
DESIGN OF L M T : A PROLOG-BASED MACHINE TRANSLATION SYSTEM

Michael C. McCord
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

LMT (logic-based machine translation) is an experimental English-to-German MT system, being
developed in the framework of logic programming. The English analysis uses a logic grammar
formalism, Modular Logic Grammar, which allows logic grammars to be more compact, and which has
a modular treatment of syntax, lexicon, and semantics. The English grammar is written independently
of the task of translation. LMT uses a syntax-to-syntax transfer method for translation, although the
English syntactic analysis trees contain some results of semantic choices and show deep grammatical
relations. Semantic type checking with Prolog inference is done during analysis and transfer. The
transfer algorithm uses logical variables and unification to good advantage; transfer works in a simple
left-to-right, top-down way. After transfer, the German syntactic generation component produces a
surface structure tree by application of a system of tree transformations. These transformations use an
augmentation of Prolog pattern matching. LMT has a single lexicon, containing both source and
transfer information, as well as some idiosyncratic target morphological information. There is a
compact external format for this lexicon, with a lexical preprocessing system that applies defaults and
compiles it into an internal format convenient for the syntactic components. During lexical preprocess-
ing, English morphological analysis can be coupled with rules that synthesize new transfer entries. 1

1 INTRODUCTION

The purpose of this paper is to describe an experimental
English-to-German machine translation system, LMT
(logic-based machine translation), 2 which has evolved
out of previous work by the author on logic grammars.

The translation system is organized in a modular
way. The grammar for analysis of the source language
(English) is written completely independently of the
task of translation. In fact, this grammar produces
logical forms that can be used for other applications
such as database query systems and knowledge-based
systems, and has been used in the systems described in
McCord (1982, 1987), Teeple (1985), Bernth (1988), and
Dahlgren (1988). The components of LMT dealing spe-
cifically with translation do not index into the grammar
rules, as, for example, in the LRC system (Bennett and
Slocum 1985).

An interesting sort of modularity exists in the English
grammar itself, whereby syntax, lexicon, and semantic
interpretation closely interact, yet manage to be clearly
separated. The lexicon exerts control over syntactic
analysis through the use of slot frames in lexical entries
and slot filling methods in syntax, as well as through

type checking with semantic types taken from lexical
entries. Yet the syntax rules look completely syntactic;
e.g., no specific semantic types or word senses are
referred to. The syntactic analysis trees look like sur-
face structure trees, with annotations showing gram-
matical relations (including remote relations due to
extraposition). The terminal nodes of these trees are
logical terminals (explained below), which contain word
sense predications and can be used in building logical
forms as semantic representations of sentences. These
logical forms are built by a separate semantic interpre-
tation component which deals with problems of scoping
of quantifiers and other modifiers.

Given that the English grammar can produce both
syntactic structures and logical forms, an issue in de-
signing LMT was what structures to use as input to
transfer. The initial idea was to use the logical forms.
The main argument for this was that 1. the logical form
analyses express the complete meaning of the source
text, and 2. there is no doubt that for perfect transla-
tions, one must in general have a complete semantic
analysis of the source text (and employ world knowl-
edge to get it). The logical form analyses are expres-

Copyright 1989 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided
that the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.

0362-613X/89/010033-52503.00

Computational Linguistics, Volume 15, Number 1, March 1989 33

Michael C. McCord]Design of LMT: A Prolog-Based Machine Translation System

sions in a logical form language (LFL) (McCord 1985a,
1987). Although the formalism for LFL is intended to be
language universal, there is actually a ,different version
of LFL for every natural language, because most of the
predicates are word senses in the natural language being
analyzed. The original scheme, then, :for LMT was to
analyze English text into English LFL forms, then
transfer these to German LFL form.,;, then generate
German text.

This scheme is neat, and may be investigated again
later; but for the sake of practicality, the compromise
has been to use the syntactic analyses produced by the
grammar as the point of transfer. Useful MT systems
must generally work with rather large domains, and the
trouble with the use of logical forms is that too many
decisions must be made and too much world knowledge
is needed to produce correct analyses for a large do-
main. For example, LFL expressions for degree adjec-
tives like "good" are focalizers (McCord 1985a, 1987),
where the base argument shows the base of comparison
for the adjective. In general, it may be difficult to
determine such arguments. In the syntactic structure,
arguments of focalizers are not yet determined; but for
the purposes of translation, such scoping problems can
often (though not always) be ignored. They can often be
sidestepped because the same ambiguity exists in the
target language. For example, "He is good" can easily
translate into Er ist gut without deciding "good with
respect to what?". Another point is that in the case of
languages as close as English and German, it is simply
more direct to transfer syntactic structure to syntactic
structure. For more discussion of the practicality of a
syntactic transfer method, see Bennett and Slocum
(1985).

It should be emphasized that the syntactic analysis
trees produced by the grammar do contain some of the
ingredients of semantic interpretation. As mentioned
above, terminal nodes contain word sense predications.
Although the arguments of focalizer predications are
not yet filled in, the arguments of verb and noun senses
(corresponding to complements), are filled in (inasmuch
as they can be determined by the syntax of the sen-
tence, plus a few heuristics). Semantic type checking
involves Prolog inference and is used for constraining
word sense selection, complementation, and adjunct
attachment. Also certain preference heuristics, de-
scribed in Section 2 below, are used for modifier
attachment.

Translation of a sentence by LMT proceeds in five
steps.

1. Lexical preprocessing;
2. English syntactic analysis;
3. English-to-German transfer;
4. German syntactic generation;
5. German morphological generation.

During Step 1, lexical preprocessing, the words of an
input sentence are looked up in the LMT lexicon, in

combination with English morphological analysis (both
inflectional and derivational). Morphological deriva-
tions are used to synthesize new transfer entries. For
example, the derivation of "reuseable" from "use" and
the existence of a transfer entry use--> verwenden allow
automatic synthesis of a new transfer entry reuseable
wieder verwendbar.

Step 1, and Step 5 as well, are the topics of a
companion paper (McCord and Wolff 1988). The
present paper deals mainly with the syntactic compo-
nents of LMT; but enough description of the lexicon is
given to make the discussion self-contained.

Step 2, F, nglish syntactic analysis, is dealt with in
Section 2. Several aspects of the English grammar are
described: the Modular Logic Grammar formalism, use
of metarules in the grammar, special syntactic tech-
niques, and the methods used for semantic type check-
ing.

Section 3 provides an overview of the LMT lexicon
and its relation to the English grammar.

Step 3 is dealt with in Section 4, "The Transfer
Component of LMT." The transfer component con-
verts an English syntax tree into the German transfer
tree. This is a syntax tree that (normally) has the same
shape as the English tree, but has different node labels.
Its nonterminal nodes are labeled by feature structures
appropriate for German syntax and morphology; and its
terminal nodes are (normally) citation forms of German
words, together with feature structures that determine
the inflections of the words during Step 5.

The transfer algorithm works in a simple way, in one
top-down, left-to-right pass, yet manages to get a lot
done, making German word choices and essentially
producing all required German feature structures (like
case markers). This is facilitated by use of logical
variables and unification. Lexical transfer information
resides in Prolog clauses (in internal representation),
used by the transfer algorithm for simultaneous deter-
mination of German target words and associated inflec-
tional markings for complements of these target words.

Step 4, German syntactic generation, is described in
Section 5. This phase takes the German transfer tree
and produces a German surface structure tree by apply-
ing a battery of tree transformations in a cycle, as in
transformational grammar. The pattern matching used
by these transformations is mainly Prolog unification,
but there is an augmentation for matching sublists.
Transformations are expressed in a special notation
involving this augmented pattern matching and are
compiled by the system into normal Prolog clauses. The
number of transformations used in the system is rather
small (currently 44), because the general idea of LMT is
to get as much right as possible during the transfer step.

As mentioned above, Step 5, German morphological
generation, is described in detail in McCord and Wolff
(1988), but some comments are given here in Section 6.

Section 7 briefly describes the status of the system as
of November 1988. It is worth noting here that LMT,

34 ComputaLtional Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

although fairly large by now, is written entirely in
Prolog (except for a few lines of trivial system code). No
need has been seen for other methods, even for quick
access to large dictionary disk files. The version of
Prolog used is VM/Prolog (written by Marc Gillet),
running on an IBM mainframe. The features of Prolog
(especially logical variables and unification) have been
very useful in making LMT easy to write. 3

2 THE ENGLISH ANALYSIS GRAMMAR, MoDL

The term grammar is being used in this paper in the
broad sense of a system that associates semantic represen-
tations with sentences (and may also associate syntactic
analyses). A modular logic grammar (MLG) (McCord
1985a, 1987) has a syntactic component (with rules
written in a certain formalism), and a separate semantic
interpretation component (using a certain methodology).
The English MLG used in LMT is called ModL, and has
evolved since 1979. Many of the ingredients have been
described previously (McCord 1981, 1982, 1985a, 1987),
so the background description given here is abbreviated
(but fairly self-contained), and the emphasis is on new
ingredients.

2.1 THE MLG FORMALISM

Metamorphosis grammars (MGs) (Colmerauer 1975,
1978) are like type-0 phrase structure grammars, but
with logic terms for grammar symbols, and with unifi-
cation of grammar symbols used in rewriting instead of
equality checks. In an MG in normal form, the left-hand
side of each rule is required to start with a nonterminal,
followed possibly by terminals. Definite clause gram-
mars (DCGs) (Pereira and Warren 1980), are the special
case of normal form MGs corresponding to context-free
phrase structure grammars; i.e., the left-hand side of
each rule consists of a nonterminal only. In MGs (and
DCGs), any of the grammar symbols can have argu-
ments, and these can be used to constrain the grammar
as well as to build analysis structures. MGs (in normal
form) can be compiled directly into Horn clauses (Col-
merauer 1978) (hence run in Prolog for parsing and
generation), by adding extra arguments to nonterminals
representing difference lists of word strings being ana-
lyzed. In MGs, the right-hand side of a rule can also
contain ordinary Horn clause goals, which translate into
themselves in the compilation to Horn clauses.

The MLG syntactic formalism is an extension of the
DCG formalism. The three most important extra ingre-
dients (to be explained in this subsection) are the
following:

1. A declaration of strong nonterminals preceding the
listing of syntax rules;

2. Logical terminals;
3. Shifted nonterminals.

The second and third ingredients are allowed on the
right-hand sides of syntax rules. There are several other

minor types of extra ingredients in the MLG formalism,
which will be mentioned at the end of the subsection.

The syntax rule compiler of an MLG compiles the
syntactic component directly into Prolog (as is common
with MGs, so that parsing is top-down), but takes care
of analysis structure building, so that the grammar
writer does not have to bother with the bookkeeping of
adding nonterminal arguments to accomplish this (as in
MGs). Also, since systematic structure building is in the
hands of the rule compiler, it is easier to write meta-
grammatical rules.

The MLG rule compiler has two options for structure
building. The compiled grammar can operate in a one-
pass mode, in which LFL representations are built
directly during parsing, through interleaved calls to the
semantic interpreter, and no syntactic structures are
built. Or it can operate in a two-pass mode, in which
syntactic structures are built during parsing, and these
are given to the semantic interpreter in a second pass.
The two-pass mode is used for LMT, since we want
syntactic analysis trees. In the following discussion, the
one-pass mode will be ignored--for details, see
McCord (1985a, 1987).

Now let us look at the three distinctive ingredients of
MLGs mentioned above. Strong nonterminals represent
major syntactic categories, and they are declared by a
clause

strongnonterminals(NT 1.NT2 NTn.nil).

(The dot operator is used for lists.) Each NTi is of the
form A/k where A is an atom, the principal functor of
the strong nonterminal being declared, and k is a
nonnegative integer, less than or equal to the number of
arguments of the nonterminal. The first k arguments of
the nonterminal are called its feature arguments; their
significance is explained below. 4 A nonterminal not
declared strong is called weak. A syntax rule whose
left-hand side is a strong (weak) nonterminal is called a
strong (weak) rule.

The most significant way in which the strong/weak
distinction is used by the MLG rule compiler is in
automatic analysis structure building. Nodes for the
analysis tree get built corresponding to the application
of strong rules, but not weak rules. Specifically, when a
strong nonterminal

A(X: ~ n)

is expanded in the derivation of a sentence, a tree node
of the form

syn(A(Xl ,X~k),B,Mods)

is built for the analysis tree. The first argument of the
syn term is the label on the node, consisting of the
nonterminal together with its feature arguments. Thus
feature arguments are made available in the syntactic
description of the sentence, and may be used by other
modules--such as transfer in LMT. (The significance of
feature arguments for MLG metarules i s indicated

Computational Linguistics, Volume 15, Number 1, March 1989 35

Michael C. McCord Design of LMT: A Proiog-Based Machine Translation System

below.) The second argument B of syn has to do with
bracketing of the phrase analyzed by A, and will be
explained below. The last argument Mods is the list of
daughter nodes.

The second way in which MLGs differ from DCGs is
that the right-hand sides of rules can contain logical
terminals. These are building blocks fi~r analysis struc-
tures, just as ordinary terminals are building blocks for
the word strings being analyzed. The terminal nodes of
syntactic analysis trees are logical terminals. In fact, the
terminal node members of Mods in the syn term above
are just the logical terminals encountered while expand-
ing the strong nonterminal A, possi~bly through the
application of subordinate weak rules, but not through
other applications of strong rules.

Logical terminals are terms of the form Op-LF. Here,
LF is a logical form (an LFL expression), usually a word
sense predication, like see(X,Y). The term Op, called
an operator, determines how the logical terminal will
combine with other logical terminals during semantic
interpretation to build larger logical forms. For a de-
scription of the way MLG semantic interpretation
works, see McCord (1985a, 1987).

As indicated above, the MLG semantic interpreter is
not used in LMT. Because of this, the operator compo-
nents of logical terminals are not important here; how-
ever, the logical form components are used. The argu-
ments of word sense predications show deep relations
of words to other parts of the sentence, including
remote dependencies, and play a central role in the
transfer algorithm, as we will see in Section 3. It should
also be noted that the grammar Mod.L has been shaped
strongly by the need to produce logical form analyses.

The last distinctive ingredient of MLGs is the shift
operator, denoted by %. Its purpose is to allow the
production of left-embedded structures while using
right-recursive rules (necessary because of the top-
down parsing). Before describing the shift operator
generally, let us look at an example.

Left-recursive constructions occur in English noun
phrases like "my oldest brother's wife's father's car".
A noun phrase grammar fragment with shift that handles
this is as follows:

np ~ determiner: np 1.
npl ~ premodifiers: noun: np2.
np2 ~ apostrophe_ s: np % npl.
rip2 ~ postmodifiers.

Here, np is declared a strong nonterminal and all others
are weak. (The colon operator on the right-hand side of
MLG rules denotes the usual sequencing.) The occur-
rence of an apostrophe-s triggers a shift back to the state
n p l , where we are looking at the premodifiers (say,
adjectives) of a noun phrase. In making the transition,
though, the provisional syntactic structure being built
for the noun phrase is changed: A|I daughters con-
structed so far are made the daughters of a new node
with label np (the left operand of the shift operator), and

36

this new node is made the initial daughter in the new
provisional syntactic structure.

In general, the right-hand side of an MLG syntax rule
can contain a shifted nonterminal, which is of the form
LaboI%NT, where Label is a term (to be used as a node
label), and ~ is a weak nonterminal. The idea, in rather
procedural terms, is: 1. Take the list of daughters built
so far for the active tree node (corresponding to the
most recently activated strong rule), and make it the
complete daughter list of a new node Mod with label
Label; and then 2. proceed with NT, using Mod as the
initial daughter of the active tree node.

It should be noted that the syntactic analysis struc-
tures built automatically for MLGs differ from deriva-
tion trees in three ways: a. Weak rules do not contribute
nodes to analysis trees (but strong rules do); b. shifted
nonterminals can contribute nodes in the special way
just indicated; and c. terminal nodes are logical termi-
nals, not word string terminals.

It was mentioned above that there are several minor
types of extra ingredients in the MLG formalism. Five
of these will be described here briefly.

1. There is an "escape" to the DCG formalism: A
grammar symbol of the form -NT does analysis with
a DCG nonterminal NT, defined by its own DCG
rules. (DCG rules are written with the symbol ---~,
whereas MLG rules are written with f t .) This is
useful, for the sake of efficiency, when MLG struc-
ture building is not necessary.
2. In order to look at right context, one can refer to
the next terminal T (without removing T from the
word stream) by using the symbol +-T. (Ordinary
references to terminals are indicated by +T.)
3. Also, one can examine the complete right context
with a DCG nonterminal NT by use of the symbol
- ~ r .

4. As with DCGs, one can specify a Prolog goal Goal
on the right-hand side of a rule. Our notation for this
is $Goa2. Such goals are executed when the compiled
grammar is executed. But there is another type of
Prolog goal, denoted by !Goal, which gets executed
immediately at compile time. This is convenient,
e.g., for specifying feature selection goals whose
immediate compilation constrains feature structures
through unificationmwith more efficient execution
during parsing. Writing such constraints directly may
not be as perspicuous, or as flexible if one wants to
change the representation of feature structures.
5. Although syntactic structures are handled auto-
matically by the rule compiler, it is occasionally
convenient to be able to refer to them. A symbol
1~ > S y n , where NT is a strong nonterminal, binds
Syn to the syntactic structure of the phrase analyzed
by ~ (and is otherwise treated like an occurrence of
NT) 5. There is a similar method for referring directly
to bracketing symbols (dealt with in the next sec-
tion).

Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

2.2 METAGRAMMATICAL RULES

There are two grammatical constructions that are so
pervasive and cut across ordinary grammatical catego-
ries to such an extent, that they invite treatment by
metagrammatical rules: coordination and bracketing.
Coordination is construction with "and" , "o r" , "but" ,
etc. Bracketing consists of the enclosure of sentence
substrings in paired symbols like parentheses, other
types of brackets, dashes, and quotes. Also, in text
formatting languages, there are paired symbols used for
font changes and other formatting control. LMT is being
written to process the source text for the IBM SCRIPT/
GML formatting language (as well as ordinary text), so
it is important to handle such formatting control sym-
bols. (Note that "bracketing" symbols can be nested
[as in this sentence].) Use of metarules allows one to
make coordination and bracketing more "invisible" to
the parser and translator.

Coordination has been treated metagrammatically in
several systems. In the logic programming framework,
treatments include those in Dahl and McCord (1983),
Sedogbo (1984), and Hirschman (1986). The first of
these systems implemented coordination metarules in
an interpreter for the logic grammar, whereas the last
two implement them in a syntax rule compiler. Brack-
eting with ordinary parentheses is treated in the LRC
system (Bennett and Slocum 1985) by reliance on
LISP's handling of parentheses.

There is a limited treatment of coordination and
bracketing through metarules in the MLG rule compiler.
Specifically, the implementation is for coordination and
bracketing of complete phrases, where a phrase is a
word string analyzed by a strong nonterminal. Any
phrase (type) can be coordinated, any number of times,
using the usual coordinating conjunctions, commas, and
semicolons, as well as the "both-and", "either-or"
constructions. Bracketing of a phrase (with nesting to
any level) is allowed in contexts where the phrase could
occur grammatically anyway (as in this sentence). In
addition, appositive parentheticals, as in " I know that
man (the one over there)", where a phrase type is
repeated in parentheses, are treated by the metarules.

The current restriction to coordination of complete
phrases (without identifying gaps) is not quite as severe
as it might seem, because 1. there are quite a few phrase
types (including verb phrases, verb groups, and noun
groups), and for these, all appropriate associations of
variables are made; and 2. examples with real gaps often
do at least get parsed because of optional constituents
(as in "John saw and Mary heard the train", where
"John saw" is parsed as a complete phrase because the
object of " saw" is optional).

The second argument of the Prolog term syn(Label,
B,Mods) representing a syntax tree node is used to
accommodate bracketing. The term B is a list of sym-
bols, like quote.pa~ren.nfl, each representing a pair of
brackets enclosing the phrase represented by the node.

Computational Linguistics, Volume 15, Number 1, March 1989

This "factored out" representation of brackets al-
lows the translation component of LMT to handle
brackets in a way that is transparent to most of the
rules. The result is that if a phrase is bracketed in a
certain way in the English source, then the correspond-
ing phrase will automatically be bracketed in the same
way in the German translation.

Coordination and bracketing are handled in an inte-
grated way by the rule compiler. For each strong
nonterminal, the following is done (a simplified version
is given here). For the sake of concreteness, let us say
that the nonterminal has name n t and that it has five
arguments:

nt(F,G,H.I,J)

(before compilation), where the first two arguments F
and G are declared to be the feature arguments. The
existing syntax rules for n t are compiled essentially as
in McCord (1985a), but the name given to the head
predicate is changed to ntbase, representing the simple
(noncoordinated, nonbracketed) form of the phrase. In
addition, the metarules create four additional Prolog
rules--for the original nt , not for ntbase. The first
additional rule is:

nt(F,G,H,I~I, syn(Lab,B1,Mods), g,z) *--
copylabel(nt(F,G),nt(F1,G 1)) &
bbrackets(B, U,V) &
preconj(PC,Mods,Modsl, V,W) &
ntbase(F1,G1,H,I~, B, SynO, W.X) &
ntconj(F1,G1, F,G,H,I,J, PC,

Syn0,syn(Lab,B 1,Mods 1), X,Y) &
ebrackets (B 1. Y,Z).

In each of these predications besides copylabel, the last
two arguments represent difference lists for word
strings. The purpose of eopylabel is to create a new
version of the label nt(F,G) which can differ in some
subterms, to allow for differences in the feature struc-
tures of the coordinated phrases. (Feature arguments
for constituents of coordinated phrases are thus allowed
to differ, but the other arguments in repeated calls of
ntbase must match.) The procedure bbrackets ("be-
gin-brackets") reads the list B (possibly empty) of
brackets from the word list (represented by difference
list (U,V).) A possible preconjunction PC (like "both")
is gotten by preeonj. Then the simple nonterminal
ntbase is called. Then ntconj gets the remainder of the
coordinated phrase, and ebraekets closes off the brack-
ets.

There are three rules for the continuation nteonj.
The first of these (to be given below) gets most types of
conjunctions, makes another call to ntbase, and finally
calls nt~onj recursively. The second allows termina-
tion. The third is like the first, but gets other types of
conjunctions. Thus, with termination in the middle o f
these three rules, a preference 6 is created for certain
types of coordination at the given phrase level. The
details of this preference coding will not be given here.
The first rule for ntconj is:

37

Michael C. McCord l)esign of LMT: A Prolog-Based Machine Translation System

ntconJ(F0,G0, F,G,H,I,J, PC,
syn(nt(F0,G0)xdl,Mods0),Syn, U~X) *-

optionalcommma(U,T.V) &
coord(T,PC,a,nt,0p,LF) &
copylabel(nt(F,G),nt(F1,G1)) &
ntbase(F1,G1,H,I~, nil,

syn(nt(F1,G1)~il,Modsl), V,W) &
combinelabels(T,nt(F0,G0).ut(F1,G 1),nt(F2,G2)) &
ntcor~(F2,G2, F,G,H,I¢.I, nil,

syn(nt(F2,G2),*,
syn(nt(F0,G0),nil,Mods0).
0p-LF.
syn(nt(F1,G 1) ~il,:~/Iods 1).nil),

Syn, w~x).

Here coord tests that the terminal T is a coordinating
conjunction, allowing preconjunction PC, being of con-
junction type (a ,nt) , and having associated logical
terminal Op-LF. Conjunctions used in the first nteonj
rule are given conjunction type (a,nt) , and those used
in the third rule are given type (b,nt) . This distinction is
related to specific conjunctions by the rules for coord.
The procedure combinelabels combines features of
conjuncts (this includes the treatment of number for
coordinated noun phrases). Finally, nteonj is called
recursively to get possible further coordinated phrases.

The second rule for ntconj (termination) is trivial,
and will not be given. The third is essentially like the
first, but requires the conjunction type (b,nt) in the call
to coord.

Note that some category-specific information for
coordination does have to be written, mainly in the rules
for copylabel and oombinelabels (since these depend
on the nonterminal nt). However, default rules exist for
these in ModL, so that one does not have to write
special rules for all categories. On the whole, the
amount of rule writing is greatly reduced by the meta-
rules.

As mentioned above, the rules produced by the
metarules were given here in simplified form. The
actual, more complex, forms deal with the following
three things.

I. A more complete treatment of bracketing and
punctuation within coordinated phrases. The above
rules allow bracketing only at the beginning and end
of a complete, coordinated phrase; therefore extra
calls to begin-bracket and end-bracket procedures
are needed. Also there are actually t w o termination
clauses for n tcor~- -a clause dealing with appositives
introduced by commas, and a simple termination
clause.
2. Appositive parentheticals (mentioned above).
These are handled by an additional clause for nteonj.
3. A partial tabular parsing facility. The purpose of
this facility is to allow parsing (and translation) of
inputs that are not complete sentences, while using
top-down parsing. The only nonterminal called by
the driver of ModL is s, for a complete sentence. It
happens that most types of phrases can begin a
sentence in the ModL grammar. When s fails but the

38

input is a well-formed phrase of some type, a syntac-
tic structure for the input usually gets built neverthe-
less during the parse. Thus it is worth saving results
of phrase analyses that span the whole input. The
rule compiler takes care of this by adding at the end
of the main rule for each strong nonterminal (cf. the
rule for n t above) a call to a procedure savesyn,
which saves the corresponding syntactic structure
when the analyzed phrase spans the whole input
string. (Saving is done by assertion into the Prolog
workspace.) Therefore, when a sentence analysis
fails, these saved partial results may be used.

Experiments were made with general tabular parsing
(see, e.g., Pereira and Shieber 1987), but it was found
that this does not speed up parsing with the particular
grammar ModL, especially considering that only the
first parse is normally used in LMT.

2.3 SYNTACTIC AND SEMANTIC TECHNIQUES IN MODL

The syntactic component of ModL is basically an
extension of that in McCord (1982), which was written
as a DCG. In particular, slot filling techniques are used
in ModL for handling complementation. However,
there are some improvements in the basic techniques,
which will be described in this section.

2.3.1 POSTMODIFIERS AND ORDERING CONSTRAINTS

As in the earlier grammar, the analysis of the comple-
ments of an open class word (verb, noun, or adjective)
is directly controlled by a slot frame which appears in
the lexical entry of the open-class word. There is a weak
nonterminal pos tmods , which takes as input the slot
frame of the word, chooses slots (nondeterministically,
and not necessarily in the order in which they appear in
the slot frame), and tries to fill the slots by slot filling
rules indexed to specific slot names. The procedure
pos tmods also finds adjunct postmodifiers. Slot fillers
(complements) correspond to arguments of the word
sense predication for the open-class word, and adjuncts
correspond to outer modifiers of it in logical form.

By itself, the free choice of slots and adjuncts for
postmodification allows for free ordering of these post-
modifiers; but of course the ordering should not be
completely free, and some constraints are needed. An
improved method of expressing such constraints has
been developed for ModL.

The same procedure postrnods is used for all three
open class categories, but let us illustrate its use for
verbs. The following ModL rule (simplified) for the
nonterminal predicate gets a verb and its postmodi-
tiers.

predicate(Infl,VS ~X,C)
vc(Infl,VS,Y,Slots):
voice(Infl~,Y,Slots,Slots 1):
$theme(X,Slots,Z):
postmods(vp,nil,Slots 1,VS,Z,C).

(Recall that the $ sign signals that its operand is a Prolog
goal.) Here Infl is the inflectional feature structure of

Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord

the verb, VS is the verb sense, X is the marker 7 for the
grammatical subject of the verb, and C is the modifier
context for predicate (to be explained below).

The nonterminal vc (verb compound), which is the
only strong nonterminal in this rule, gets the head of the
predicate. (The feature arguments of vc are declared to
be its first two arguments.) A verb compound normally
consists of a single word, but could be a compound like
"time share". And of course since vc is a strong
nonterminal, coordinated forms are allowed. Verb com-
pounds do not include auxiliary verbs as premodifiers;
these are treated as separate, higher verbs with their
own complementation. The call to vc determines the
marker Y for the logical subject of the verb, and the slot
list Slots of the verb.

The procedure voice handles the passive transforma-
tion (when the verb analyzed by vc is a passive past
participle) as a slot list transformation, and theme
computes the marker Z for implicit subjects in comple-
ments like "John wants to leave", and "John wants Bill
to leave". For these, see the discussion in McCord
(1982).

The first rule for postmods, which gets slot fillers (as
opposed to adjuncts), is as follows, slightly simplified
(we leave off the treatment of the modifier context
argument for now).

postmods(Cat,State,Slots,VS,Z)
Sselectslot(Slot,State,Slots,Slots 1):
filler(Slot,Z):
postmods (Cat,Slot.State,Slots 1,VS,Z).

What is of interest here (compared with McCord 1982)
is the use of the State argument, whose purpose is to
constrain the free ordering of postmodifiers. In the
earlier grammar, states were a linearly ordered set of
symbols isomorphic to the natural numbers, and the
idea was that postmodification by a given slot (or
adjunct type) can advance the state to a certain level, or
leave it the same, but can never go backwards. The
trouble with this (as implemented) was that postmods
could try filling a "late state" slot when an obligatory
"early state" slot has not been filled yet. (This does not
cause any wrong parses, but it is inefficient.)

The cure involves looking not only at the postmodi-
tiers that have already been found, but also at the
obligatory slots that are still pending. The state is now
just the list of slots and adjunct types that have already
been used. (Building up of this list can be seen in the
above rule for postmods.)

The procedure selectslot selects a Slot from the
current list Slots, with Slotsl as the remainder. In so
doing, it looks at the current state as well as the
remaining slots to exercise the constraints.

The specific constraints themselves are expressed in
the most straightforward way possible--as ordering
relationships S1 << S2 , where Sl and S2 are slots
or adjunct types. Slots are represented as terms
slot(S,Ob,Re,X), where 1. S is the slot name (like obj or

Computational Linguistics, Volume 15, Number 1, March 1989

Design of LMT: A Prolog-Based Machine Translation System

lobj), 2. Ob indicates whether the slot is obligatory or
optional, 3. Re indicates whether the slot has a real
filler, or a virtual filler (because of left extraposition),
and 4. X, is the marker for the slot filler. Adjunct types
are simple symbols (like avel for adverbial clause),
which divide adjuncts into broad types. Specific order-
ing constraints are:

slot(lobj,*~,*) << slot (obj,*x,*).
slot (obJ,*~,*) << slot (S,*~r,*) *-- S =/iobJ.
slot(*,*~r,*) << avcl.

The idea of soleotslot is then simple. It selects a slot S
nondeterministically from the current slot list Slots,
leaving remainder Slots l ; but it checks that 1. there is
no member Sl of State such that S << S1, and 2. there
is no obligatory slot 82 in Slots1 such that S2 << S.

The basic idea of factoring out the control of constit-
uent ordering into simple ordering relationships has
been used in other systems, for example in the systemic
grammar system of Hudson (1971), and more recently in
the ID/LP formalism (Gazdar and Pullum 1982).

2.3.2 PREFERENCE ATTACHMENT

A second improvement in ModL concerns preference
attachment of postmodifiers in the sense of Wilks,
Huang and Fass (1985), and Huang (1984a, 1984b). The
problem is simply stated: When we have parsed part of
a sentence, as in "John saw the way to send a f i l e . . . " ,
and we see a further phrase "to Bill", then does this
attach to "file", "send" , "way" , or " saw"? I.e.,
which final phrase of the partial sentence does it mod-
ify? If the initial segment were instead "John described
the way to create a f i l e . . . " , then the answer would be
different.

The method of handling this in ModL is basically
similar to that in the work of Huang, Wilks, and Fass
cited above, but seems slightly simpler and more gen-
eral, because of the systematic use of postraods in
ModL. The implementation involves the modifier con-
text argument (the last argument) of postmods.

It should be mentioned first that the modifier context
is used not only for handling preference attachment, but
also for left extraposition. The modifier context con-
tains a pair of topic terms (T,T1) used as in McCord
(1982) to represent a left-extraposed item T, with T1
equal to nil or T according as T is or is not used as a
virtual filler (or adjunct) by postmods.

A modifier context is a term of the form
o(T,T1,Pend), where (T,T1) is a topic pair and Pond is
a pending stack. The latter is a list whose members are
pending frames, which are terms of the form Cat.Sense.
Slots, giving a phrase category (verb, noun, or adjec-
tive), the sense of the head, and the current slot list of
the head (some slots may already be used). A pending
frame describes what is possible for further modifiers of
a given head word (adjunct modification depends on the
category Cat and the particular head word (sense)
Sense).

39

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

Using modifier contexts, an essentially complete
version of the slot-filling rule for post~mods is:

postmods (Cat,State,Slots,VS,Z,c(T,T2,Pend))
$ selectslot(Slot,State ,Slots ,Slots 1):
filler(Slot,Z,c(T,Tl,(Cat.VS.Slotsl).Pend)):
postmods (Cat,Slot.State,Slots 1,

VS,Z,c(T1,T2,Pend)).

Thus, in the call to filler, the current pending frame is
stacked onto the pending stack. A rule for filling, say,
an object slot with a noun phrase would pass this larger
modifier context argument into the noun phrase, where
the higher context is then available.

On a given level for postmods, the most pressing
question is how to attach prepositional phrases. Slot
filling is always preferred over adjunct modification on
a given level. Thus, if the given head word has a
prepositional object slot pobj (Prep) matching the given
preposition, then only this will be tried.

To decide whether a pp can attach as an adjunct
modifier, the pp rule (as soon as it sees the preposition)
looks at the pending stack to determine whether there
are pending prepositional case slots (pobj) that could
take the given preposition, and, if so, the pp aborts.
Adjunct attachment of a pp can also be blocked by
semantic type requirements made by the preposition on
the modified phrase and the object of the preposition
(even the combination of these two). A discussion of
semantic type checking is given at the end of this
subsection. Currently the grammar does not try to
compare semantic types for preferences; but this could
be done since the pending stack, with all the higher head
word senses, is in place.

2.3.3 NOUN COMPOUNDS

A third improvement in the grammar is the treatment of
noun compounds. Noun compounds were treated in a
limited way in McCord (1982) by allowing noun premod-
ifiers of the head noun to fill slots in the head noun, as
in "mathematics student". In the syntactic structure,
these noun premodifiers were all shown on the same
level, as daughters of the noun phrase, although the slot
filling attachment to the head corresponds logically to a
right branching structure. But of course noun com-
pounds in English can exhibit any pattern of attach-
ment, with the patterns corresponding to the ways one
can bracket n symbols. This is important to capture.

The shift operator allows one to produce all patterns
of attachment--left branching, right branching, and all
combinations in between--while using right recursive
rules. The following small grammar produces all possi-
ble bracketings:

np --* +N.
np ---* +N: np%npl.
npl ---* np.
npl ~ np: np%npl.

Here, np is a strong nonterminal and n p l is weak.
Recall that + N signals that N is a terminal.

In ModL, a somewhat more complicated form of this
fragment is used in the noun compound rules. Each
subcompound gets a slot list and a marker associated
with it, and there is a procedure a t tach (an extension of
that in McCord 1982), which allows one subcompound
to attach to another. Adjectives are included in the pot,
but the rules for attaching them are of course different.
The potential to get any pattern of attachment exists in
the rules, but again preferences are implemented.
Roughly, the idea is this: As a new noun (or adjective)
N is read, if 1. the structure NO already built has a head
that is a noun, and 2. N can attach to NO, then one
requires this immediate attachment, building a left
branching structure. Otherwise, one continues with
right branching and attaches the larger compound to
NO. This scheme prefers left branching for a sequence
of nouns, if a t t ach allows it, but prefers a right branch-
ing structure for a sequence of adjectives followed by a
noun.

Currently, a t tach does not deal with "creative"
attachments, where the relationship between the two
subcompounds is not mere slot-filling or apposition, but
where the combination involves some extraneous rela-
tionship, as in "music box" and "work clothes". But
an extended version of a t tach which handles such
combinations could still be used in the existing algo-
rithm.

2.3.4 SEMANTIC TYPE CHECKING

Semantic type checking is done during parsing with
ModL. In earlier versions of the system, semantic type
checking was accomplished by Prolog unification of
type trees, representing types in a hierarchy allowing
cross-classification. It appears that in practice this
scheme is not flexible and convenient enough; a more
general type checking scheme based on Prolog infer-
ence has been implemented.

Let us illustrate the new scheme with type checking
for noun phrase fillers of verb slots. In the format for a
slot mentioned above

slot(S,Ob,Re,X)

X is the marker for a possible filler of the slot. A marker
is of the form

Y:Sense:SynFeas & Test.

Here, Y is the logical variable associated with the noun
phrase filler. During lexical preprocessing, Y is unified
with the argument of the verb sense predication corre-
sponding to this slot, or part of this argument.S When a
filler is found during parsing, Y is also unified with the
main logical variable for the noun phrase (normally the
first variable in the noun sense predication). The com-
ponent Sense of the marker is the sense name of the
head noun of the filler. (In earlier versions of ModL,
this component was a semantic type for the noun
sense.) The component SynFeas is a term representing
syntactic and morphological features of the noun

40 Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord

phrase. Finally, Test is a Prolog goal that is executed
after the head noun is found. Normally, Test will
contain a variable unified with Sense, so that a test is
made on the noun sense.

As a simple example, if a verb requires that its object
be a~i.mat~, then the object slot can have the marker

Y:S:SF & isa(S,animate).

If the head noun has sense m a n l , and the clauses

i s a (m a n l ~human).
isa(S,animate) <- isa(S~human).

are in the Prolog workspace, then the test in the marker
will succeed.

The lexical preprocessing scheme of LMT allows
convenient specification of type requirements on slot
fillers (and on other kinds of modifiers) and type state-
ments for word senses. Such type conditions can be
given in lexical entries in a compact format that does not
explicitly involve isa clauses. This will be described in
the next section.

Design of LMT: A Proiog-Based Machine Translation System

3 TaE LMT LEXICON

Some MT systems have three separate lexicons, for
source, transfer, and target; but LMT has only one,
unified lexicon, indexed by source language (English)
words. The entry for a word contains monolingual
English information about the word, as well as all of its
transfers. A transfer element can contain monolingual
German information about the target word.

For example, a simple entry for the word "view"
might be

view < v(obJ) < n(nobj)
< gv(acc,be +tracht)
< gn(gen,ansichtzf.n).

Here, < is just an operator that connects the compo-
nents of the entry. The monolingual English information
is on the first line, showing that view is a verb taking an
object and is also a noun with a (possible) noun object
(appearing in postmodifier form as an of-pp comple-
ment). The transfer information is on the second and
third lines. This shows that the translation of the verb
form is the inseparable-prefix verb betrachten, where
the German complement corresponding to the English
object takes the accusative case. And the translation of
the noun form is Ansicht, where the noun complement
takes the genitive case, and Ansicht is a feminine noun
(f) of declension class n.

There are two advantages of the unified lexicon
design: 1. Lexical look-up is more efficient since only
one index system is involved, and 2. it is easier for the
person creating the lexicon(s) to look at only one
lexicon, seeing all pertinent information about a source
language word and its transfers.

It might be argued that it is inefficient to store
monolingual target language information in transfer
elements, because there is redundancy, e.g., when two

noun transfers are German compound nouns with the
same head. However, the format for specifying German
noun classes and other German morphological informa-
tion in the LMT lexicon is very compact, so the
redundancy does not involve much space or trouble.
More will be said below about the specification of
German morphological information.

The principle that source language analysis in LMT is
independent of the task of translation is not really
violated by the unified lexicon, because purely English
elements in lexical entries can easily be distinguished
(as will be seen from the description below), and the
remaining elements can be discarded, if desired, to
obtain a monolingual English lexicon for other applica-
tions.

Another feature of the LMT lexicon is that the
storage format is not the same as the format seen by the
syntactic components. Both formats are Prolog clauses,
but the lexical preprocessing step of LMT does lexical
compiling of lexical entries, converting the external
storage format into the internal format used by the
syntactic components. Lexical compiling is applied not
only to entries obtained by direct look-up (for words
that are found directly in the lexicon), but also to
"derived" entries, obtained by morphological analysis
in conjunction with look-up. There are two reasons for
doing lexical compiling. One is that it allows for com-
pact, abbreviated forms in the external lexicon based on
a system of defaults, whereas the compiled internal
form is convenient for efficient syntactic processing.
Another reason is that the lexical compiler can produce
different internal forms for different applications. In
fact, the internal form produced for applications of
ModL involving logical forms is different from the form
produced for LMT.

Lexical preprocessing is done on a sentence-by-
sentence basis. Only the words actually occurring in an
input sentence are processed. The internal form clauses
produced for these words are deleted from the work-
space, once the sentence is translated. Thus the parser
sees only lexical clauses relevant to the words of the
sentence, and in general the Prolog workspace is not
overloaded by the more space-consuming internal-
format clauses. Currently, the external lexicon is stored
in the Prolog workspace (there being about 1,600
entries), but Prolog procedures for look-up in a large
lexicon of the same form stored on disk have been
written--along the lines described in McCord (1987).

Now let us look briefly at the external format. 9 A
lexical entry consists of an English Word and its
Analysis, represented as a Prolog unit clause

Word < AnalYSlS.

(Here, the predicate for the unit clause is the operator
<.) A word analysis consists of subterms called analysis
elements connected by operators, most commonly the
operator <. In the example for view above, there are
four analysis elements. In general, analysis elements

Computational Linguistics, Volume 15, Number 1, March 1989 41

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

can be English elements, transfer elements, or (German)
word list transformations. English elements will be
discussed (briefly) in the current section; transfer ele-
ments will be described in the next section, and word
list transformations in Section 6.

English analysis elements are of three types:

1. base analysis elements,
2. (irregular) inflectional elements, and
3. multiword elements.

The above example for view has two English base
analysis elements, the v (verb) and n (:noun) elements.
Currently, there are 11 parts of speech allowed in base
analysis elements--v (verb), modal, n (noun), p ropn
(proper noun), p ron (pronoun), adj (adjective), det
(determiner), prop (preposition), subconj (subordi-
nating conjunction), adv (adverb), and qua,l (qualifier).
Let us look in particular at the form of' verb elements.

The general, complete format (without use of de-
faults) for a verb element is

v(VSense,VType,SubjType,Slots)

Here, VSense is a name for a sense of the index word as
a verb, VType is the semantic type of the verb (an
inherent feature), SubJType is the semantic type re-
quirement on the (logical) subject, and Slots is the slot
list. An example to look at, before seeing more details,
is the following simplified v element for the verb
"give":

v(give 1,action,human,obj:concrete.iobJ :animate).

The semantic type VType of the verb can in general be
any conjunction of simple types (represented normally
by atoms). The type requirement SubjType on the
subject can be an arbitrary Boolean combination of
simple types.

The slot list Slots is a list (using the dot operator) of
slot names (the final nfl in the list is not necessary),
where each slot name may have an associated type
requirement on its filler. Like the SubjTy-pe, a type
requirement for a slot can be an arbitrary Boolean
combination of simple types.

An abbreviation convention allows one to omit any
initial sequence of the arguments of a v element. If the
sense name is omitted, it will be taken to be the same as

• the citation form. Omitting types is equivalent to having
no typing conditions. For an intransitive verb with no
typing and only one sense, the element could be simply
v, with no arguments.

Given a (possibly inflected) verb V and a v element
for the base form of V, the lexical compiler translates
the v element into a one or more unit clauses for the
predicate verb, with argument structure

verb (V,Pred,lnfl,VSense ~r~qubJ,
SlotFrame).

Before saying what the arguments of verb are in gen-
eral, we give an example for the inflected verb "gives"
produced from the sample v element above:

42

verb(gives, give 1 (X:XS:XF,Y:YS:YF,Z:ZS:ZF),
fin(pers3,sg,pres,*), give 1,
X:XS:XF & isa(XS,human),
slot(0bj,op,*,Y:YS:YF & isa(YS,concrete)) .
slot(iobj,op,*,Z:ZS:ZF &isa(ZS,animate)) . nil) .

In general the arguments of verb are as follows: V is the
actual verb (possibly a derived or inflected form), and
In£1 is an allowable inflectional feature structure.
(There are as many verb clauses as there are allowable
inflectional forms forV. For example, ifV is made, then
the inflection could be finite past or past participle.) The
verb sense VSense becomes the predicate of the verb
sense predication Pred, described in the next para-
graph. The argument XSubj is the marker for the
subject. The slot list in the v element is converted into
SlotFrame, consisting of slots in the fuller form slot-
(S,Ob,Re,Y) described in the preceding section. (There
can be optional and obligatory forms of the same slot.)

The verb sense predication Pred has argumentg cor-
responding to the markers for the verb's complements
--its subject and its slots--in the order given, but there
is an option in the compiler: When ModL is being used
to create LFL forms, these arguments will just be the
logical variable components of the markers for the
complements. But when ModL is used in LMT, the
arguments will be the complete markers except for their
semantic type tests. (Thus the arguments are of the form
Y:Sense:Syr~eas, as described in Section 2.3) This
ready access to features of complements, by direct
representation in the word sense predication, is very
useful for transfer in LMT and will be illustrated in the
next section.

The lexical compiler handles semantic type condi-
tions by converting them into Prolog goals involving
isa. For example, for each component type T of the
semantic type VType of a verb (given in a v element),
the unit clause isa(VSense,T) is added to the work-
space. Thus, in the case of "gives" above,
isa(givel ,act ion) is added. Type conditions as isa
clauses relating to specific word senses are handled
dynamically, but relations between types such as

tsa(S,animate) <- isa(S~human)

are stored permanently. A type requirement for a verb
complement (subject or slot list member), being a
Boolean combination of simple types T, is converted
into a similar Boolean combination, Test, of goals
isa(S,T), where S is the sense component of the com-
plement's marker; and Test is made the test component
of this marker.

The second kind of English analysis element (men-
tioned above) is an inflectional element. Eleven kinds of
these are allowed (McCord and Wolff 1988). An exam-
ple of an inflectional element is yen(V), which indicates
that the index word is the past participle of the verb V.
This appears in

become < v(predcmp) < ven(become).

Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

where become is shown as the past participle of itself.
The third kind of English analysis element is the

multiword element. Multiword elements (existing in
transfer also) are used for handling idiomatic phrases in
LMT. Multiword forms are allowed for all but three
(m o d a l propn, and qual) of the 11 parts of speech.
Their names are like the base analysis element names,
but with a initial m. An example of an entry with a
multiverb element is the following (simplified) entry for
" take":

take < v(obJ) < mv(=.care.of, obj).

The mv element allows a treatment of the phrase "take
care of X". Forms based on inflections of the index
word, such as "took care of", are handled automati-
cally by the morphological system. Multiword elements
have much the same format as single word elements
except that sense names cannot be specified, and the
first argument is always a multiword pattern (like
= .care.of). Lexical preprocessing verifies that the
pattern actually matches a sublist of the sentence before
compiling the multiword element.

Some kinds of idiomatic phrases are treated through
the use of slots in base analysis elements. For example,
there is a verb slot ptcl(P) that allows particles, spec-
ified by P, for the verb. The particle P might be an
ordinary particle like "up" or "back" as in "take up",
"take back", or it could be a phrasal particle, like
into.consideration, for handling "take into consider-
ation". Note that "into consideration" does behave
much like an ordinary particle, since we can say "take
X into consideration", as well as "take into consider-
ation X", if X is not too light a noun phrase. A base
analysis element for " take" that allows both ordinary
particles and the multiparticle "into consideration" is

v(obj.ptcl(all I into.considerat ion)) .

This shows that " take" is a verb with an object slot and
a particle slot. The particle allowed could be any
ordinary single-word particle (indicated by all) or
(indicated by I) the multiword particle "into consider-
ation".

Idiomatic phrases can also be treated by German
word list transformations. These are described in Sec-
tion 6.

In addition to the unified LMT lexicon we have been
describing, there is an auxiliary interface of ModL to
the UDICT monolingual English lexicon Byrd (1983,
1984). This contains around 65,000 citation forms, with
a morphological rule system to get derived forms of
these words. The ModL lexical compiler also can
convert UDICT analyses to the internal form required
by the ModL grammar.

4 THE TRANSFER COMPONENT OF LMT

The transfer component takes an English syntactic
analysis tree syn(Lab,B,Mods) and converts it to a

German tree syn(GLab,B,GMods) which normally has
the same shape. Before discussing the transfer method
in general, let us look at an example. The English
sentence is "The woman gives a book to the man". The
syntactic analysis tree produced by ModL is:

s(fin(pers3,sg,pres,ind),glve,*,top)
np(X:woman:*&*)

detp(X:woman:*&*)
the(P,Q)

woman(X:woman:*)
vp (fin(pers3,sg,pres,ind),give)

give(X:woman:*,Y:book:*,Z:man:*)
np(Y:book:*&*)

detp(Y:book:*•*)
a(P1,Q1)

book(Y:book:*)
ppnp(to,Z:man:*&*)

np(Z:man:*&*)
detp(Z:man:*&*)

the(P2,Q2)
man(Z:man:*)

Each n0nterminal node label in the tree consists of the
strong nonterminal responsible for the node together
with its feature arguments (as indicated in Section 2. I).
The feature arguments for the np nodes are just the
markers for these noun phrases. For the sake of sim-
plicity in the display of this tree, the syntactic feature
structures and semantic tests of np markers are just
shown as stars. The terminals in the syntactic analysis
tree are actually logical terminals, but we do not display
the operator components, since these are not re levant
for LMT. Also, we do not display the node labels for
noun compounds (nc) and verb compounds (vc) unless
these compounds have more than one element.

To get a good idea of the working of the transfer
algorithm, let us look at the transfer of the verb "give"
in this example, and the effect it has on the rest of the
transfer. The terminal in the above tree involving give is
a verb sense predication of the form described in the
preceding section as the second argument of verb. The
most relevant thing to notice in the syntax tree is that
the variables X, Y, and Z in the give predication are
unified with the logical variables in markers of the
corresponding complements of gi~re. Transfer of the
give form simultaneously chooses the German target
verb and marks features on its (German) complements
by binding X, Y, and Z to the proper German cases. The
internal form of the transfer element in the lexical entry
for "give" might look like the following unit clause.10

gverb(give(nom:*,acc:*,dat:*),geb).

In transfer, the first argument of gvorb is matched
against the give form in the tree, and we get bindings
X = nora, Y = ace, and Z = dat, which determine the
cases of the complements. In general, logical variables
associated with complements are used to control fea-
tures on the transfers of those complements. The trans-
fer tree is as follows:

Computational Linguistics, Volume 15, Number 1, March 1989 43

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

vp(ind:slin(pers3,sg,pres,ind): Xl,nil)
np(n(on),nom,sg:pers3-sg-f~2)

det(nom,pers3-sg-f~2)
d + det(nom,pers3-sg-f~X2)

frau/1 + nc(n(cn),nom,pers3-sg-f~X2)
vp(ind:vp ;fin(pers3,sg,pres,ind): Xl,nil)

get) + vc(ind:vp;fln(pers3-sg-f~pres, ind):Xljail)
np(n(on),aco,sg:pers3-sg-nt~X3)

det(acc,pers3-sg-nt~X3)
ein + det(acc,pers3-sg-nt~X3)

buch/h + nc(n(cn),acc, per~33-sg-nt~X3)
ppnp(vp(inchvp;fln(pers3,sg,pres, ind):Xl jall),dat)

np(n(cn),dat,sg:pers3-sg-m$C4)
det(dat,pers3-sg-m~4)

d + det(dat,pers3-sg-rn~X4)
mann/h + nc(n(cn),dat,pers3-sg-m,X4)

The three noun phrases in this tree have, the correct case
markings as a result of the above verb transfer, so that
we will eventually get die Frau, ein Buch, and dem
Mann. ~ A transformation (to be discussed below)
moves the dative noun phrase, and the eventual trans-
lation (after inflection) is Die Frau gibt dem Mann ein
Buch.

The top-level procedure, t ransfer , of the transfer
component works in a simple, recursive way, and is
called in the form

transfer (Syn,MLab,GSyn)

where MLab is the German node label on the mother of
the node 8yn being transferred. (In the top-level call,
MLab is equal to the symbol top.)

The definition of t ransfer , somewhat simplified, is:

transfer(syn(ELab,B,EMods),MLab,
syn(GLab,B,GMods)) ~--

tranlabel(ELab,MLab,GLab) &
tranlist(EMods,GLab,GMods).

transfer(0p-EPred,MLab,GWord + GLab) ~-
tranword(EPred,MLab,GWord,GLab).

tranlist(EMod.EMods,MLab,GMod.GMods) ~--
transfer(EMod,MLab,GMod) &
tranlist(EMods,MLab,GMods).

tranlist(nil,*,nil).

Thus, transfer translates a syn structure (a nontermi-
nal node of a tree) by translating the node label (by a call
to tranlabel) and then recursively translating the
daughter nodes. Terminal nodes (words) are translated
by a call to tranword.

Note that t r ans fe r does the transfer in a simple
top-down, left-to-right way. The German feature struc-
tures (showing case markings, for instance) that get
assigned to nodes in the left-to-right processing are
often partially instantiated, and do not get fully instan-
tiated until controlling words are encountered further to
the right. For example, the German feature structure
assigned to the subject noun phrase in the above exam-
ple does not get the case field assigned until the verb is
processed. The use of logical variables and unification
makes this easier.

The clauses for t ranlabel (which transfers node
labels) are mainly unit clauses. The basic problem is to

44

transfer an English feature structure to a German fea-
lure structure, allowing for differences in a suitable
way. For example, the number of an English noun
phrase is often the same as the number of the corre-
sponding German noun phrase, but not always. The
main tranlabel clause that transfers a noun phrase label
is:

tran]abel(np(Case:Sense:nf(NType,Num,*,*)&*),
MLab,
np (NType,Case,Num~dj Decl)).

The first component, NType, of the German np feature
structure (and the first component of the n f ("np
features") syntactic feature structure for the English
noun phrase) is the nominal type, which encodes cate-
gorization of the head nominal. Nominal subcategories
include common nouns, pronouns, proper nouns, and
adjectives. Adjectives are further subcategorized as
verbal (verb participles) and nonverbal, and the com-
parison feature (positive, comparative, superlative) for
adjectives is also shown in NType.

The second component, Case, of the German np
structure is unified with the first component of the
English marker. As indicated above, this gets unified
with an actual German case by application of a verb
transfer rule.

The third component, Num, of the German np
structure encodes number, person, and gender of the
German noun phrase. The t ranlabel rule above unifies
Num with a component of the English n f structure; but,
as we will see below, Num is of such a form that 1. its
occurrence in the English analysis is independent of
German, and 2. the actual number of the German noun
phrase can come out different from that of the English.

The last component has to do with adjective declen-
sions (strong vs. weak). This is discussed in McCord
and Wolff (1988).

The German feature structure for a noun compound
(nc) (including a simple head noun) has a similar form to
an np structure.

How is the Num field used to treat differences in
number between English and German? This is actually
a compound term of the form ANum:CStruet, where
ANum is the actual number (sg or 91) of the English
noun phrase (which may be a coordinated noun phrase),
and CStruet is a term that reflects the coordination
structure. For example, for the noun phrase "the man
and the woman", the number structure is ph (Nl&N2) ,
where the subphrase "the man" has number structure
sg:N1 and "the woman" has number structure sg:N2.

Before transfer, the second components of the num-
ber structures of simple noun phrases are just variables,
but during transfer these get bound by t r a n w o r d to
structures of the form Pers-Num-Gen showing person,
number and gender Of the German translations. The
person and gender of the simple German noun phrase
come directly from the lexical transfer entry for the
head noun. The question is how the number of the

Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

German noun phrase (possibly coordinated) is deter-
mined. For a simple noun phrase, the default is to unify
the German number with the English number, but
transfer entries can override this, as in the case of
scissors/Schere. Given this determination of the Ger-
man numbers of the simple np components of a coor-
dinated rip, the German number of the whole can be
determined from the second component of the number
field. In the case of coordination with and/und, the
result will simply be plural in German (as in English).
For coordination with or/oder, though, German is dif-
ferent from English. In English, the number of the
disjunction is the same as that of its last component,
whereas in German the disjunction is plural if and only
if at least one of its components is plural.

Thus, for the noun phrase "the men or the woman",
the English number structure is sg:(NllN2), where the
number of "the men" is phN1, and the number of "the
woman" is sg:N2. After transfer, this structure for the
translation die Maenner oder die Frau becomes sg:
(pers3-pl-mlpers3-sg-f). The second component of
this determines a final number of pl for the translation.
On the other hand, the English noun phrase "the knife
or the scissors" is plural, but the translation, das
Messer oder die Schere, has number structure ph
(*-sg-*l*-sg-*) and so is singular.

In the sample transfer tree above, one can see other
examples of the transfer of feature structures, for which
t ranlabel is responsible. In the vp feature structures,
the second component is of the form Infl:Inf11, where
Infl is the English inflection and Infl l is to be the final
German inflection. The default is for Inf11 to become
equal to In.f1, but this does not always happen. The
English inflection might be overridden by a transforma-
tion. For example, LMT translates "The man wants the
woman to buy a car" into Der Mann will, da[3 die Frau
einen Wagen kauft. The infinitive v'p complement of
"wants" is transferred to an infinitive German vp, but
this and its sister np subject are transformed into a finite
clause complement of "will".

The transformation mentioned in the previous para-
graph (needed for transforming an np + infinitive-v-p
structure to a finite clause) is triggered by the lexical
transfer element for the controlling verb "want" . Spe-
cifically, the trigger (or rule switch) is the German
"case" corresponding to the last (vp) complement of
"want" . Any case assigned to a v-p complement is
unified by t ranlabel with the last field of the German vp
feature structure (see the sample transfer tree above for
examples of such vp structures). Transformations can
recognize such cases and be triggered by them.

The procedure

tranword(EWord,MLab,GWord,GLab)

is the interface to the transfer portion of the lexicon. It
takes a terminal EWord representing an English word
sense predication dominated by a node with associated
German label MLab, and assigns to these the German

translation GWord and its associated feature structure
GLab. (Often GLab will be taken to be the same as
MLab.) The procedure tr~ia-~word, in looking at the
label MLab, can call various more specific transfer
procedures, like gverb and gnoun, associated with
various parts of speech. Clauses for these are produced
by the lexical compiler from transfer elements in the
external lexicon. We have already seen a sample clause
for gverb.

Lexical transfer elements can be either of single word
or muitiword form. Each type of English analysis ele-
ment (associated with a particular part of speech) has a
corresponding type of transfer element, whose name is
obtained by prefixing the letter g, except that 1. proper
nouns just translate to themselves, 2. modals are sub-
sumed under gv, and 3. qualifiers are subsumed under
gary. Multiword transfer forms exist for all the multi-
word source forms, and have names of the form rag-
part-of-speech (like ragadv).

As in the case of English analysis elements, there is
a system of abbreviations and defaults for the external
forms of lexical transfer elements. Let us illustrate the
situation for verbs (in single word form). The full form
of a gv element (external form for gverb clauses) is

gv(VSense,SubJ Case,CompCases,Target).

The first argument is the verb sense. Its default is the
index word. The second argument is the German case
for the German complement corresponding to the En-
glish logical subject (which is usually, but not always,
the German logical subject). Its default is nora (nomi-"
native). The third argument is the list of cases for the
other complements (given in order corresponding to the
slots of the v element for the same sense of the index
word and having the same number of complements). If
this argument is omitted, the verb should be intransi-
tive. The last argument is the German target verb.

The cases appearing in the second and third argu-
ments of gv can have associated semantic type require-
ments (arbitrary Boolean combinations) on the corre-
sponding complements. An example illustrating this is
the following external form entry for "ea t " , used to
translate "ea t" into essen or fressen, according as the
subject is human or nonhuman.

eat < v(obJ)
< gv(nom:human,acc,ess)
< gv(nom:(anlmate&-human),acc J~ess).

Normally, a gv element is compiled into a (possibly
conditional) clause for gverb, where the clause head has
the form

~ e ~ (~ e d , T ~ g ~) .

Here, Prod is an English verb sense predication of the
same form described for the second argument ofvorb in
the preceding section. The logical variable components
of the arguments of Prod are bound (in the gvorb
clause) to the German cases appearing in the gv element

Computational Linguistics, Volume 15, Number 1, March 1989 45

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

(in the order given). Any semantic type requirements
attached to these cases are converted into Prolog goals
that are combinations of isa tests on the sense variable
of the associated marker, and these goals are put on the
condition side of the gvorb clause. For example, the gv
elements for "ea t " above are compiled into the follow-
ing gverb clauses:

gverb(eat(nom:S:*,acc:*),ess) *--
isa(S,human).

gverb(eat(nom:S:*,acc:*);fress) *--
isa(S,animate) & -]isa(S~uman).

The German case symbols that can appear in transfer
entries include not only the standard fbur cases (nora,
ace, dat, and gen), but also prepositional case symbols
(for pp complements of German verbs),, which are of the
form pc(Prep,Case). This form signifies that the spe-
cific preposition Prop appears, followed by a noun
phrase with case Case. The Case component of pc can
be omitted when a default case is to be used. For
example, an entry for "search (something) for (some-
thing)" could be

sesa'ch < v(obj.pobJ(for))
< gv(acc.pc(nach),durch + such).

The gvorb clause compiled for this gv element is the
unit clause:

gverb(search(nom:*,acc:*,pc(nach):*),durch+ such).

There are also special genitive cases that allow for the
variation in ein Stack des wei[3en Papiers/ein Stack
wei[3es Papier (' 'a piece of the white paper"/' 'a piece of
white paper"). In the first phrase the complement of
Stack is a real genitive, but in the second phrase the
complement takes the same case as StaXek itself.

One allowance that has to be made is that the subject
of the English verb may not correspond to the subject of
the German verb. This occurs with the translation of
"l ike" into gefallen, where we can translate " I like the
car" into Mir gefaellt der Wagen. An internal-form
transfer entry for the verb "l ike" is

gverb(like(dat:*,nom:X),ge + fall,*:X).

The extra argument of gvorb is the marker (minus test)
of the German subject. In such instances, t r a~word
must make sure that the German verb (if finite) agrees
with the actual German subject.

Care is taken in the trazaword rules involving gvorb
to handle auxiliary verbs correctly. One problem is to
get the correct case marking on the German subject and
the correct inflection on the highest auxiliary, even
though the English subject may not correspond to the
German subject of the main verb.

In particular, care with case marking must be taken
in the translation of passives. In a German passive, the
grammatical subject may correspond to a direct object
in the active form, but it may not correspond to an
indirect object (as it may" in English). Thus, LMT
translates "The car was given to the man" into Der

Wagen wurde dem Mann gegeben, but translates "The
man was given a car" into Dem Mann wurde ein Wagen
gegeben (where ein Wagen is the grammatical subject).
Currently, LMT translates the English passive only by
the use of werden. The use of sein and active forms will
be tackled eventually.

In the translation of the perfect "have" , the haben/
sein distinction is made by feature markings on the
English verb complement o f " h a v e " . It could be argued
that this is an exception to the principle that the English
grammar is written independently of the task of trans-
lation, but the distinction made by the required features
is largely semantic.

How does LMT treat situations in which there is not
a word-for-word correspondence in translations? Of
course transformations can add, delete, or rearrange
words, and examples of these will be discussed in the
next section. But, in keeping with the principle of
getting as much right as possible during transfer, vari-
ous methods are used in transfer, too.

One method is that the result arguments of lexical
transfer elements can contain compound terms that
represent word sequences. The most general form is
Wl#W2, which represents Wl followed by W2 (with a
separating blank). This form is used, for example, in
cases where the verb translation is a reflexive verb. The
verb "refer to" translates to sich beziehen auf, and the
external form of its transfer element is:

gv(pc(auf, acc),sich#be + zieh).

The lexical compiler converts this to the internal form:

gverb(refer(nom:F,pc(auf,acc):*),
refl(*:F)#be+zieh).

The term refl(X) representing the reflexive contains
the feature structure of the German subject, so that it
may be realized as the correct form of the reflexive
pronoun by the German morphological component.

A special compound form shows up in the represen-
tation of separable prefix verbs, which are of the form
Prefix:Verb. (As exhibited above for beziehen, insepa-
rable prefix verbs are given in the form Prefix+Verb.)
A separable prefix can become a separate word through
a transformation that recognizes the special form and
moves the prefix appropriately. The separable prefix
verb device P:V can often be used also to specify
transfers where the target is an adverb-verb combina-
tion, when the adverb behaves transformationally like a
separable prefix.

One could say that the translation of noun com-
pounds involves a many-to-one correspondence, since
noun compounds are given as a group of words in
English, but often as a single word in German. The
procedure t ranlabel is responsible for marking the nc
feature structure of each noun premodifier of a noun.
The case feature of such a noun premodifier is marked
by a special case symbol comb (combining form), which
signals that the noun is part of a noun compound and

46 Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord

will be given a special form by the German morpholog-
ical component.

The most important means for handling noncompo-
sitional translation in LMT is through the use of multi-
word elements in the lexicon. As indicated in the
preceding section, all but three of the eleven parts of
speech allow multiword forms, in transfer as well as in
source analysis elements. As an example, to translate
"take care of" into sich kiimmern um, the relevant
portion of the external form entry for " take" could be

take < mv(=.care.of, obJ)
> mgv(pc(um),sich#kfimmer).

The connecting operator > tells the lexical compiler to
process its right operand only if its left operand has
"succeeded" (i.e., the m v pattern has matched).

The patterns in multiword elements can contain
variables. For example, the phrase "at least N" , where
N is a number (like "5" or "five"), can be considered
a multi-determiner. This can be translated into min-
destens M, where M is the German form of N, by the
multiword elements in an entry for "least" (showing
only the relevant part of the entry).

least < mdet(at.=.N)-enum(N)
> mgdet(mindestens#M)-gnum(N,M).

Prolog goals associated with multiword elements are
indicated by attaching them with the operator -. The
lexical compiler handles such goals in source elements
differently from goals in transfer elements. A goal for a
source element, like c h u m (N) in the example, is
treated as a test that is executed at lexical preprocessing
time after the multiword pattern successfully matches
part of the sentence. If this test does not succeed, the
multiword element is not compiled. A goal for a transfer
element, like gnum(N,M) (which associates the En-
glish number N to the German number M), is added by
the lexical compiler to the right-hand side of the clause
compiled for the multiword transfer element, and thus it
is not executed until transfer time. (In the above exam-
ple, this postponement is not necessary; but in general
it is necessary because the transfer may depend on
ingredients from the rest of the sentence that are not
known until a complete parse is obtained.)

Non-compositional translation can also be handled
by the German word list transformations allowed in
lexical entries. This facility will be described in Section
6. For more details on lexical aspects of transfer, see
McCord and Wolff (1988).

5 GERMAN SYNTACTIC GENERATION

As indicated in the Introduction, the purpose of this
component is to generate a German surface structure
tree from the transfer tree, and this is accomplished by
applying a system of transformations. Before the trans-
formations operate, however, a minor bookkeeping step
is carried out, having to do with bracketing. Recall that

Design of LMT: A Prolog.Based Machine Translat ion System

syntax trees (both English and German) are represented
so far as terms

syn(Label,B,Modlfiers)

where B is the bracket list for the node. Transforma-
tions operate on terms similar to this, but it is conve-
nient if they do not have to deal with bracket lists
explicitly. Therefore, tree terms in the above form are
converted (by the bookkeeping step in question) to tree
terms in the simpler form

syn(Label,Modiflers 1)

where Modlf iersl is obtained by surrounding Modl_q-
ors appropriately with the terminal pairs corresponding
to the bracket symbols in the list B. The main procedure
for syntactic generation,

generate(Syn,Synl),

applies transformations to a syn tree Syn (in the simpler
form), producing another syn tree Syn l . This works
recursively on the tree. At each level, generate is first
applied recursively to the modifiers, giving a tree with a
new modifier list. Then the transformations are applied
in a loop: Each time through the loop, the first applica-
ble transformation is used (hence the order of transfor-
mations matters). The loop terminates when no trans-
formation is applicable. Thus the definition can be given
a s :

generate(syn(Lab,Mods),syn(Lab2,Mods2)) ~--/&
genlist(Mods,Mods 1) &.
alltransforms(syn(Lab,Mods 1),syn(Lab2,Mods2)).

generate(Mod,Mod).
genlist(Mod:Mods,Modl :Mods 1) ~--

generate(Mod,Modl) @9
genlist(Mods,Modsl).

genlist(nil,nil).

alltransforms(Syn,Syn2) ~--
transform(Trans,Syn,Syn 1) &/&
alltransforms(Syn 1,Syn2).

alltransforms(Syn,Syn).

(The symbol / denotes the cut in VM/Prolog.)
Note that in this scheme transformations on a given

level are applied after the recursive generation of daugh-
ter nodes. The alternative schemes of applying them all
before recursive generation, or applying some desig-
nated transformations before and others after recursive
generation, were tried in earlier versions of LMT. But
these other schemes led to problems with a workable
ordering of the list of transformations. Also, experi-
ments were made with an additional system of transfor-
mations, applied to English trees prior to transfer, but it
was found that this complication is unnecessary.

Specific transformations are given by rules for t rans-
form. Its first argument is just a name for the transfor-
mation, like verbfinal, which is used in tracing (in a
fuller definition of generate).

One could write rules for t r ans fo rm directly, but in
LMT transformational rules are written in a slightly

Computational Linguistics, Volume 15, Number 1, March 1989 47

Michael C . M c C o r d

more convenient notation and then compiled into rules
for t rans form. The main purpose of the alternative
format is to provide an augmentation of the pattern
matching of Prolog in which specially marked terms can
match sublists of lists. Specifically, when a term of the
form %X is written syntactically as a member of a list,
then X matches (unifies with) any sublist in that posi-
tion. This can be used both in analyzing and construct-
ing lists. As an example, the expression a.b.%X.e.d.n.il
matches the list a.b.u.v.w.e.d. 11il and unifies X with
u.v.w.nfl. (Similar conventions have been used in many
pattern matchers dealing with lists.) In this implemen-
tation, such extended list expressions can be embedded
arbitrarily in Prolog terms.

The form for a transformation given to the rule
compiler is:

N s f f I l o - -

A === > B
*-- Condition.

Here, A and B are arbitrary Prolog terms, containing
possible extended list expressions. The Condition is a
Prolog goal, and it can be omitted if desired. This rule is
compiled into a t r ans fo rm rule of the form

transform(Name~l,B1) ~-
ASplit & Condition & BSplit.

Here, the original pseudo-term A involving % elements
has been re-expressed as an ordinary term A1 and a
conjunction NBplit of calls to conc, which concatenates
lists. Similarly, B is re-expressed as B1 and BSplit.

As an example, a simplified version of the German
dative transformation is

dative --
syn(vp, %LMods.Obj.IObj.RMods)

syn(vp, %LMods.IObj.Obj.RMods)
*-- case(Obj,acc) & case(IObj,dat).

This is compiled into the transform rule:

transform(dative, syn(vp,Mods), syz.(vp,Modsl)) *--
concCLMods, Obj.IObj.RMods, Mods) @*
case(0bj,acc) & case(I0bJ,dat) &
conc(LMods, IObj.Obj.RMods, Modsl).

For efficiency, the Condition is inserted between
ASplit and BSplit, because Condition normally con-
tains constraints whose arguments become known im-
mediately after execution of ASplit.

The transformation rolclauso is defined as follows
(we give here somewhat simplified versions of the
actual transformations).

relclause - -
syn(vp(dep (tel(Case,Type,PNG)),I,M), Mods)

syn(vp(dep(rel),I,M), (',' +punt).
(drel +pro(Case,PNG)).
%Mods.
(',' +punc).nn).

]Design of LMT: A Prolog-Based Machine Translation System

Here, PNG is the person-number-gender structure for
the noun phrase modified by the relative clause. (The via
arguments I and M are as described in the preceding
section.) The relclause transformation is responsible
for adding a relative pronoun and surrounding commas
to the relative clause. In the English analysis tree, no
relatiw: pronoun is explicitly shown. (Note that in
certain cases it can be omitted in the English sentence.)
Thus, "'The man I saw is my brother" translates into
Der Mann, den ich sah, ist rnein Bruder. There are
variants of this relative clause transformation dealing
with cases like "The book to which I referred is old",
which translates to Das Buch, auf das ich mich bezog,
ist alt. LMT also gives exactly this same translation for
each of the English sentences: "The book which I
referred to is old", "The book that I referred to is old",
and "The book I referred to is old".

There is a similar transformation compclause, which
adds the word da[3 and commas to a finite complement
clause. Thus, "Hans knows Peter is my brother" trans-
lates into Hans wei[3, da[3 Peter mein Bruder ist.

The example just given illustrates the need to move
the verb to the end of a dependent clause. This is done
by the transformation verbfinal, defined as follows:

verbfinal - -
syn(vp(dep(T),I,M), %Mods 1.Verb.Mod.Mods2)

syn(vp(dep(T),I,M), %Mods 1.Mod.Verb.Mods2)
.-- syrdabel(Verb,vc(*,*,*)) &

~clausal(Mod) &--lallpunc(Mod.Mods2).

The idea is simply that the verb Verb hops over the
modifier Mod to its right, provided that Mod is not
clausal (to be explained) and provided that the remain-
ing modifiers (including Mod) do not consist solely of
punctuation. For example, in the translation of the noun
phrase "the man that gave the woman the book", the
verb gab moves all the way to the end of the relative
clause, producing: der Mann, der der Frau das Buch
gab. Note that verbfinal may apply several times, until
the verb has moved as far as it can go. (It is possible to
be a bit more efficient by writing an auxiliary procedure
to perform the movement.)

The point in not hopping over clausal elements in
verbfinal is illustrated with the translation of the noun
phrase "the man that told me that Hans bought a car",
which is der Mann, der mir sagte, da[3 Hans einen
Wagen kaufte. Here, sagte hops over mir, but not over
the da[3 clause. Roughly, clausal elements are phrases
whose heads are verbs.

But an interesting situation for vorbfinal arises when
there is a clausal element that is on the right end of the
tree but is not a sister of the verb being moved. This
occurs in the translation of the noun phrase "the man
that gave the woman the book I referred to". Here gab
should not move past the final relative clause, and the
result should be: der Mann, der der Frau das Buch gab,
aufdas ich reich bezog. The final clausal element could
actually be embedded several levels. To handle this,

Computational Linguistics, Volume 15, Number 1, March 1989 48

Michael C. McCord Design of LMT: A Proiog-Based Machine Translation System

there is a transformation clauseraise, ordered before
verbflmal, which raises such final clauses. Its definition
is simply:

clauseralse - -
syn(Lab, %Mods.syn(Lab 1,%Mods 1.Syn.nil).nil)

syn(Lab, %Mods .syn(Lab 1,Mods 1).Syn.nil)
~-- clausal(Syn).

This may operate through several levels before the
result of the raising is pertinent to verbfinal.

The transformation verbfinal also handles (without
extra effort) the word ordering in auxiliary verb con-
structions, because of the treatment of auxiliary verbs
as higher verbs. Thus, the sentence "Hans will have
bought the car" is structured as Hans [will [have
[bought the car]]]. Before transformations, the transla-
tion will be structured as Hans [wird [haben [gekauft
den Wagen]]]. The verb phrases headed by haben and
gekauft are dependent, so verbfLual operates on them
to give: Hans [wird [[den Wagen gekauft] haben]]. (The
phrases hopped over are not cases of clausal elements.)

Right movement of separable verb prefixes in inde-
pendent clauses is similar to right movement of the verb
in dependent clauses. This is handled by two transfor-
mations, one to separate the prefix, the other to move it.
In this case, too, the moved item does not hop over
clausal elements. An example for the separable prefix
verb aufbereiten ("edit") is in the LMT translation of
the sentence "Hans edited the file that he had created",
which is Hans bereitete die Datei auf, die er erstellt
hatte. In dependent clauses, the separable prefix stays
with the verb, although inflection has to treat it specially
for past participles and zu infinitive forms.

Ordering of transformations is important in that elau-
seraise must be ordered before verbfinal and the
separable prefix transformations. In turn, it is important
to order the dative transformation before all of these. If
the dative noun phrase to be moved contains a final
clausal element, then this element should not be a
barrier to rightward movement of a verb or separable
prefix. If dative operates first, the final clausal element
will go with the whole dative noun phrase, and will not
have a chance to be raised by clauseraise, which only
sees clausal elements on the extreme right of the clause
in which it operates. Thus, for the sentence "Hans
knew that Peter had given a book to the woman he
saw", the translation is Hans wu~te, da[3 Peter der
Frau, die er sah, ein Buch gegeben hatte.

Another example of a transformation is verbsecond,
which operates in independent clauses.

verbsecond --

syn(vp(ind(s) , I ,M) , Mod.%Modsl.
syn(vp(ind(vp),I1,M1),%Mods2.Verb. Mods3).
Mods4)

syn(vp(ind(s),I3ql), Mod.Verb.%Mods 1.
syn(vp(ind(vp),I 1,M 1),%Mods2.Mods3).Mods4)

- Modsl = /nil & synlabel(Verb,vc(,*,*)).

Computational Linguistics, Volume 15, Number 1, March 1989

As the name indicates, this moves the verb so that it is
the second modifier of the independent clause. As a
result, the sentence "Probably the file was created by
Hans" translates into Wahrscheinlich wurde die Datei
von Hans erstellt, where wurde is moved into second
position by verbsecond.

An interesting example of a transformation is subcl,
which adds pronouns in examples like

"The man wants the woman to speak with Hans
before buying the car."

Der Mann will, daft die Frau mit Hans spricht, bevor
sie den Wagen kauft

Here, the translation of the subordinate participial
clause "before buying the car" is the finite clause bevor
sie den Wagen kauft (before she buys the car), where
the pronoun sie (she), referring to the subject of the
matrix clause, is added. The English analysis shows a
variable in the analysis of the participial clause which is
unified with one in the subject of the matrix clause. This
variable serves as the link to transmit the appropriate
person-number-gender to the subordinate clause in the
transfer tree. The transformation subcl can then easily
add the correct pronoun.

A final example of a transformation is possessive,
which deals with left-branching possessive noun phrase
constructions, as in "my oldest brother's wife's father's
car". The possessive transformation is responsible for
converting such structures into a sort of right branching
mirror image, where extra definite articles are added:
der Wagen des Vaters der Frau meines iiltesten Bru-
ders. The definition of possessive, without its condi-
tion, is as follows:

possessive - -
syn(NPLab, PossNP.NC.Mods)
- - - >
syn(NPLab, Det.NC.PossNP.Mods).

The condition (not shown) tests that the components of
the pattern are what their names suggest, assigns the
genitive case to the possessive noun phrase PossN'P,
and creates a definite article Det that agrees with the
whole noun phrase.

6 GERMAN MORPHOLOGICAL GENERATION

The task of this component is to take the output tree
from the syntactic generation component and to pro-
duce the character string representing the final German
translation. There are three substeps for accomplishing
this.

The first and most substantial step is the application
of morphological procedures, mainly inflectional, to the
individual nodes of the tree, which are of the form
Base+Features, producing another tree whose termi-
nals are inflected German words. The main procedure
for this step, gmorph, takes such a Base+Features
structure and produces the required inflected word. It
accomplishes this mainly by dispatching the problem to
various procedures like gverbf (German verb form)

49

Michael C. McCord]Design of LMT: A Proiog-Based Machine Translation System

associated with different parts of speech, as determined
appropriately from Feat-u.res. Before calling these pro-
cedures, though, graorph performs several "tidying-
up" operations, such as simplifying tense and case
structures and handling compound words (through re-
cursive calls).

Details will not be given here for the inflectional
procedures for the various parts of speech, but it is
worth saying a bit about the noun declension system in
LMT, since the most idiosyncratic part of German
inflectional morphology is the system for nouns. It was
mentioned in Section 3 that German noun class infor-
mation is exhibited along with target nouns in gn
transfer elements of the lexicon, in a compact format.
The transfer component marks this irfformation in the
transfer tree (see the example tree in Section 4), where
it can be read off by the noun inflection procedures. In
general, a gn target is of the form

Noun.Gender.DeclensionClass.

For example, the transfer of b ro ther is bruder.m.b.
The declension class is usually specified by a single
letter. In the case of Bruder, for example, the class b
dictates that the plural base is formed by umlauting the
noun, and there is a general rule for finding where to
place the umlaut. In general, the declension class has
implicit within it the method of getting the plural base,
the combining form (used in forming noun compounds),
and the complete declension pattern. In examples
where the plural base or combining form is very irreg-
ularly formed, the declension class may be given as a
letter together with the required morpheme, as in
d~a_m.nt.x.daten.

Susanne Wolff has worked out a system of 20 noun
classes under the preceding scheme, together with the
morphological rules for getting declensions for each
class. There are also some rules that compute the
gender/class for nouns with certain common endings, so
that for these nouns the gender/class can be omitted in
the transfer entry.

The second substep of German morphological gener-
ation is the application of German word list transforma-
tions. The tree output of the first substep (whose
terminals are inflected German words) is converted to a
linear list of words by this second substep. This is done
recursively. On each level, all the daughter nodes are
converted to word lists and these are concatenated,
producing a tentative word list Words for the node. But
then an attempt is made to apply a word list transfor-
mation to Words, by calling a procedure

gphrase(Label,Words,Words 1)

where Label is the (principal functor of the) label on the
current node. If this succeeds, the desired word list for
the node is Words1; otherwise it is Words.

Currently, g-phrase rules are used mainly for han-
dling German contractions. For example, there is a rule

gphrase(pp, an.dem.U, am.U).

But these rules can also be used to handle noncompo-
sitional translations. For example, "for example" can
translate compositionally into far Beispiel, and then a
g'phrase rule can convert this to zum Beispiel. As
mentioned in Section 3, word list transformations can
be specified in the lexicon. There is a slightly shorter
format (like gph(pp,a~.dsm,am)) which is compiled
into gphrase clauses by the lexical compiler.

It seems better on the whole, however, to treat
noncompositional translation by means of multiword
elements in the lexicon, since these involve both source
and transfer elements. It is useful to involve source
elements, because in many cases the source phrase is
idiomatic in itself, and the parser is helped by having an
English multiword analysis.

The last substep, a rather simple one conceptually, is
to convert the German word list for the whole sentence
into a simple character string. This involves mainly the
treatment of punctuation, blanks, capitalization, and
text formatting symbols. For a more detailed descrip-
tion of German morphological generation, see McCord
and Wolff (1988).

7 STATUS OF THE SYSTEM

LMT handles all of the examples and constructions
given above, and many other types of constructions not
illustrated for lack of space. Testing and vocabulary
development have been done with the IBM CMS Editor
(XED]T) reference manual, as well as with a collection
of sentences made up by ourselves and others to
illustrate key grammatical constructions and problems
of English-German translation. Every effort has been
made to keep the rules of the system general. As with
most MT systems, it is assumed that there will be some
postediting of the output.

In a test on a 500-sentence corpus from an initial part
of the XEDIT manual, LMT was able to translate 95%
of the sentences in an "understandable" 12 way, with an
average processing time on an IBM 3081 of 364 milli-
seconds per sentence (19.5 msec. per word), using
VM/Prolog as an interpreter.

The first few sentences and their LMT translation
(with no postediting) are as follows:

X E D I T subcommands and macros follow the same
rules and conventions. For purposes o f this discus-
sion, " subcommand" refers to both X E D I T subcom-
mands and XED1T macros. The general format o f
X E D I T subcommands is: (fig.) A t least one blank
must separate the subcommand name and the oper-
ands, unless the operand is a number or a special
character. For example, NEXT 8 and N E X T 8 are
equivalent. A t least one blank must be used to
separate each operand in the command line unless
otherwise indicated. The maximum length o f an
X E D I T subcommand issued f rom an EXEC proce-
dure or.from an X E D I T macro is 256 characters.

50 Computational Linguistics, Volume 15, Number 1, March 1989

Michael C. McCord

X E D I T Unterbefehle und Makros folgen den glei-
chen Regeln und Konventionen. Zum Zweck dieser
Diskussion bezieht sich "Unterbefehl" sowohl a u f
X E D I T Unterbefehle als auch au f X E D I T Makros.
Das allgemeine Format von X E D I T Unterbefehlen
ist: (fig.) Mindestens ein Leerzeichen m u f den Un-
terbefehls-Namen und die Operanden abtrennen, es
sei denn der Operand ist eine Zahl oder ein spezielles
Zeichen. Z u m Beispiel sind NEXT8 und N E X T 8
iiquivalent. Mindestens ein Leerzeichen muff ver-
wendet werden, jeden Operanden in der Befehls-
Zeile abzutrennen, wenn nicht anderweitig ange-
zeigt. Die maximale Liinge eines X E D I T Unterbe-
fehls, der von einer EXEC Prozedur oder yon einem
X E D I T Makro ausgegeben wird, ist 256 Zeichen.

As for the size of LMT, there are now about 3,500
Prolog clauses, not including the lexicon. This includes
the M L G and DCG g rammar rules as clauses, and there
are about 270 of these. After metarules have operated,
the total number of g rammar rules is about 450. The
lexicon currently contains about 1,600 entries; this
includes most of the vocabulary for the X E D I T Refer-
ence Manual. As ment ioned earlier, ModL is interfaced
to the U D I C T monolingual English lexicon (Byrd 1983,
1984), with around 65,000 citation forms. Also an inter-
face of L M T to a lexical data base (Neff, Byrd, Rizk
1988) for the Collins Engl ish-German Dictionary has
been partially developed by Susanne Wolff and the
author. Currently, this interface, given an English word,
just takes the first German translation provided, for
each part of speech. For nouns, the required L M T
German noun classes are obtained f rom a data base
worked out by Wolff f rom the inflectional information
on the German-Engl ish side of Collins.

In recent work (McCord 1988), L M T has been ex-
panded to deal with target languages besides German.
This expansion has been made easier by the develop-
ment of a large subsys tem L M T X of L M T which is
essentially target language independent and can be
thought of as an "Engl ish- to-X translation shell ." De-
velopment of the shell has involved improvements and
generalizations in the modules of LMT, but most of the
methods and organization are as described in the cur-
rent paper.

The shell L M T X includes: 1. the English g rammar
ModL; 2. most of the source/ transfer morphology sys-
tem and lexical processing system; 3. the transfer
algorithm and rule system, except for low level, lexical
t ransfer entries; 4. the syntactic generation algorithm; 5.
target independent procedures dealing with morpholog-
ical generation, and 6. many utility procedures. For a
given target language, the only target specific modules
are a. the source/ t ransfer (unified) lexicon; b. the set of
t ransformations for syntact ic generation, and c. the
target morphological system. As an example of the size
of the shell, for the Engl ish-German version of L M T the

Computational Linguistics, Volume 15, Number 1, March 1989

Design of LMT: A Prolog-Based Machine Translation System

shell contains approximate ly 80% of the rules (not
counting the lexicon).

Using the shell, p ro to type versions of L M T have
been started up for several target languages, in cooper-
ation with other groups and individuals: French---in
cooperat ion with the K A L I P S O S group of the IBM
Paris Scientific Center (Fargues et al. 1987), with work
especially by Eric Bilange; Danish---with Arendse
Bernth and in cooperat ion with IBM European Lan-
guage Services; Spanish with Nelson Correa; and Por-
tuguese,--with Paula N e w m a n ' s group at the IBM Los
Angeles Scientific Center.

REFERENCES

Bennett, W. S. and Slocum, J. 1985 "The LRC Machine Translation
System," Computational Linguistics 11: 111-121.

Bernth, A. 1988 "LODUS--A Logic-oriented Discourse Understand-
ing System," Research Report RC 13676, IBM Research Division,
Yorktown Heights, NY.

Byrd, R. J. 1983 "Word Formation in Natural Language Processing
Systems," In Proceedings of the 8th International Joint Confer-
ence on Artificial Intelligence, Karlsruhe: 704-706.

Byrd, R. J. 1984 "The Ultimate Dictionary Users' Guide," IBM
Research Internal Report.

Colmerauer, A. 1971 "Les syst6mes-Q: un formalisme pour analyser
et synth6tiser des phrases sur ordinateur," Groupe TAUM, Uni-
versit6 de Montr6al, Qu6bec, Canada.

Colmerauer, A. et al. 1971 "TAUM-71," Groupe TAUM, Universit6
de Montr6al, Qu6bec, Canada.

Colmerauer, A. 1975 "Les grammaires de m6tamorphose," Internal
Report, Groupe d'Intelligence Artificielle, Universit6 d'Aix-Mar-
seille, France.

Colmerauer, A. 1978 "Metamorphosis Grammars," in L. Bolc (ed.),
Natural Language Communication with Computers, Springer-
Verlag, Berlin, W. Germany.

Dahl, V., and McCord, M. C. 1983 "Treating Coordination in Logic
Grammars," American Journal of Computational Linguistics 9:
69--91.

Dahlgren, K. 1988 Naive Semantics for Natural Language Under-
standing, Kluwer Academic Publishers, Norwell, MA.

Fargues, J.; B6rard-Dugourd, A.; Landau, M. C.; Nogier, J. F.;
Catach, L. 1987 "KALIPSOS Project: Conceptual Semantics and
Linguistics," In Proceedings of the Conference on Artificial
Intelligence and Natural Language Technology, IBM European
Language Services, Copenhagen, Denmark.

Gazdar, G., and Pullum, G. K. 1982 "Generalized Phrase Structure
Grammar: A Theoretical Synopsis," Indiana University Linguis-
tics Club, Bloomington, IN.

Hirschman, L. 1986 "Conjunction in Meta-restriction Grammar,"
The Journal of Logic Programming 3: 299-328.

Huang, X-M. 1984a "The Generation of Chinese Sentences from the
Semantic Representations of English Sentences," In Proceedings
of the International Conference on Machine Translation, Cran-
field, England.

Huang, X-M. 1984b "Dealing with Conjunctions in a Machine Trans-
lation Environment," In Proceedings of the Joint Association for
Computational Linguistics and Conference on Computational
Linguistics Meeting 1984: 243-246, Stanford, CA.

Huang, X-M 1985 "Machine Translation in SDCG Formalism," in
Nirenburg (1985, these references):135-144.

Hudson, R. A. 1971 English Complex Sentences, North-Holland.
lsabeUe, P. and Bourbeau, L. 1985 "TAUM-AVIATION: Its Tech-

nical Features and Some Experimental Results," Computational
Linguistics 11 : 18-27.

51

Michael C. McCord Design of LMT: A Prolog-Based Machine Translation System

Kittredge, R.; Bourbeau, L.; and Isabelle, P. 1973 "Design and
Implementation of a French Transfer Grammar," Conference on
Computational Linguistics Meeting 1976, Otl:awa, Canada.

McCord, M. C. 1975 "On the Form of a Systemic Grammar," Journal
of Linguistics 11: 195-212.

McCord, M. C. 1981 "Focalizers, the Scoping Problem, and Semantic
Interpretation Rules in Logic Grammars," Technical Report,
University of Kentucky, Lexington, KY. Appeared in Logic Pro-
gramming and Its Applications, M. van Caneghem and D. H. D.
Warren (Eds.), Ablex, 1986.

McCord, M. C. 1982 "Using Slots and Modifiers in Logic Grammars
for Natural Language," Artificial Intelligence 18: 327-367.

McCord, M. C. 1984 "Semantic Interpretation for the EPISTLE
System," In Proceedings of the Second International Logic
Programming Conference, Uppsala, Sweden: 65-76.

McCord, M. C. 1985a "Modular Logic Grammars," In Proceedings
of the 23rd Annual Meeting of the Association for Computational
Linguistics, Chicago, IL: 104-117.

McCord, M. C. 1985b "LMT: A Prolog-hased Machine Translation
System" (extended abstract), in Nirenburg (1985, these refer-
ences): 179-182.

McCord, M. C. 1986 "Design of a Prolog-based Machine Translation
System," In Proceedings of the Third International Logic Pro-
gramming Conference, Springer-Verlag, Berlin, W. Germany:
350-374.

McCord, M. C. 1987 "Natural Language Processing in Prolog," in
Walker et al. (1987, these references).

McCord, M. C. 1988 "A Multi-target Machine Translation System,"
In Proceedings of the International Conference on Fifth Genera-
tion Computer Systems 1988, Tokyo, Japan: 1141-1149.

McCord, M. C. and Wolff, S. 1988 "The Lexicon and Morphology for
LMT, a Prolog-based MT System," Research Report RC 13403,
IBM Research Division, Yorktown Heights, NY.

Neff, M. S.; Byrd, R. J.; and Rizk, O. A. 1988 "Creating and
Querying Lexical Data Bases," In Proceedings of the Second
Conference on Applied Natural Language Processing, Austin,
TX.

Nirenburg, S. 1985, (ed.) Proceedings of the Conference on Theoret-
ical and Methodological Issues in Machine Translation of Natural
Languages, Colgate University, Hamilton, NY.

Pereira, F. C. N. and Shieber, S. M. 1987 Prolog and Natural
Language Analysis, CSLI Lecture Notes, no. 10, Menlo Park,
CA.

Pereira, F. C. N. and Warren, D. H. D. 1980 "Definite Clause
Grammars for Language Analysis--A Survey of the Formalism
and a Comparison with Transition Networks," Artificial Intelli-
gence 13: 231-278.

Sedogbo, C. 1984 "A Meta Grammar for Handling Coordination in
Logic Grammars," In Proceedings of the Conference on Natural
Language Understanding and Logic Programming, Rennes,
France: 137-149.

Teeple, D. 1985 "Reasoning in Embedded Contexts," Research
Report RC 11539, IBM Research Division, Yorktown Heights,
NY.

Walker, A. (ed.); McCord, M.; Sowa, J. F.; and Wilson, W. G. 1987
Knowledge Systems and Prolog: A Logical Approach to Expert
Systems and Natural Language Processing, Addison-Wesley,
Reading, M.A.

Wilks, Y.; Huang, X-M.; and Fass, D. 1985 "Syntax, Preference and
Right-Attachment," In Proceedings of the 9th International Joint
Conference on Artificial Intelligence, Los Angeles, CA.

Wolff, Susanne 1983 Lexical Entries and Word-Formation, (Ph.D.
dissertation}, New York University.

NOTES

1. This paper is a revision of a paper (invited presentation) that
appeared in the Proceedings of the Third International Logic
Programming Conference, London, July 1986, published by
Springer-Verlag, Lecture Notes in Computer Science. The cur-
rent version reflects recent improvements in LMT.

2. The description "Logic-programming-based" is slightly more
accurate.

3. There is an interesting historical connection between machine
translation and Prolog. Prior to the development of Prolog, Alain
Colmerauer worked in the period 1967-70 on a machine transla-
tion project, the TAUM project--Traduction Automatique Uni-
versit6 de Montr6al (Colmerauer et al. 1971, Kittredge, Bout-
beau and Isabelle 1973, Isabelle and Bourbeau 1985). In
connection with this project, Colmerauer developed a grammar
language, Q-systems (Colmerauer 1971), which had some of the
features of logic grammars and Prolog. In his subsequent work
on the development of Prolog, natural language applications
formed a major motivation for Colmerauer.

4. In earlier work on MLGs, only the first argument of a strong
nonterminal was used as a feature argument, so that the /k
specification was not used in strong nonterminal declarations.

5. Currently, there is only one occurrence of this device in ModL,
which could be probably be avoided without too much trouble.

6. The ordering of parses is significant in ModL. Normally trans-
lation is done only for the first parse obtained.

7. Markers are logical variables together with semantic and syntac-
tic feature information. The exact format used currently in
ModL is described at the end of this subsection.

8. As described in the next section, the lexical preprocessor can
optionally make this verb sense argument simply Y or make it
the whole term ¥:Sense :Syr~eas , depending on the application
of ModL.

9. For more details, see McCord and Wolff (1988).
10. External forms for transfer elements are discussed below.
II. The symbols l and h attached to the nouns are their declension

classes. More details are given in Section 6.
12. This means that a native German speaker can read the transla-

tion (without seeing the source) and understand it in the same
sense as the source.

52 Computational Linguistics, Volume 15, Number 1, March 1989

