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In this paper, we present a statistical approach to machine translation. We describe the application of our 
approach to translation from French to English and give preliminary results. 

1 INTRODUCTION 

The field of machine translation is almost as old as the 
modern digital computer. In 1949 Warren Weaver sug- 
gested that the problem be attacked with statistical meth- 
ods and ideas from information theory, an area which he, 
Claude Shannon, and others were developing at the time 
(Weaver 1949). Although researchers quickly abandoned 
this approach, advancing numerous theoretical objections, 
we believe that the true obstacles lay in the relative impo- 
tence of the available computers and the dearth of machine- 
readable text from which to gather the statistics vital to 
such an attack. Today, computers are five orders of magni- 
tude faster than they were in 1950 and have hundreds of 
millions of bytes of storage. Large, machine-readable cor- 
pora are readily available. Statistical methods have proven 
their value in automatic speech recognition (Bahl et al. 
1983) and have recently been applied to lexicography 
(Sinclair 1985) and to natural language processing (Baker 
1979; Ferguson 1980; Garside et al. 1987; Sampson 1986; 
Sharman et al. 1988). We feel that it is time to give them a 
chance in machine translation. 

The job of a translator is to render in one language the 
meaning expressed by a passage of text in another lan- 
guage. This task is not always straightforward. For exam- 
ple, the translation of a word may depend on words quite 
far from it. Some English translators of Proust's seven 
volume work A la Recherche du Temps Perdu have striven 
to make the first word of the first volume the same as the 
last word of the last volume because the French original 
begins and ends with the same word (Bernstein 1988). 
Thus, in its most highly developed form, translation in- 
volves a careful study of the original text and may even 
encompass a detailed analysis of the author's life and 
circumstances. We, of course, do not hope to reach these 
pinnacles of the translator's art. 

In this paper, we consider only the translation of individ- 
ual sentences. Usually, there are many acceptable transla- 
tions of a particular sentence, the choice among them being 
largely a matter of taste. We take the view that every 

sentence in one language is a possible translation of any 
sentence in the other. We assign to every pair of sentences 
(S, T) a probability, Pr (TIS) ,  to be interpreted as the 
probability that a translator will produce T in the target 
language when presented with S in the source language. 
We expect Pr (TIS)  to be very small for pairs like (Le 
matin je me brosse les dents lPresident Lincoln was a good 
lawyer) and relatively large for pairs like (Le president 
Lincoln btait un bon avocat l President Lincoln was a good 
lawyer). We view the problem of machine translation then 
as follows. Given a sentence T in the target language, we 
seek the sentence S from which the translator produced T. 
We know that our chance of error is minimized by choosing 
that sentence S that is most probable given T. Thus, we 
wish to choose S so as to maximize Pr(SI T). Using Bayes' 
theorem, we can write 

Pr (S) Pr (T IS )  
Pr (SI T) = 

Pr (T)  

The denominator on the right of this equation does not 
depend on S, and so it suffices to choose the S that maxi- 
mizes the product Pr(S)Pr(TIS) .  Call the first factor in 
this product the language model probability of S and the 
second factor the translation probability of T given S. 
Although the interaction of these two factors can be quite 
profound, it may help the reader to think of the translation 
probability as suggesting words from the source language 
that might have produced the words that we observe in the 
target sentence and to think of the language model proba- 
bility as suggesting an order in which to place these source 
words. 

Thus, as illustrated in Figure 1, a statistical translation 
system requires a method for computing language model 
probabilities, a method for computing translation probabil- 
ities, and, finally, a method for searching among possible 
source sentences S for the one that gives the greatest value 
for Pr(S)Pr( TIS).  

In the remainder of this paper we describe a simple 
version of such a system that we have implemented. In the 
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P r ( S )  x P r ( T I S )  = P r ( S , T )  

A Source Language Model and a Translation Model furnish a probabil i ty 
distribution over source-target sentence pairs (S ,T ) .  The joint probabil i ty 
Pz (S, T) of the pair (S, T) is the product of the probability Pr (S) computed 
by the language model and the conditional probability Pr (T I S) computed 
by the translation model. The parameters of these models are estimated 
automatically f~om a large database of source-target sentence pairs using a 
statistical aigoritlim which optimizes, in an appropriate sense, the fit between 
the models and the data. 

T ~ Decoder 

= a r g m a x P r ( S  I T ) = a r g m a x P r  ( S , T )  
s s 

A Decoder performs the actual translation. Given a sentence T in the target 
language, the decoder chooses a viable translation by selecting that sentence 

in the source langnage for which the probability Pr (S [ T) is maximum. 

Figure 1 A Statistical Machine Translation 
System. 

next section we describe our language model  for P r ( S ) ,  and 
in Section 3 we describe our t ranslat ion model  for P r ( T [ S ) .  
In Section 4 we describe our search procedure.  In Section 5 
we explain how we es t imate  the parameters  of our models 
from a large da tabase  of t ransla ted text. In Section 6 we 
describe the results of two experiments  we performed using 
these models. Final ly,  in Section 7 we conclude with a 
discussion of some improvements  that  we intend to imple- 
ment.  

2 THE LANGUAGE MODEL 

Given a word string, s i s  2 . . .  s n, we can, without loss of 
general i ty,  write 

Pr ( & s 2 . . .  s , )  

= Pr  (Sl) Pr ( s 2 [ s l ) . . .  Pr  ( s n l s l s 2 . . .  s~-l) .  

Thus, we can recast  the language modeling problem as one 
of comput ing the probabi l i ty  of a single word given all of 
the words that  precede it in a sentence. At  any point in the 
sentence, we must  know the probabi l i ty  of an object  word, 
s i, given a history, s~s2. • • Si_l. Because there are so many  
histories, we cannot  simply t reat  each of these probabil i t ies  
as a separa te  parameter .  One way to reduce the number  of 
parameters  is to place each of the histories into an equiva- 
lence class in some way and then to allow the probabi l i ty  of 
an object  word to depend on the history only through the 
equivalence class into which that  history falls. In an n-gram 
model, two histories are  equivalent if  they agree in their  

final n -  1 words. Thus, in a b igram model, two histories are  
equivalent if  they end in the same word and in a t r ig ram 
model, two histories are  equivalent  if  they end in the same 
two words. 

Whi le  n-gram models are  l inguist ically s impleminded,  
they have proven quite valuable  in speech recognit ion and 
have the redeeming feature  that  they are  easy to make  and 
to use. W e  can see the power of a t r ig ram model by 
applying it to something that  we call bag t ransla t ion from 
English into English. In bag t ransla t ion we take  a sentence, 
cut it up into words, place the words in a bag,  and then try 
to recover the sentence given the bag. W e  use the n-gram 
model  to rank different a r rangements  of the words in the 
bag. Thus, we t rea t  an a r rangement  S as bet ter  than 
another  a r rangement  S '  if P r ( S )  is greater  than P r ( S ' ) .  
W e  tr ied this scheme on a random sample  of sentences. 
F rom a collection of 100 sentences, we considered the 38 
sentences with fewer than 11 words each. W e  had to 
restr ict  the length of the sentences because the number  of  
possible rear rangements  grows exponential ly with sentence 
length. W e  used a t r ig ram language model  that  had been 
constructed for a speech recognition system. W e  were able 
to recover 24 (63%) of the sentences exactly. Sometimes,  
the sentence that  we found to be most probable  was not an 
exact  reproduct ion of the original,  but  conveyed the same 
meaning.  In other cases, of course, the most probable  
sentence according to our model  was jus t  garbage.  I f  we 
count as correct  all of the sentences that  re ta ined the 
meaning of the original,  then 32 (84%) of the 38 were 
correct.  Some examples of the original sentences and the 
sentertces recovered from the bags are  shown in Figure  2. 
W e  :have no doubt  that  if we had been able to handle  longer 
sentertces, the results would have been worse and that  the 
probabi l i ty  of error grows rapidly  with sentence length. 

3 THE TRANSLATION MODEL 

For  simple sentences, it is reasonable  to think of the French 
t ransla t ion of an English sentence as being genera ted  from 
the English sentence word by word. Thus, in the sentence 
pair  (,lean a ime Mar i e  I John  loves M a r y )  we feel tha t  John  
produces Jean, loves produces aime, and M a r y  produces 

Exact reconstruction (24 of 38) 

Please give me your response as soon as possible. 
Please give me your response as soon as possible. 

Reconstruction preserving meaning (8 of 38) 

Now let me mention some of the disadv'antages. 
=~ Let me mention some of the disadvantages now. 

Garbage reconstruction (6 of 38) 

In our organization research has two missions. 
=~ In oar missions research organization has two. 

Figure 2 Bag Model Examples. 
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Marie. We say that a word is aligned with the word that it 
produces. Thus John is aligned with Jean in the pair that 
we just discussed. Of  course, not all pairs of sentences are 
as simple as this example. In the pair (Jean n'aime 
personne[John loves nobody), we can again align John 
with Jean and loves with aime, but now, nobody aligns with 
both n'  and personne. Sometimes, words in the English 
sentence of the pair align with nothing in the French 
sentence, and similarly, occasionally words in the French 
member of the pair do not appear to go with any of the 
words in the English sentence. We refer to a picture such as 
that shown in Figure 3 as an alignment. An alignment 
indicates the origin in the English sentence of each of the 
words in the French sentence. We call the number of 
French words that an English word produces in a given 
alignment its fertility in that alignment. 

If  we look at a number of pairs, we find that words near 
the beginning of the English sentence tend to align with 
words near the beginning of the French sentence and that 
words near the end of the English sentence tend to align 
with words near the end of the French sentence. But this is 
not always the case. Sometimes, a French word will appear 
quite far from the English word that produced it. We call 
this effect distortion. Distortions will, for example, allow 
adjectives to precede the nouns that they modify in English 
but to follow them in French. 

It is convenient to introduce the following notation for 
alignments. We write the French sentence followed by the 
English sentence and enclose the pair in parentheses. We 
separate the two by a vertical bar. Following each of the 
English words, we give a parenthesized list of the positions 
of the words in the French sentence with which it is aligned. 
If  an English word is aligned with no French words, then we 
omit the list. Thus (Jean aime MarielJohn(1) loves(2) 
Mary(3) ) is the simple alignment with which we began this 
discussion. In the alignment (Le chien est battu par 
Jean[John(6) does beat(3,4) the(l) dog(2) ), John produces 
Jean, does produces nothing, beat produces est battu, the 
produces Le, dog produces chien, and par is not produced 
by any of the English words. 

Rather than describe our translation model formally, we 
present it by working an example. To compute the probabil- 
ity of the alignment (Le chien est battu par Jean[John(6) 
does beat(3,4) the(l) dog(2)), begin by multiplying the 
probability that John has fertility 1 by Pr(Jean[John). 

The proposal will 

Les propositions 
S 

ne seront pas raises en application 

Figure 3 Alignment Example. 

not now be implemented 

malntenant 

Then multiply by the probability that does has fertility 0. 
Next, multiply by the probability that beat has fertility 2 
times Pr(estlbeat)Pr(battulbeat), and so on. The word par 
is produced from a special English word which is denoted 
by (null) .  The result is 

Pr(fertility = 1 [John) x Pr(Jean[John) x 
Pr(fertility = O ldoes) x 
Pr(fertility --- 2[beat) x Pr(est[beat)Pr(battulbeat) x 
Pr(fertility = l[the) x Pr(Le[the) × 
Pr(fertility = 1 [dog) x Pr(chien[dog) x 
Pr(fertility = l [ (nul l ) )  x Pr(par(nul l ) ) .  

Finally, factor in the distortion probabilities. Our model for 
distortions is, at present, very simple. We assume that the 
position of the target word depends only on the length of the 
target sentence and the position of the source word. There- 
fore, a distortion probability has the form Pr(i[j, 1) where i 
is a target position, j a source position, and 1 the target 
length. 

In summary, the parameters of our translation model are 
a set of fertility probabilities Pr(n[e) for each English word 
e and for each fertility n from 0 to some moderate limit, in 
our case 25; a set of translation probabilities Pr ( f i e ) ,  one 
for each element f of the French vocabulary and each 
member e of the English vocabulary; and a set of distortion 
probabilities Pr(i[j ,  l) for each target position i, source 
position j ,  and target length l. We limit i, j ,  and l to the 
range 1 to 25. 

4 S E A R C H I N G  

In searching for the sentence S that maximizes 
Pr(S) Pr(T[S) ,  we face the difficulty that there are simply 
too many sentences to try. Instead, we must carry out a 
suboptimal search. We do so using a variant of the stack 
search that has worked so well in speech recognition (Bahl 
et al. 1983). In a stack search, we maintain a list of partial 
alignment hypotheses. Initially, this list contains only one 
entry corresponding to the hypothesis that the target sen- 
tence arose in some way from a sequence of source words 
that we do not know. In the alignment notation introduced 
earlier, this entry might be (Jean aime Marie I *) where the 
asterisk is a place holder for an unknown sequence of 
source words. The search proceeds by iterations, each of 
which extends some of the most promising entries on the 
list. An entry is extended by adding one or more additional 
words to its hypothesis. For example, we might extend the 
initial entry above to one or more of the following entries: 

(Jean aime Marie I John(I)*), 
(Jean aime Marie[ *loves (2)*), 
(Jean aime Marie l *Mary(3)), 
(Jean airne Marie l Jeans(l)*). 

The search ends when there is a complete alignment on 
the list that is significantly more promising than any of the 
incomplete alignments. 

Sometimes, the sentence S'  that is found in this way 
is not the same as the sentence S that a translator might 
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have been working on. When S' itself is not an accept- 
able translation, then there is clearly a problem. If 
Pr(S')Pr(T[S') is greater than Pr(S)Pr(TIS), then the 
problem lies in our modeling of the language or of the 
translation process. If, however, Pr(S')Pr(T[ S') is less than 
Pr(S)Pr(TIS), then our search has failed to find the most 
likely sentence. We call this latter type of failure a search 
error. In the case of a search error, we can be sure that our 
search procedure has failed to find the most probable 
source sentence, but we cannot be sure that were we to 
correct the search we would also correct the error. We 
might simply find an even more probable sentence that 
nonetheless is incorrect. Thus, while a search error is a 
clear indictment of the search procedure, it is not an 
acquittal of either the language model or the translation 
model. 

5 PARAMETER ESTIMATION 

Both the language model and the translation model have 
many parameters that must be specified. To estimate these 
parameters accurately, we need a large quantity of data. 
For the parameters of the language model, we need only 
English text, which is available in computer-readable form 
from many sources; but for the parameters of the transla- 
tion model, we need pairs of sentences that are translations 
of one another. 

By law, the proceedings of the Canadian parliament are 
kept in both French and English. As members rise to 
address a question before the house or otherwise express 
themselves, their remarks are jotted clown in whichever of 
the two languages is used. After the meeting adjourns, a 
collection of translators begins working to produce a com- 
plete set of the proceedings in both French and English. 

• These proceedings are called Hansards, in remembrance of 
the publisher of the proceedings of the British parliament 
in the early 1800s. All of these proceedings are available in 
computer-readable form, and we have been able to obtain 
about 100 million words of English text and the correspond- 
ing French text from the Canadian government. Although 
the translations are not made sentence by sentence, we have 
been able to extract about three million pairs of sentences 
by using a statistical algorithm based on sentence length. 
Approximately 99% of these pairs are made up of sentences 
that are actually translations of one another. It is this 
collection of sentence pairs, or more properly various sub- 
sets of this collection, from which we have estimated the 
parameters of the language and translation models. 

In the experiments we describe later, we use a bigram 
language model. Thus, we have one parameter for every 
pair of words in the source language. We estimate these 
parameters from the counts of word pairs in a large sample 
of text from the English part of our Hansard data using a 
method described by Jelinek and Mercer (1980). 

In Section 3 we discussed alignments of sentence pairs. If 
we had a collection of aligned pairs of sentences, then we 
could estimate the parameters of the translation model by 
counting, just as we do for the language model. However, 

we do not have alignments but only the unaligned pairs of 
sentences. This is exactly analogous to the situation in 
speech recognition where one has the script of a sentence 
and the time waveform corresponding to an utterance of it, 
but no indication of just what in the time waveform corre- 
sponds to what in the script. In speech recognition, this 
problem is attacked with the EM algorithm (Baum 1972; 
Dempster et al. 1977). We have adapted this algorithm to 
our problem in translation. In brief, it works like this: given 
some :initial estimate of the parameters, we can compute 
the probability of any particular alignment. We can then 
re-estimate the parameters by weighing each possible align- 
ment according to its probability as determined by the 
initial guess of the parameters. Repeated iterations of this 
process lead to parameters that assign ever greater probabil- 
ity to the set of sentence pairs that we actually observe. 
This algorithm leads to a local maximum of the probability 
of the observed pairs as a function of the parameters of the 
model. There may be many such local maxima. The partic- 
ular one at which we arrive will, in general, depend on the 
initial choice of parameters. 

6 T w o  PILOT EXPERIMENTS 

In our first experiment, we test our ability to estimate 
parameters for the translation model. We chose as our 
English vocabulary the 9,000 most common words in the 
English part of the Hansard data, and as our French 
vocabulary the 9,000 most common French words. For the 
purposes of this experiment, we replaced all other words 
with either the unknown English word or the unknown 
Frenc.h word, as appropriate. We applied the iterative 
algorithm discussed above in order to estimate some 81 
millJion parameters from 40,000 pairs of sentences compris- 
ing a total of about 800,000 words in each language. The 
algorithm requires an initial guess of the parameters. We 
assumted that each of the 9,000 French words was equally 
probable as a translation of any of the 9,000 English words; 
we assumed that each of the fertilities from 0 to 25 was 
equally probable for each of the 9,000 English words; and 
finally, we assumed that each target position was equally 
probable given each source position and target length. 
Thus, our initial choices contained very little information 
about either French or English. 

Fi[gure 4 shows the translation and fertility probabilities 
we estimated for the English word the. We see that, accord- 
ing to the model, the translates most frequently into the 
French articles le and la. This is not surprising, of course, 
but we emphasize that it is determined completely automat- 
ically by the estimation process. In some sense, this corre- 
spondence is inherent in the sentence pairs themselves. 
Figure 5 shows these probabilities for the English word not. 
As expected, the French word pas appears as a highly 
probable translation. Also, the fertility probabilities indi- 
cate that not translates most often into two French words, a 
situation consistent with the fact that negative French 
sentences contain the auxiliary word ne in addition to a 
primary negative word such as pas or rien. 
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Eng l i sh :  the 

F r e n c h  P r o b a b i l i t y  
le .610 
la .178 

1' .083 
les .023 
ce .013 
il .012 

de .009 

.007 
que .007 

F e r t i l i t y  P r o b a b i l i t y  
1 .871 
0 .124 
2 .004 

Figure 4 Probabilities for "the." 

For both of these words, we could easily have discovered 
the same information from a dictionary. In Figure 6, we see 
the trained parameters for the English word hear. As we 
would expect, various forms of the French word entendre 
appear as possible translations, but the most probable 
translation is the French word bravo. When we look at the 
fertilities here, we see that the probability is about equally 
divided between fertility 0 and fertility 1. The reason for 
this is that the English speaking members of parliament 
express their approval by shouting Hear, hear/, while the 
French speaking ones say Bravo/The translation model has 
learned that usually two hears produce one bravo by having 
one of them produce the bravo and the other produce 
nothing. 

A given pair of sentences has many possible alignments, 
since each target word can be aligned with any source 
word. A translation model will assign significant probabil- 
ity only to some of the possible alignments, and we can gain 
further insight about the model by examining the align- 
ments that it considers most probable. We show one such 
alignment in Figure 3. Observe that, quite reasonably, not 
is aligned with ne and pas, while implemented is aligned 
with the phrase mises en application. We can also see here 

E n g l i s h :  not 

F r e n c h  P r o b a b i l i t y  
p ~  .469 
ne .460 
non .024 
pa,  du tout .003 
faux .003 
plus .002 
ce .002 

que .002 

jamais .002 

F e r t i l i t y  P r o b a b i l i t y  

2 .758 
0 .133 
1 .106 

Figure 5 Probabilities for "not." 

En g l i sh :  hear 

F r e n c h  P r o b a b i l i t y  F e r t i l i t y  P r o b a b i l i t y  
bravo .992 0 .584 
entendre .005 1 .416 
entendu .002 
entends .001 

Figure 6 Probabilities for "hear." 

a deficiency of the model since intuitively we feel that will 
and be act in concert to produce seront while the model 
aligns will with seront but aligns be with nothing. 

In our second experiment, we used the statistical ap- 
proach to translate from French to English. To have a 
manageable task, we limited the English vocabulary to the 
1,000 most frequently used words in the English part of the 
Hansard corpus. We chose the French vocabulary to be the 
1,700 most frequently used French words in translations of 
sentences that were completely covered by the 1,000-word 
English vocabulary. We estimated the 17 million parame- 
ters of the translation model from 117,000 pairs of sen- 
tences that were completely covered by both our French 
and English vocabularies. We estimated the parameters of 
the bigram language model from 570,000 sentences from 
the English part of the Hansard data. These sentences 
contain about 12 million words altogether and are not 
restricted to sentences completely covered by our vocabu- 
lary. 

We used our search procedure to decode 73 new French 
sentences from elsewhere in the Hansard data. We as- 
signed each of the resulting sentences a category according 
to the following criteria. If the decoded sentence was 
exactly the same as the actual Hansard translation, we 
assigned the sentence to the exact category. If it conveyed 
the same meaning as the Hansard translation but in slightly 
different words, we assigned it to the alternate category. If 
the decoded sentence was a legitimate translation of the 
French sentence but did not convey the same meaning as 
the Hansard translation, we assigned it to the different 
category. If it made sense as an English sentence but could 
not be interpreted as a translation of the French sentence, 
we assigned it to the wrong category. Finally, if the decoded 
sentence was grammatically deficient, we assigned it to the 
ungrammatical category. An example from each category 
is shown in Figure 7, and our decoding results are summa- 
rized in Figure 8. 

Only 5% of the sentences fell into the exact category. 
However, we feel that a decoded sentence that is in any of 
the first three categories (exact, alternate, or different) 
represents a reasonable translation. By this criterion, the 
system performed successfully 48% of the time. 

As an alternate measure of the system's performance, 
one of us corrected each of the sentences in the last three 
categories (different, wrong, and ungrammatical) to either 
the exact or the alternate category. Counting one stroke for 
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Exact 

Hansard: 
Decoded as: 

Alternate 

Hansard: 
Decoded as: 

Different 

Hansard: 
Decoded as: 

Wrong 

Hansard: 
Decoded as: 

Ungrammatical 

Hansard: 
Decoded as: 

Ces ammendements sont certainement n~cessaires. 
These amendments are certainly necessary. 
These amendments are certainly necessary. 

C'est pourtant tr~s simple. 
Yet it is very simple. 
It is still very simple. 

J'al re~u cette demande en effet. 
Such a request was made. 
I have received this request in effect. 

Permettez que je donne un example ~, la Chambre. 
Let me give the House one example. 
Let me give an example in the House. 

Vous avez besoin de toute l'~de disponible. 
You need all the help you can get. 
You need of the whole benefits available. 

Figure 7 Translation Examples. 

each letter that  must be deleted and one stroke for each 
letter that  must be inserted, 776 strokes were needed to 
repair all of the decoded sentences. This compares with the 
1,916 strokes required to generate all of  the Hansard 
translations from scratch. Thus, to the extent that  transla- 
tion time can be equated with key strokes, the system 
reduces the work by about 60%. 

7 PLANS 

There are many ways in which the simple models described 
in this paper can be improved. We expect some improve- 
ment from estimating the parameters on more data. For the 
experiments described above, we estimated the parameters 
of the models from only a small fraction of  the data we have 

Category Number of sentences Percent 

Exact 4 5 
Alternate 18 25 
Different 13 18 
Wrong 11 15 
Ungramatical 27 37 

Total 73 

Figure 8 Translation Results. 

available: for the translation model, we used only about one 
percent of our data, and for the language model, only about 
ten percent. 

We Mve serious problems in sentences in which the 
translation of certain source words depends on the transla- 
tion of other source words. For example, the translation 
model produces aller from to go by producing aller from go 
and nothing from to. Intuitively we feel that  to go functions 
as a unit to produce aller. While our model allows many 
target words to come from the same source word, it does not 
allow several source words to work together to produce a 
single target word. In the future, we hope to address the 
problem of identifying groups of words in the source lan- 
guage that function as a unit in translation. This may take 
the form of a probabilistic division of  the source sentence 
into groups of words. 

At  present, we assume in our translation model that 
words, are placed into the target sentence independently of  
one another. Clearly, a more realistic assumption must 
accoun~: for the fact that  words form phrases in the target 
sentence that  are translations of phrases in the source 
sentence and that the target words in these phrases will 
tend to stay together even if the phrase itself is moved 
around. We are working on a model in which the positions 
of  the: target words produced by a particular source word 
depend on the identity of  the source word and on the 
positions of the target words produced by the previous 
source ,word. 

We are preparing a tr igram language model that we 
hope will substantially improve the performance of the 
system. A useful information-theoretic measure of the 
complexity of a language with respect to a model is the 
perplexity as defined by Bahl et al. (1983). With the 
bigrana model that we are currently using, the source text 
for our 1,000-word translation task has a perplexity of 
about 78. With the tr igram model that  we are preparing, 
the perplexity of the source text is about 9. In addition to 
showing the strength of a tr igram model relative to a 
bigram model, this also indicates that  the 1,000-word task 
is very simple. 

We: treat words as unanalyzed wholes, recognizing no 
connection, for example, between va, vais, and vont, or 
between tall, taller, and tallest.  As a result, we cannot 
improve our statistical characterization of  va, say, by obser- 
vation of sentences involving vont. We are working on 
morplhologies for French and English so that  we can profit 
from sl;atistical regularities that our current word-based 
approach must overlook. 

Finally, we treat the sentence as a structureless sequence 
of words. Sharman et al. discuss a method for deriving a 
probabilistic phrase structure g rammar  automatically from 
a sample of  parsed sentences (1988). We hope to apply 
their method to construct grammars  for both French and 
English and to base future translation models on the gram- 
matical constructs thus defined. 
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