls- 
Zeile abzutrennen, wenn nicht anderweitig ange- 
zeigt. Die maximale Liinge eines X E D I T  Unterbe- 
fehls,  der von einer EXEC Prozedur oder yon einem 
X E D I T  Makro ausgegeben wird, ist 256 Zeichen. 

As for the size of  LMT,  there are now about  3,500 
Prolog clauses,  not including the lexicon. This includes 
the M L G  and DCG g rammar  rules as clauses,  and there 
are about  270 of  these. After  metarules have operated,  
the total number  of  g rammar  rules is about  450. The 
lexicon currently contains about  1,600 entries; this 
includes most  of  the vocabulary  for the X E D I T  Refer- 
ence Manual.  As ment ioned earlier, ModL is interfaced 
to the U D I C T  monolingual English lexicon (Byrd 1983, 
1984), with around 65,000 citation forms. Also an inter- 
face of  L M T  to a lexical data base (Neff, Byrd,  Rizk 
1988) for the Collins Engl ish-German Dictionary has 
been partially developed by Susanne Wolff  and the 
author.  Currently,  this interface, given an English word, 
just  takes the first German  translation provided,  for 
each part  of  speech. For  nouns,  the required L M T  
German  noun classes are obtained f rom a data base 
worked out by Wolff  f rom the inflectional information 
on the German-Engl ish  side of  Collins. 

In recent  work  (McCord 1988), L M T  has been ex- 
panded to deal with target languages besides German.  
This expansion has been made easier by the develop- 
ment  of  a large subsys tem L M T X  of  L M T  which is 
essentially target language independent and can be 
thought of  as an "Engl ish- to-X translation shell ."  De- 
velopment  of  the shell has involved improvements  and 
generalizations in the modules  of  LMT,  but most  of  the 
methods and organization are as described in the cur- 
rent paper.  

The shell L M T X  includes: 1. the English g rammar  
ModL;  2. most  of  the source/ transfer  morphology sys- 
tem and lexical processing system; 3. the transfer 
algorithm and rule system, except  for low level, lexical 
t ransfer  entries; 4. the syntactic generation algorithm; 5. 
target independent  procedures  dealing with morpholog- 
ical generation,  and 6. many  utility procedures.  For  a 
given target language, the only target specific modules 
are a. the source/ t ransfer  (unified) lexicon; b. the set of  
t ransformations for syntact ic  generation,  and c. the 
target morphological  system. As an example  of  the size 
of  the shell, for the Engl ish-German version of  L M T  the 
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shell contains approximate ly  80% of  the rules (not 
counting the lexicon). 

Using the shell, p ro to type  versions of  L M T  have 
been started up for several  target  languages, in cooper-  
ation with other  groups and individuals: French---in 
cooperat ion with the K A L I P S O S  group of  the IBM 
Paris Scientific Center  (Fargues et al. 1987), with work 
especially by Eric Bilange; Danish---with Arendse 
Bernth and in cooperat ion with IBM European  Lan- 
guage Services;  Spanish with Nelson Correa;  and Por- 
tuguese,--with Paula N e w m a n ' s  group at the IBM Los  
Angeles Scientific Center.  
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NOTES 

1. This paper is a revision of a paper (invited presentation) that 
appeared in the Proceedings of the Third International Logic 
Programming Conference, London, July 1986, published by 
Springer-Verlag, Lecture Notes in Computer Science. The cur- 
rent version reflects recent improvements in LMT. 

2. The description "Logic-programming-based" is slightly more 
accurate. 

3. There is an interesting historical connection between machine 
translation and Prolog. Prior to the development of Prolog, Alain 
Colmerauer worked in the period 1967-70 on a machine transla- 
tion project, the TAUM project--Traduction Automatique Uni- 
versit6 de Montr6al (Colmerauer et al. 1971, Kittredge, Bout- 
beau and Isabelle 1973, Isabelle and Bourbeau 1985). In 
connection with this project, Colmerauer developed a grammar 
language, Q-systems (Colmerauer 1971), which had some of the 
features of logic grammars and Prolog. In his subsequent work 
on the development of Prolog, natural language applications 
formed a major motivation for Colmerauer. 

4. In earlier work on MLGs, only the first argument of a strong 
nonterminal was used as a feature argument, so that the /k 
specification was not used in strong nonterminal declarations. 

5. Currently, there is only one occurrence of this device in ModL, 
which could be probably be avoided without too much trouble. 

6. The ordering of parses is significant in ModL. Normally trans- 
lation is done only for the first parse obtained. 

7. Markers are logical variables together with semantic and syntac- 
tic feature information. The exact format used currently in 
ModL is described at the end of this subsection. 

8. As described in the next section, the lexical preprocessor can 
optionally make this verb sense argument simply Y or make it 
the whole term ¥:Sense :Syr~eas ,  depending on the application 
of ModL. 

9. For more details, see McCord and Wolff (1988). 
10. External forms for transfer elements are discussed below. 
II. The symbols l and h attached to the nouns are their declension 

classes. More details are given in Section 6. 
12. This means that a native German speaker can read the transla- 

tion (without seeing the source) and understand it in the same 
sense as the source. 
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