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Programming Beam Search Algorithm for
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In this article, we describe an efficient beam search algorithm for statistical machine translation
based on dynamic programming (DP). The search algorithm uses the translation model presented
in Brown et al. (1993). Starting from a DP-based solution to the traveling-salesman problem,
we present a novel technique to restrict the possible word reorderings between source and target
language in order to achieve an efficient search algorithm. Word reordering restrictions especially
useful for the translation direction German to English are presented. The restrictions are gener-
alized, and a set of four parameters to control the word reordering is introduced, which then can
easily be adopted to new translation directions. The beam search procedure has been successfully
tested on the Verbmobil task (German to English, 8,000-word vocabulary) and on the Canadian
Hansards task (French to English, 100,000-word vocabulary). For the medium-sized Verbmobil
task, a sentence can be translated in a few seconds, only a small number of search errors occur,
and there is no performance degradation as measured by the word error criterion used in this
article.

1. Introduction

This article is about a search procedure for statistical machine translation (MT). The
task of the search procedure is to find the most likely translation given a source sen-
tence and a set of model parameters. Here, we will use a trigram language model and
the translation model presented in Brown et al. (1993). Since the number of possible
translations of a given source sentence is enormous, we must find the best output
without actually generating the set of all possible translations; instead we would like
to focus on the most likely translation hypotheses during the search process. For this
purpose, we present a data-driven beam search algorithm similar to the one used in
speech recognition search algorithms (Ney et al. 1992). The major difference between
the search problem in speech recognition and statistical MT is that MT must take into
account the different word order for the source and the target language, which does
not enter into speech recognition. Tillmann, Vogel, Ney, and Zubiaga (1997) proposes
a dynamic programming (DP)–based search algorithm for statistical MT that mono-
tonically translates the input sentence from left to right. The word order difference is
dealt with using a suitable preprocessing step. Although the resulting search proce-
dure is very fast, the preprocessing is language specific and requires a lot of manual
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work. Currently, most search algorithms for statistical MT proposed in the literature
are based on the A∗ concept (Nilsson 1971). Here, the word reordering can be easily
included in the search procedure, since the input sentence positions can be processed
in any order. The work presented in Berger et al. (1996) that is based on the A∗ concept,
however, introduces word reordering restrictions in order to reduce the overall search
space.

The search procedure presented in this article is based on a DP algorithm to solve
the traveling-salesman problem (TSP). A data-driven beam search approach is pre-
sented on the basis of this DP-based algorithm. The cities in the TSP correspond to
source positions of the input sentence. By imposing constraints on the possible word
reorderings similar to that described in Berger et al. (1996), the DP-based approach
becomes more effective: when the constraints are applied, the number of word re-
orderings is greatly reduced. The original reordering constraint in Berger et al. (1996)
is shown to be a special case of a more general restriction scheme in which the word
reordering constraints are expressed in terms of simple combinatorical restrictions on
the processed sets of source sentence positions.1 A set of four parameters is given to
control the word reordering. Additionally, a set of four states is introduced to deal
with grammatical reordering restrictions (e.g., for the translation direction German to
English, the word order difference between the two languages is mainly due to the
German verb group. In combination with the reordering restrictions, a data-driven
beam search organization for the search procedure is proposed. A beam search prun-
ing technique is conceived that jointly processes partial hypotheses according to two
criteria: (1) The partial hypotheses cover the same set of source sentence positions,
and (2) the partial hypotheses cover sets C of source sentence positions of equal car-
dinality. A partial hypothesis is said to cover a set of source sentence positions when
exactly the positions in the set have already been processed in the search process. To
verify the effectiveness of the proposed techniques, we report and analyze results for
two translation tasks: the German to English Verbmobil task and French to English
Canadian Hansards task.

The article is structured as follows. Section 2 gives a short introduction to the trans-
lation model used and reports on other approaches to the search problem in statistical
MT. In Section 3, a DP-based search approach is presented, along with appropriate
pruning techniques that yield an efficient beam search algorithm. Section 4 reports
and analyzes translation results for the different translation directions. In Section 5,
we conclude with a discussion of the achieved results.

2. Previous Work

2.1 IBM Translation Approach
In this article, we use the translation model presented in Brown et al. (1993), and the
mathematical notation we use here is taken from that paper as well: a source string
f J
1 = f1 · · · fj · · · fJ is to be translated into a target string eI

1 = e1 · · · ei · · · eI. Here, I is the
length of the target string, and J is the length of the source string. Among all possible
target strings, we will choose the string with the highest probability as given by Bayes’

1 The word reordering restriction used in the search procedure described in Berger et al. (1996) is not
mentioned in Brown et al. (1993), although exactly the translation model described there is used.
Equivalently, we use exactly the translation model described in Brown et al. (1993) but try different
reordering restrictions for the DP-based search procedure.
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Figure 1
Architecture of the statistical translation approach based on Bayes’ decision rule.

decision rule:

êI
1 = arg max

eI
1

{Pr(eI
1 | f J

1)}

= arg max
eI

1

{Pr(eI
1) · Pr(f J

1 | eI
1)} (1)

Pr(eI
1) is the language model of the target language, whereas Pr(f J

1 | eI
1) is the string

translation model. The language model probability is computed using a trigram lan-
guage model. The string translation probability Pr(f J

1 | eI
1) is modeled using a series of

five models of increasing complexity in training. Here, the model used for the trans-
lation experiments is the IBM-4 model. This model uses the same parameter set as
the IBM-5 model, which in preliminary experiments did not yield better translation
results. The actual implementation used during the experiments is described in Al-
Onaizan et al. (1999) and in Och and Ney (2000). The argmax operation denotes the
search problem (i.e., the generation of the output sentence in the target language). The
overall architecture of the statistical translation approach is summarized in Figure 1.
In general, as shown in this figure, there may be additional transformations to make
the translation task simpler for the algorithm. The transformations may range from
simple word categorization to more complex preprocessing steps that require some
parsing of the source string. In this article, however, we will use only word catego-
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rization as an explicit transformation step. In the search procedure both the language
and the translation model are applied after the text transformation steps. The following
“types” of parameters are used for the IBM-4 translation model:

Lexicon probabilities: We use the lexicon probability p(f | e) for translating the
single target word e as the single source word f . A source word f may
be translated by the “null” word e0 (i.e., it does not produce any target
word e). A translation probability p(f | e0) is trained along with the regular
translation probabilities.

Fertilities: A single target word e may be aligned to n = 0, 1 or more source words.
This is explicitly modeled by the fertility parameter φ(n | e): the probability
that the target word e is translated by n source words is φ(n | e). The
fertility for the “null” word is treated specially (for details see Brown et al.
[1993]). Berger et al. (1996) describes the extension of a partial hypothesis
by a pair of target words (e′, e), where e′ is not connected to any source
word f . In this case, the so-called spontaneous target word e′ is accounted
for with the fertility. Here, the translation probability φ(0 | e′) and no-
translation probability p(f | e′).

Class-based distortion probabilities: When covering a source sentence position
j, we use distortion probabilities that depend on the previously covered
source sentence positions (we say that a source sentence position j is cov-
ered for a partial hypothesis when it is taken account of in the translation
process by generating a target word or the “null” word e0 ). In Brown et
al. (1993), two types of distortion probabilities are distinguished: (1) the
leftmost word of a set of source words f aligned to the same target word
e (which is called the “head”) is placed, and (2) the remaining source
words are placed. Two separate distributions are used for these two cases.
For placing the “head” the center function center(i) (Brown et al. [1993]
uses the notation �i) is used: the average position of the source words
with which the target word ei−1 is aligned. The distortion probabilities
are class-based: They depend on the word class F(f ) of a covered source
word f as well as on the word class E(e) of the previously generated target
word e. The classes are automatically trained (Brown et al. 1992).

When the IBM-4 model parameters are used during search, an input sentence can be
processed one source position at a time in a certain order primarily determined by the
distortion probabilities. We will use the following simplified set of translation model
parameters: lexicon probabilities p(f | e) and distortion probabilities p(j | j′, J). Here, j
is the currently covered input sentence position and j′ is the previously covered input
sentence position. The input sentence length J is included, since we would like to think
of the distortion probability as normalized according to J. No fertility probabilities or
“null” word probabilities are used; thus each source word f is translated as exactly one
target word e and each target word e is translated as exactly one source word f . The
simplified notation will help us to focus on the most relevant details of the DP-based
search procedure. The simplified set of parameters leads to an unrealistic assumption
about the length of the source and target sentence, namely, I = J. During the translation
experiments we will, of course, not make this assumption. The implementation details
for using the full set of IBM-4 model parameters are given in Section 3.9.2.
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2.2 Search Algorithms for Statistical Machine Translation
In this section, we give a short overview of search procedures used in statistical MT:
Brown et al. (1990) and Brown et al. (1993) describe a statistical MT system that is based
on the same statistical principles as those used in most speech recognition systems
(Jelinek 1976). Berger et al. (1994) describes the French-to-English Candide translation
system, which uses the translation model proposed in Brown et al. (1993). A detailed
description of the decoder used in that system is given in Berger et al. (1996) but has
never been published in a paper: Throughout the search process, partial hypotheses
are maintained in a set of priority queues. There is a single priority queue for each
subset of covered positions in the source string. In practice, the priority queues are
initialized only on demand; far fewer than the full number of queues possible are actu-
ally used. The priority queues are limited in size, and only the 1,000 hypotheses with
the highest probability are maintained. Each priority queue is assigned a threshold
to select the hypotheses that are going to be extended, and the process of assigning
these thresholds is rather complicated. A restriction on the possible word reorderings,
which is described in Section 3.6, is applied.

Wang and Waibel (1997) presents a search algorithm for the IBM-2 translation
model based on the A∗ concept and multiple stacks. An extension of this algorithm
is demonstrated in Wang and Waibel (1998). Here, a reshuffling step on top of the
original decoder is used to handle more complex translation models (e.g., the IBM-3
model is added). Translation approaches that use the IBM-2 model parameters but are
based on DP are presented in Garcı́a-Varea, Casacuberta, and Ney (1998) and Niessen
et al. (1998). An approach based on the hidden Markov model alignments as used
in speech recognition is presented in Tillmann, Vogel, Ney, and Zubiaga (1997) and
Tillmann, Vogel, Ney, Zubiaga, and Sawaf (1997). This approach assumes that source
and target language have the same word order, and word order differences are dealt
with in a preprocessing stage. The work by Wu (1996) also uses the original IBM model
parameters and obtains an efficient search algorithm by restricting the possible word
reorderings using the so-called stochastic bracketing transduction grammar.

Three different decoders for the IBM-4 translation model are compared in Germann
et al. (2001). The first is a reimplementation of the stack-based decoder described in
Berger et al. (1996). The second is a greedy decoder that starts with an approximate
solution and then iteratively improves this first rough solution. The third converts
the decoding problem into an integer program (IP), and a standard software package
for solving IP is used. Although the last approach is guaranteed to find the optimal
solution, it is tested only for input sentences of length eight or shorter.

This article will present a DP-based beam search decoder for the IBM-4 translation
model. The decoder is designed to carry out an almost full search with a small number
of search errors and with little performance degradation as measured by the word error
criterion. A preliminary version of the work presented here was published in Tillmann
and Ney (2000).

3. Beam Search in Statistical Machine Translation

3.1 Inverted Alignment Concept
To explicitly describe the word order difference between source and target language,
Brown et al. (1993) introduced an alignment concept, in which a source position j is
mapped to exactly one target position i:

regular alignment: j → i = aj
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Figure 2
Regular alignment example for the translation direction German to English. For each German
source word there is exactly one English target word on the alignment path.

An example for this kind of alignment is given in Figure 2, in which each German
source position j is mapped to an English target position i. In Brown et al. (1993), this
alignment concept is used for model IBM-1 through model IBM-5. For search purposes,
we use the inverted alignment concept as introduced in Niessen et al. (1998) and Ney
et al. (2000). An inverted alignment is defined as follows:

inverted alignment: i → j = bi

Here, a target position i is mapped to a source position j. The coverage constraint for
an inverted alignment is not expressed by the notation: Each source position j should
be “hit” exactly once by the path of the inverted alignment bI

1 = b1 · · · bi · · · bI. The
advantage of the inverted alignment concept is that we can construct target sentence
hypotheses from bottom to top along the positions of the target sentence. Using the
inverted alignments in the maximum approximation, we rewrite equation (1) to obtain
the following search criterion, in which we are looking for the most likely target
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Figure 3
Illustration of the transitions in the regular and in the inverted alignment model. The regular
alignment model (left figure) is used to generate the sentence from left to right; the inverted
alignment model (right figure) is used to generate the sentence from bottom to top.

sentence eI
1 of length I = J for an observed source sentence f J

1 of length J:

max
I

{
p(J | I) · max

eI
1

{p(eI
1) · p(f J

1 | eI
1)}

}
(2)

∼= max
I

{
p(J | I) · max

eI
1

{
I∏

i=1

p(ei | ei−1, ei−2) · max
bI

1

I∏
i=1

[p(bi | bi−1, J) · p(fbi | ei)]

}}

= max
I

{
p(J | I) · max

eI
1,bI

1

{
I∏

i=1

[p(ei | ei−1, ei−2) · p(bi | bi−1, J) · p(fbi | ei)]

}}

The following notation is used: ei−1, ei−2 are the immediate predecessor target words,
ei is the word to be hypothesized, p(ei | ei−1, ei−2) denotes the trigram language model
probability, p(fbi | ei) denotes the lexicon probability for translating the target word ei

as source word fbi , and p(bi | bi−1, J) is the distortion probability for covering source
position bi after source position bi−1. Note that in equation (2) two products over i are
merged into a single product over i. The translation probability p(f J

1 | eI
1) is computed in

the maximum approximation using the distortion and the lexicon probabilities. Finally,
p(J | I) is the sentence length model, which will be dropped in the following (it is not
used in the IBM-4 translation model). For each source sentence f J

1 to be translated, we
are searching for the unknown mapping that optimizes equation (2):

i → (bi, ei)

In Section 3.3, we will introduce an auxiliary quantity that can be evaluated recursively
using DP to find this unknown mapping. We will explicitly take care of the coverage
constraint by introducing a coverage set C of source sentence positions that have
already been processed. Figure 3 illustrates the concept of the search algorithm using
inverted alignments: Partial hypotheses are constructed from bottom to top along the
positions of the target sentence. Partial hypotheses of length i−1 are extended to obtain
partial hypotheses of the length i. Extending a partial hypothesis means covering a
source sentence position j that has not yet been covered. For a given grid point in the
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Table 1
DP-based algorithm for solving traveling-salesman problems due to Held and Karp. The
outermost loop is over the cardinality of subsets of already visited cities.

input: cities j = 1, . . . , J with distance matrix djj ′

initialization: D({k}, k) := d1k
for each path length c = 2, . . . , J do

for each pair (C, j), where C ⊆ {2, . . . , J} and j ∈ C and |C| = c do
D(C, j) = min

j′∈C\{j}
{djj ′ + D(C\{j}, j′)}

traceback:
• find shortest tour: D∗ = min

k∈{2,...,J}
[D({2, . . . , J}, k) + dk1]

• recover optimal sequence of cities

translation lattice, the unknown target word sequence can be obtained by tracing back
the translation decisions to the partial hypothesis at stage i = 1. The grid points are
defined in Section 3.3. In the left part of the figure the regular alignment concept is
shown for comparison purposes.

3.2 Held and Karp Algorithm for Traveling-Salesman Problem
Held and Karp (1962) presents a DP approach to solve the TSP, an optimization prob-
lem that is defined as follows: Given are a set of cities {1, . . . , J} and for each pair
of cities j, j′ the cost djj ′ > 0 for traveling from city j to city j′. We are looking for
the shortest tour, starting and ending in city 1, that visits all cities in the set of cities
exactly once. We are using the notation C for the set of cities, since it corresponds to
a coverage set of processed source positions in MT. A straightforward way to find
the shortest tour is by trying all possible permutations of the J cities. The resulting
algorithm has a complexity of O(J!). DP can be used, however, to find the shortest tour
in O(J2 · 2J), which is a much smaller complexity for larger values of J. The approach
recursively evaluates the quantity D(C, j):

D(C, j) := costs of the partial tour starting in city 1, ending

in city j, and visiting all cities in C

Subsets of cities C of increasing cardinality c are processed. The algorithm, shown in
Table 1, works because not all permutations of cities have to be considered explicitly.
During the computation, for a pair (C, j), the order in which the cities in C have been
visited can be ignored (except j); only the costs for the best path reaching j has to be
stored. For the initialization the costs for starting from city 1 are set: D({k}, k) = d1k for
each k ∈ {2, . . . , |C|}. Then, subsets C of increasing cardinality are processed. Finally,
the cost for the optimal tour is obtained in the second-to-last line of the algorithm.
The optimal tour itself can be found using a back-pointer array in which the optimal
decision for each grid point (C, j) is stored.

Figure 4 illustrates the use of the algorithm by showing the “supergraph” that is
searched in the Held and Karp algorithm for a TSP with J = 5 cities. When traversing
the lattice from left to right following the different possibilities, a partial path to a node
j corresponds to the subset C of all cities on that path together with the last visited
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Figure 4
Illustration of the algorithm by Held and Karp for a traveling salesman problem with J = 5
cities. Not all permutations of cities have to be evaluated explicitly. For a given subset of cities
the order in which the cities have been visited can be ignored.

city j. Of all the different paths merging into the node j, only the partial path with the
smallest cost has to be retained for further computation.

3.3 DP-Based Algorithm for Statistical Machine Translation
In this section, the Held and Karp algorithm is applied to statistical MT. Using the
concept of inverted alignments as introduced in Section 3.1, we explicitly take care of
the coverage constraint by introducing a coverage set C of source sentence positions
that have already been processed. Here, the correspondence is according to the fact that
each source sentence position has to be covered exactly once, fulfilling the coverage
constraint. The cities of the more complex translation TSP correspond roughly to triples
(e′, e, j), the notation for which is given below. The final path output by the translation
algorithm will contain exactly one triple (e′, e, j) for each source position j.

The algorithm processes subsets of partial hypotheses with coverage sets C of
increasing cardinality c. For a trigram language model, the partial hypotheses are of
the form (e′, e, C, j), where e′, e are the last two target words, C is a coverage set for
the already covered source positions, and j is the last covered position. The target
word sequence that ends in e′, e is stored as a back pointer to the predecessor partial
hypothesis (and recursively to its predecessor hypotheses) and is not shown in the
notation. Each distance in the TSP now corresponds to the negative logarithm of the
product of the translation, distortion, and language model probabilities. The following
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Table 2
DP-based algorithm for statistical MT that consecutively processes subsets C of source
sentence positions of increasing cardinality.

input: source language string f1 · · · fj · · · fJ
initialization
for each cardinality c = 1, 2, . . . , J do

for each pair (C, j), where C ⊆ {1, . . . , J} and j ∈ C and |C| = c do
for each pair of target words e′, e ∈ E

Qe′(e, C, j) = p(fj | e) max
e′′

j′∈C\{j}

{p(j | j′, J) · p(e | e′, e′′) · Qe′′(e′, C\{j}, j′)}

traceback:
• find best end hypothesis: max

e,e′ ,j
{p($ | e, e′) · Qe′(e, {1, . . . , J}, j)}

• recover optimal word sequence

auxiliary quantity is defined:

Qe′(e, C, j) := probability of the best partial hypothesis (ei
1, bi

1), where

C = {bk | k = 1, . . . , i}, bi = j, ei = e, and ei−1 = e′

The above auxiliary quantity satisfies the following recursive DP equation:

Qe′(e, C, j) = p(fj | e) · max
e′′

j′∈C\{j}

{
p(j | j′, J) · p(e | e′, e′′) · Qe′′(e′, C\{j}, j

′
)
}

Here, j′ is the previously covered source sentence position and e′, e′′ are the predecessor
words. The DP equation is evaluated recursively for each hypothesis (e′, e, C, j). The
resulting algorithm is depicted in Table 2. Some details concerning the initialization
and the finding of the best target language string are presented in Section 3.4. p($ | e, e′)
is the trigram language probability for predicting the sentence boundary symbol $. The
complexity of the algorithm is O(E3 · J2 · 2J), where E is the size of the target language
vocabulary.

3.4 Verb Group Reordering: German to English
The above search space is still too large to translate even a medium-length input
sentence. On the other hand, only very restricted reorderings are necessary; for ex-
ample, for the translation direction German to English, the word order difference is
mostly restricted to the German verb group. The approach presented here assumes a
mostly monotonic traversal of the source sentence positions from left to right.2 A small
number of positions may be processed sooner than they would be in that monotonic
traversal. Each source position then generates a certain number of target words. The
restrictions are fully formalized in Section 3.5.

A typical situation is shown in Figure 5. When translating the sentence monotoni-
cally from left to right, the translation of the German finite verb kann, which is the left
verbal brace in this case, is skipped until the German noun phrase mein Kollege, which
is the subject of the sentence, is translated. Then, the right verbal brace is translated:

2 Also, this assumption is necessary for the beam search pruning techniques to work efficiently.
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Figure 5
Word reordering for the translation direction German to English: The reordering is restricted
to the German verb group.

The infinitive besuchen and the negation particle nicht. The following restrictions are
used: One position in the source sentence may be skipped for a distance of up to L = 4
source positions, and up to two source positions may be moved for a distance of at
most R = 10 source positions (the notation L and R shows the relation to the handling
of the left and right verbal brace). To formalize the approach, we introduce four verb
group states S:

• Initial : A contiguous initial block of source positions is covered.

• Skip: One word may be skipped, leaving a “hole” in the monotonic
traversal.

• Move: Up to two words may be “moved” from later in the sentence.

• Cover : The sentence is traversed monotonically until the state Initial is
reached.
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Initial

Skip

Move Cover

11. vierten

5. Kollege

4. mein

1. In

3. Fall

2. diesem 12. Mai

6. kann

13. .

8. besuchen

7. nicht

10. am

9. Sie

Figure 6
Order in which the German source positions are covered for the German-to-English reordering
example given in Figure 5.

The states Move and Skip both allow a set of upcoming words to be processed sooner
than would be the case in the monotonic traversal. The state Initial is entered whenever
there are no uncovered positions to the left of the rightmost covered position. The
sequence of states needed to carry out the word reordering example in Figure 5 is
given in Figure 6. The 13 source sentence words are processed in the order shown.
A formal specification of the state transitions is given in Section 3.5. Any number of
consecutive German verb phrases in a sentence can be processed by the algorithm. The
finite-state control presented here is obtained from a simple analysis of the German-
to-English word reordering problem and is not estimated from the training data. It
can be viewed as an extension of the IBM-4 model distortion probabilities.

Using the above states, we define partial hypothesis extensions of the following
type:

(S ′, C\{j}, j′) → (S, C, j)

Not only the coverage set C and the positions j, j′, but also the verb group states S,S ′,
are taken into account. For the sake of brevity, we have omitted the target language
words e, e′ in the notation of the partial hypothesis extension. For each extension an
uncovered position is added to the coverage set C of the partial hypothesis, and the
verb group state S may change. A more detailed description of the partial hypoth-
esis extension for a certain state S is given in the next section in a more general
context. Covering the first uncovered position in the source sentence, we use the lan-
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guage model probability p(e | $, $). Here, $ is the sentence boundary symbol, which
is thought to be at position 0 in the target sentence. The search starts in the hypoth-
esis (Initial , {∅}, 0). {∅} denotes the empty set, where no source sentence position is
covered. The following recursive equation is evaluated:

Qe′(e,S, C, j) (3)

= p(fj | e) max
e′′ ,S′ ,j′

(S′ ,C\{j},j′)→(S,C,j)
j′∈C\{j}

{p(j | j′, J) · p(e | e′, e′′) · Qe′′(e′,S ′, C\{j}, j′)}

The search ends in the hypotheses (Initial , {1, . . . , J}, j); the last covered position may
be in the range j ∈ {J−L, . . . , J}, because some source positions may have been skipped
at the end of the input sentence. {1, . . . , J} denotes a coverage set including all positions
from position 1 to position J. The final translation probability QF is

QF = max
e,e′

j∈{J−L,...,J}

p($ | e, e′) · Qe′(e, Initial , {1, . . . , J}, j) (4)

where p($ | e, e′) denotes the trigram language model, which predicts the sentence
boundary $ at the end of the target sentence. QF can be obtained using an algorithm
very similar to the one given in Table 2. The complexity of the verb group reordering
for the translation direction German to English is O(E3 · J · (R2 · L · R)), as shown in
Tillmann (2001).

3.5 Word Reordering: Generalization
For the translation direction English to German, the word reordering can be restricted
in a similar way as for the translation direction German to English. Again, the word
order difference between the two languages is mainly due to the German verb group.
During the translation process, the English verb group is decomposed as shown in
Figure 7. When the sentence is translated monotonically from left to right, the trans-
lation of the English finite verb can is moved, and it is translated as the German left
verbal brace before the English noun phrase my colleague, which is the subject of the
sentence. The translations of the infinitive visit and of the negation particle not are
skipped until later in the translation process. For this translation direction, the trans-
lation of one source sentence position may be moved for a distance of up to L = 4
source positions, and the translation of up to two source positions may be skipped
for a distance of up to R = 10 source positions (we take over the L and R notation
from the previous section). Thus, the role of the skipping and the moving are simply
reversed with respect to their roles in German-to-English translation. For the example
translation in Figure 7, the order in which the source sentence positions are covered
is given in Figure 8.

We generalize the two approaches for the different translation directions as fol-
lows: In both approaches, we assume that the source sentence is mainly processed
monotonically. A small number of upcoming source sentence positions may be pro-
cessed earlier than they would be in the monotonic traversal: The states Skip and Move
are used as explained in the preceding section. The positions to be processed outside
the monotonic traversal are restricted as follows:

• The number of positions dealt with in the states Move and Skip is
restricted.

• There are distance restrictions on the source positions processed in those
states.
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Figure 7
Word reordering for the translation direction English to German: The reordering is restricted
to the English verb group.

These restrictions will be fully formalized later in this section. In the state Move, some
source sentence positions are “moved” from later in the sentence to earlier. After source
sentence positions are moved, they are marked, and the translation of the sentence is
continued monotonically, keeping track of the positions already covered. To formalize
the approach, we introduce four reordering states S:

• Initial : A contiguous initial block of source positions is covered.

• Skip: A restricted number of source positions may be skipped, leaving
“holes” in the monotonic traversal.

• Move: A restricted number of words may be “moved” from later in the
sentence.

• Cover : The sentence is traversed monotonically until the state Initial is
reached.

To formalize the approach, the following notation is introduced:

rmax(C) = max
c∈C

c
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InitialSkip

Cover

Move

1. In

13. not

2. this

3. case

6. colleague

14. visit

15. . 4. can

5. my

7. you

8. on

9. the

10. fourth

11. of

12. May

Figure 8
Order in which the English source positions are covered for the English-to-German reordering
example given in Figure 7.

lmin(C) = min
c/∈C

c

u(C) = card({c | c /∈ C and c < rmax(C)})
m(C) = card({c | c ∈ C and c > lmin(C)})
w(C) = rmax(C) − lmin(C)

rmax(C) is the rightmost covered and lmin(C) is the leftmost uncovered source position.
u(C) is the number of “skipped” positions, and m(C) is the number of “moved” po-
sitions. The function card(·) returns the cardinality of a set of source positions. The
function w(C) describes the “window” size in which the word reordering takes place.
A procedural description for the computation of the set of successor hypotheses for
a given partial hypothesis (S, C, j) is given in Table 3. There are restrictions on the
possible successor states: A partial hypothesis in state Skip cannot be expanded into
a partial hypothesis in state Move and vice versa. If the coverage set for the newly
generated hypothesis covers a contiguous initial block of source positions, the state
Initial is entered. No other state S is considered as a successor state in this case (hence
the use of the continue statement in the procedural description). The set of successor
hypotheses Succ by which to extend the partial hypothesis (S, C, j) is computed using
the constraints defined by the values for numskip, widthskip, nummove, and widthmove ,
as explained in the Appendix. In particular, a source position k is discarded for ex-
tension if the “window” restrictions are violated. Within the restrictions all possible
successors are computed. It can be observed that the set of successors, as computed
in Table 3, is never empty.
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Table 3
Procedural description to compute the set Succ of successor hypotheses by which to extend a
partial hypothesis (S, C, j).

input: partial hypothesis (S, C, j)
Succ := {∅}
for each k /∈ C do

Set C′ = C ∪ {k}
if u(C′) = 0

Succ := Succ ∪ (Initial, C′, k)
continue

if (S = Initial) or (S = Skip)
if w(C′) ≤ widthskip and u(C′) ≤ numskip

Succ := Succ ∪ (Skip, C′, k)
if (S = Initial) or (S = Move)

if k �= lmin(C′) and w(C′) ≤ widthmove and m(C′) ≤ nummove
Succ := Succ ∪ (Move, C′, k)

if (S = Move) or (S = Cover)
if (lmin(C′) = k)

Succ := Succ ∪ (Cover, C′, k)
output: set Succ of successor hypotheses

There is an asymmetry between the two reordering states Move and Skip: While in
state Move, the algorithm is not allowed to cover the position lmin(C). It must first enter
the state Cover to do so. In contrast, for the state Skip, the newly generated hypothesis
always remains in the state Skip (until the state Initial is entered.) This is motivated
by the word reordering for the German verb group. After the right verbal brace has
been processed, no source words may be moved into the verbal brace from later in
the sentence. There is a redundancy in the reorderings: The same reordering might be
carried out using either the state Skip or Move, especially if widthskip and widthmove
are about the same. The additional computational burden is alleviated somewhat by
the fact that the pruning, as introduced in Section 3.8, does not distinguish hypotheses
according to the states. A complexity analysis for different reordering constraints is
given in Tillmann (2001).

3.6 Word Reordering: IBM-Style Restrictions
We now compare the new word reordering approach with the approach used in Berger
et al. (1996). In the approach presented in this article, source sentence words are aligned
with hypothesized target sentence words.3 When a source sentence word is aligned, we
say its position is covered. During the search process, a partial hypothesis is extended
by choosing an uncovered source sentence position, and this choice is restricted. Only
one of the first n uncovered positions in a coverage set may be chosen, where n is
set to 4. This choice is illustrated in Figure 9. In the figure, covered positions are
marked by a filled circle, and uncovered positions are marked by an unfilled circle.
Positions that may be covered next are marked by an unfilled square. The restrictions
for a coverage set C can be expressed in terms of the expression u(C) defined in the
previous section: The number of uncovered source sentence positions to the left of
the rightmost covered position. Demanding u(C) ≤ 3, we obtain the S3 restriction

3 In Berger et al. (1996), a morphological analysis is carried out and word morphemes are processed
during the search. Here, we process only full-form words.
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uncovered position for extension

covered position

uncovered position

J1 j

Figure 9
Illustration of the IBM-style reordering constraint.

introduced in the Appendix. An upper bound of O(E3 · J4) for the word reordering
complexity is given in Tillmann (2001).

3.7 Empirical Complexity Calculations
In order to demonstrate the complexity of the proposed reordering constraints, we
have modified our translation algorithm to show, for the different reordering con-
straints, the overall number of successor states generated by the algorithm given in
Table 3. The number of successors shown in Figure 10 is counted for a pseudotransla-
tion task in which a pseudo–source word x is translated into the identically pseudo–
target word x. No actual optimization is carried out; the total number of successors
is simply counted as the algorithm proceeds through subsets of increasing cardinality.
The complexity differences for the different reordering constraints result from the dif-
ferent number of coverage subsets C and corresponding reordering states S allowed.
For the different reordering constraints we obtain the following results (the abbrevia-
tions MON, GE, EG, and S3 are taken from the Appendix):

• MON: For this reordering restriction, a partial hypothesis is always
extended by the position lmin(C), hence the number of processed arcs is J.

• GE, EG: These two reordering constraints are very similar in terms of
complexity: The number of word reorderings is heavily restricted in
each. Actually, since the distance restrictions (expressed by the variables
widthskip and widthmove) apply, the complexity is linear in the length of
the input sentence J.

• S3: The S3 reordering constraint has a complexity close to J4. Since no
distance restrictions for the skipped positions apply, the overall search
space is significantly larger than for the GE or EG restriction.
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Figure 10
Number of processed arcs for the pseudotranslation task as a function of the input sentence
length J (y-axis is given in log scale). The complexity for the four different reordering
constraints MON, GE, EG, and S3 is given. The complexity of the S3 constraint is close to J4.

3.8 Beam Search Pruning Techniques
To speed up the search, a beam search strategy is used. There is a direct analogy to
the data-driven search organization used in continuous-speech recognition (Ney et al.
1992). The full DP search algorithm proceeds cardinality-synchronously over subsets
of source sentence positions of increasing cardinality. Using the beam search concept,
the search can be focused on the most likely hypotheses. The hypotheses Qe′(e, C, j)
are distinguished according to the coverage set C, with two kinds of pruning based
on this coverage set:

1. The coverage pruning is carried out separately for each coverage set C.

2. The cardinality pruning is carried out jointly for all coverage sets C with
the same cardinality c = c(C).

After the pruning is carried out, we retain for further consideration only hypothe-
ses with a probability close to the maximum probability. The number of surviving
hypotheses is controlled by four kinds of thresholds:

• the coverage pruning threshold tC

• the coverage histogram threshold nC

• the cardinality pruning threshold tc

• the cardinality histogram threshold nc

For the coverage and the cardinality pruning, the probability Qe′(e, C, j) is adjusted to
take into account the uncovered source sentence positions C̄ = {1, . . . , J}\C. To make
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this adjustment, for a source word f at an uncovered source position, we precompute
an upper bound p̄(f ) for the product of language model and lexicon probability:

p̄(f ) = max
e′′,e′,e

{p(e | e′, e′′) · p(f | e)}

The above optimization is carried out only over the word trigrams (e, e′, e′′) that have
actually been seen in the training data. Additionally, the observation pruning described
below is applied to the possible translations e of a source word f . The upper bound
is used in the beam search concept to increase the comparability between hypotheses
covering different coverage sets. Even more benefit from the upper bound p̄(f ) can be
expected if the distortion and the fertility probabilities are taken into account (Tillmann
2001). Using the definition of p̄(f ), the following modified probability Q̄e′(e, C, j) is used
to replace the original probability Qe′(e, C, j), and all pruning is applied to the new
probability:

Q̄e′(e, C, j) = Qe′(e, C, j) ·
∏
j∈C̄

p̄(fj)

For the translation experiments, equation (3) is recursively evaluated over subsets of
source positions of equal cardinality. For reasons of brevity, we omit the state descrip-
tion S in equation (3), since no separate pruning according to the states S is carried out.
The set of surviving hypotheses for each cardinality c is referred to as the beam. The
size of the beam for cardinality c depends on the ambiguity of the translation task for
that cardinality. To fully exploit the speedup of the DP beam search, the search space
is dynamically constructed as described in Tillmann, Vogel, Ney, Zubiaga, and Sawaf
(1997), rather than using a static search space. To carry out the pruning, the maximum
probabilities with respect to each coverage set C and cardinality c are computed:

• Coverage pruning: Hypotheses are distinguished according to the subset
of covered positions C. The probability Q̂(C) is defined:

Q̂(C) = max
e,e′,j

Q̄e′(e, C, j)

• Cardinality pruning: Hypotheses are distinguished according to the
cardinality c(C) of subsets C of covered positions. The probability Q̂(c) is
defined for all hypotheses with c(C) = c:

Q̂(c) = max
C

c(C)=c

Q̂(C)

The coverage pruning threshold tC and the cardinality pruning threshold tc are used
to prune active hypotheses. We call this pruning translation pruning. Hypotheses are
pruned according to their translation probability:

Q̄e′(e, C, j) < tC · Q̂(C)

Q̄e′(e, C, j) < tc · Q̂(c)

For the translation experiments presented in Section 4, the negative logarithms of the
actual pruning thresholds tc and tC are reported. A hypothesis (e′, e, C, j) is discarded if
its probability is below the corresponding threshold. For the current experiments, the
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coverage and the cardinality threshold are constant for different coverage sets C and
cardinalities c. Together with the translation pruning, histogram pruning is carried
out: The overall number N(C) of active hypotheses for the coverage set C and the
overall number N(c) of active hypotheses for all subsets of a given cardinality may
not exceed a given number; again, different numbers are used for coverage and cardi-
nality pruning. The coverage histogram pruning is denoted by nC , and the cardinality
histogram pruning is denoted by nc:

N(C) > nC

N(c) > nc

If the numbers of active hypotheses for each coverage set C and cardinality c, N(C)
and N(c), exceed the above thresholds, only the partial hypotheses with the highest
translation probabilities are retained (e.g., we may use nC = 1,000 for the coverage
histogram pruning).

The third type of pruning conducted observation pruning: The number of words
that may be produced by a source word f is limited. For each source language word
f the list of its possible translations e is sorted according to

p(f | e) · puni(e)

where puni(e) is the unigram probability of the target language word e. Only the best no

target words e are hypothesized during the search process (e.g., during the experiments
to hypothesize, the best no = 50 words was sufficient.

3.9 Beam Search Implementation
In this section, we describe the implementation of the beam search algorithm presented
in the previous sections and show how it is applied to the full set of IBM-4 model
parameters.

3.9.1 Baseline DP Implementation. The implementation described here is similar to
that used in beam search speech recognition systems, as presented in Ney et al. (1992).
The similarities are given mainly in the following:

• The implementation is data driven. Both its time and memory
requirements are strictly linear in the number of path hypotheses
(disregarding the sorting steps explained in this section).

• The search procedure is developed to work most efficiently when the
input sentences are processed mainly monotonically from left to right.
The algorithm works cardinality-synchronously, meaning that all the
hypotheses that are processed cover subsets of source sentence positions
of equal cardinality c.

• Since full search is prohibitive, we use a beam search concept, as in
speech recognition. We use appropriate pruning techniques in connection
with our cardinality-synchronous search procedure.

Table 4 shows a two-list implementation of the search algorithm given in Table 2 in
which the beam pruning is included. The two lists are referred to as S and Snew: S
is the list of hypotheses that are currently expanded, and Snew is the list of newly
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Table 4
Two-list implementation of a DP-based search algorithm for statistical MT.

input: source string f1 · · · fj · · · fJ
initial hypothesis lists: S = {($, $, {∅}, 0)}
for each cardinality c = 1, 2, . . . , J do

Snew = {∅}
for each hypothesis (e′, e, C, j′) ∈ S, where j′ ∈ C and |C| = c do

Expand (e′, e, C, j′) using probabilities p(fj | e) · p(j | j′, J) · p(e | e′, e′′)
Look up and add or update expanded hypothesis in Snew

Sort hypotheses in Snew according to translation score
Carry out cardinality pruning
Sort hypotheses in Snew according to coverage set C and translation score
Carry out coverage pruning
Bookkeeping of surviving hypotheses in Snew
S := Snew

output: get best target word sequence eI
1 from bookkeeping array

generated hypotheses. The search procedure processes subsets of covered source sen-
tence positions of increasing cardinality. The search starts with S = {($, $, {∅}, 0)},
where $ denotes the sentence start symbol for the immediate two predecessor words
and {∅} denotes the empty coverage set, in which no source position is covered yet.
For the initial search state, the position last covered is set to 0. A set S of active
hypotheses is expanded for each cardinality c using lexicon model, language model,
and distortion model probabilities. The newly generated hypotheses are added to the
hypothesis set Snew; for hypotheses that are not distinguished according to our DP
approach, only the best partial hypothesis is retained for further consideration. This
so-called recombination is implemented as a set of simple lookup and update opera-
tions on the set Snew of partial hypotheses. During the partial hypothesis extensions,
an anticipated pruning is carried out: Hypotheses are discarded before they are con-
sidered for recombination and are never added to Snew. (The anticipated pruning is not
shown in Table 4. It is based on the pruning thresholds described in Section 3.8.) After
the extension of all partial hypotheses in S, a pruning step is carried out for the hy-
potheses in the newly generated set Snew. The pruning is based on two simple sorting
steps on the list of partial hypotheses Snew. (Instead of sorting the partial hypothe-
ses, we might have used hashing.) First, the partial hypotheses are sorted according
to their translation scores (within the implementation, all probabilities are converted
into translation scores by taking the negative logarithm − log()). Cardinality prun-
ing can then be carried out simply by running down the list of hypotheses, starting
with the maximum-probability hypothesis, and applying the cardinality thresholds.
Then, the partial hypotheses are sorted a second time according to their coverage set
C and their translation score. After this sorting step, all partial hypotheses that cover
the same subset of source sentence positions are located in consecutive fragments in
the overall list of partial hypotheses. Coverage pruning is carried out in a single run
over the list of partial hypotheses: For each fragment corresponding to the same cov-
erage set C, the coverage pruning threshold is applied. The partial hypotheses that
survive the two pruning stages are then written into the so-called bookkeeping array
(Ney et al. 1992). For the next expansion step, the set S is set to the newly generated
list of hypotheses. Finally, the target translation is constructed from the bookkeeping
array.
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3.9.2 Details for IBM-4 Model. In this section, we outline how the DP-based beam
search approach can be carried out using the full set of IBM-4 parameters. (More
details can be found in Tillmann [2001] or in the cited papers.) First, the full set of
IBM-4 parameters does not make the simplifying assumption given in Section 3.1,
namely, that source and target sentences are of equal length: Either a target word e
may be aligned with several source words (its fertility is greater than one) or a single
source word may produce zero, one, or two target words, as described in Berger et
al. (1996), or both. Zero target words are generated if f is aligned to the “null” word
e0. Generating a single target word e is the regular case. Two target words (e′, e′′)
may be generated. The costs for generating the target word e′ are given by its fertility
φ(0 | e′) and the language model probability; no lexicon probability is used. During the
experiments, we restrict ourselves to triples of target words (e, e′, e′′) actually seen in the
training data. This approach is used for the French-to-English translation experiments
presented in this article.

Another approach for mapping a single source language word to several target
language words involves preprocessing by the word-joining algorithm given in Till-
mann (2001), which is similar to the approach presented in Och, Tillmann, and Ney
(1999). Target words are joined during a training phase, and several joined target lan-
guage words are dealt with as a new lexicon entry. This approach is used for the
German-to-English translation experiments presented in this article.

In order to deal with the IBM-4 fertility parameters within the DP-based concept,
we adopt the distinction between open and closed hypotheses given in Berger et al.
(1996). A hypothesis is said to be open if it is to be aligned with more source positions
than it currently is (i.e., at least two). Otherwise it is called closed. The difference
between open and closed is used to process the input sentence one position a time
(for details see Tillmann 2001). The word reordering restrictions and the beam search
pruning techniques are directly carried over to the full set of IBM-4 parameters, since
they are based on restrictions on the coverage vectors C only.

To ensure its correctness, the implementation was tested by carrying out forced
alignments on 500 German-to-English training sentence pairs. In a forced alignment,
the source sentence f J

1 and the target sentence eI
1 are kept fixed, and a full search with-

out re-ordering restrictions is carried out only over the unknown alignment aJ
1. The

language model probability is divided out, and the resulting probability is compared to
the Viterbi probability as obtained by the training procedure. For 499 training sentences
the Viterbi alignment probability as obtained by the forced-alignment search was ex-
actly the same as the one produced by the training procedure. In one case the forced-
alignment search did obtain a better Viterbi probability than the training procedure.

4. Experimental Results

Translation experiments are carried out for the translation directions German to En-
glish and English to German (Verbmobil task) and for the translation directions French
to English and English to French (Canadian Hansards task). Section 4.1 reports on the
performance measures used. Section 4.2 shows translation results for the Verbmobil
task. Sections 4.2.1 and 4.2.2 describe that task and the preprocessing steps applied.
In Sections 4.2.3 through 4.2.5, the efficiency of the beam search pruning techniques is
shown for German-to-English translation, as the most detailed experiments are con-
ducted for that direction. Section 4.2.6 gives translation results for the translation direc-
tion English to German. In Section 4.3, translation results for the Canadian Hansards
task are reported.
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4.1 Performance Measures for Translation Experiments
To measure the performance of the translation methods, we use three types of au-
tomatic and easy-to-use measures of the translation errors. Additionally, a subjective
evaluation involving human judges is carried out (Niessen et al. 2000). The following
evaluation criteria are employed:

• WER (word error rate): The WER is computed as the minimum number of
substitution, insertion, and deletion operations that have to be
performed to convert the generated string into the reference target string.
This performance criterion is widely used in speech recognition. The
minimum is computed using a DP algorithm and is typically referred to
as edit or Levenshtein distance.

• mWER (multireference WER): We use the Levenshtein distance between
the automatic translation and several reference translations as a measure
of the translation errors. For example, on the Verbmobil TEST-331 test
set, an average of six reference translations per automatic translation are
available. The Levenshtein distance between the automatic translation
and each of the reference translations is computed, and the minimum
Levenshtein distance is taken. The resulting measure, the mWER, is
more robust than the WER, which takes into account only a single
reference translation.

• PER (position-independent word error rate): In the case in which only a
single reference translation per sentence is available, we introduce as an
additional measure the position-independent word error rate (PER). This
measure compares the words in the two sentences without taking the
word order into account. Words in the reference translation that have no
counterpart in the translated sentence are counted as substitution errors.
Depending on whether the translated sentence is longer or shorter than
the reference translation, the remaining words result in either insertion
(if the translated sentence is longer) or deletion (if the translated
sentence is shorter) errors. The PER is guaranteed to be less than or
equal to the WER. The PER is more robust than the WER since it ignores
translation errors due to different word order in the translated and
reference sentences.

• SSER (subjective sentence error rate): For a more fine-grained evaluation of
the translation results and to check the validity of the automatic
evaluation measures subjective judgments by test persons are carried out
(Niessen et al. 2000). The following scale for the error count per sentence
is used in these subjective evaluations:

0.0 : semantically correct and syntactically correct
· · · : · · ·
0.5 : semantically correct and syntactically wrong
· · · : · · ·
1.0 : semantically wrong (independent of syntax)

Each translated sentence is judged by a human examiner according to
the above error scale; several human judges may be involved in judging
the same translated sentence. Subjective evaluation is carried out only
for the Verbmobil TEST-147 test set.
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Table 5
Training and test conditions for the German-to-English Verbmobil corpus (*number of words
without punctuation).

German English

Training: Sentences 58,073
Words 519,523 549,921
Words* 418,979 453,632

Vocabulary: Size 7,911 4,648
Singletons 3,453 1,699

TEST-331: Sentences 331
Words 5,591 6,279
Bigram/Trigram Perplexity 84.0/68.2 49.3/38.3

TEST-147: Sentences 147
Words 1,968 2,173
Bigram/Trigram Perplexity — 34.6/28.1

4.2 Verbmobil Translation Experiments
4.2.1 The Task and the Corpus. The translation system is tested on the Verbmobil task
(Wahlster 2000). In that task, the goal is the translation of spontaneous speech in face-
to-face situations for an appointment scheduling domain. We carry out experiments for
both translation directions: German to English and English to German. Although the
Verbmobil task is still a limited-domain task, it is rather difficult in terms of vocabulary
size, namely, about 5,000 words or more for each of the two languages; second, the
syntactic structures of the sentences are rather unrestricted. Although the ultimate goal
of the Verbmobil project is the translation of spoken language, the input used for the
translation experiments reported on in this article is mainly the (more or less) correct
orthographic transcription of the spoken sentences. Thus, the effects of spontaneous
speech are present in the corpus; the effect of speech recognition errors, however, is
not covered. The corpus consists of 58,073 training pairs; its characteristics are given in
Table 5. For the translation experiments, a trigram language model with a perplexity of
28.1 is used. The following two test corpora are used for the translation experiments:

TEST-331: This test set consists of 331 test sentences. Only automatic evaluation is
carried out on this test corpus: The WER and the mWER are computed. For
each test sentence in the source language there is a range of acceptable
reference translations (six on average) provided by a human translator,
who is asked to produce word-to-word translations wherever it is possi-
ble. Part of the reference sentences are obtained by correcting automatic
translations of the test sentences that are produced using the approach pre-
sented in this article with different reordering constraints. The other part
is produced from the source sentences without looking at any of their
translations. The TEST-331 test set is used as held-out data for parameter
optimization (for the language mode scaling factor and for the distortion
model scaling factor). Furthermore, the beam search experiments in which
the effect of the different pruning thresholds is demonstrated are carried
out on the TEST-331 test set.

TEST-147: The second, separate test set consists of 147 test sentences. Translation
results are given in terms of mWER and SSER. No parameter optimization
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is carried out on the TEST-147 test set; the parameter values as obtained
from the experiments on the TEST-331 test set are used.

4.2.2 Preprocessing Steps. To improve the translation performance the following
preprocessing steps are carried out:

Categorization: We use some categorization, which consists of replacing a single
word by a category. The only words that are replaced by a category label
are proper nouns denoting German cities. Using the new labeled corpus,
all probability models are trained anew. To produce translations in the
“normal” language, the categories are translated by rule and are inserted
into the target sentence.

Word joining: Target language words are joined using a method similar to the one
described in Och, Tillmann, and Ney (1999). Words are joined to handle
cases like the German compound noun “Zahnarzttermin” for the English
“dentist’s appointment,” because a single word has to be mapped to two
or more target words. The word joining is applied only to the target lan-
guage words; the source language sentences remain unchanged. During
the search process several joined target language words may be generated
by a single source language word.

Manual lexicon: To account for unseen words in the test sentences and to obtain a
greater number of focused translation probabilities p(f | e), we use a bilin-
gual German-English dictionary. For each word e in the target vocabulary,
we create a list of source translations f according to this dictionary. The
translation probability pdic(f | e) for the dictionary entry (f , e) is defined as

pdic(f | e) =




1
Ne

if (f , e) is in dictionary

0 otherwise

where Ne is the number of source words listed as translations of the tar-
get word e. The dictionary probability pdic(f | e) is linearly combined
with the automatically trained translation probabilities paut(f | e) to ob-
tain smoothed probabilities p(f | e):

p(f | e) = (1 − λ) · pdic(f | e) + λ · paut(f | e)

For the translation experiments, the value of the interpolation parameter
is fixed at λ = 0.5.

4.2.3 Effect of the Scaling Factors. In speech recognition, in which Bayes’ decision rule
is applied, a language model scaling factor αLM is used; a typical value is αLM ≈ 15.
This scaling factor is employed because the language model probabilities are more
reliably estimated than the acoustic probabilities. Following this use of a language
model scaling factor in speech recognition, such a factor is introduced into statistical
MT, too. The optimization criterion in equation (1) is modified as follows:

êI
1 = arg max

eI
1

{p(eI
1)

αLM · p(f J
1 | eI

1)}

where p(eI
1) is the language model probability of the target language sentence. In the

experiments presented here, a trigram language model is used to compute p(eI
1). The
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Table 6
Computing time, mWER, and SSER for three different reordering constraints on the TEST-147
test set. During the translation experiments, reordered words are not allowed to cross
punctuation marks.

Reordering CPU time mWER SSER
constraint [sec] [%] [%]

MON 0.2 40.6 28.6
GE 5.2 33.3 21.0
S3 13.7 34.4 19.9

effect of the language model scaling factor αLM is studied on the TEST-331 test set. A
minimum mWER is obtained for αLM = 0.8, as reported in Tillmann (2001). Unlike in
speech recognition, the translation model probabilities seem to be estimated as reliably
as the language model probabilities in statistical MT.

A second scaling factor αD is introduced for the distortion model probabilities
p(j | j′, J). A minimum mWER is obtained for αD = 0.4, as reported in Tillmann
(2001). The WER and mWER on the TEST-331 test set increase significantly, if no
distortion probability is used, for the case αD = 0.0. The benefit of a distortion prob-
ability scaling factor of αD = 0.4 comes from the fact that otherwise, a low distor-
tion probability might suppress long-distant word reordering that is important for
German-to-English verb group reordering. The setting αLM = 0.8 and αD = 0.4 is used
for all subsequent translation results (including the translation direction English to
German).

4.2.4 Effect of the Word Reordering Constraints. Table 6 shows the computing time,
mWER, and SSER on the TEST-147 test set as a function of three reordering constraints:
MON, GE, and S3 (as discussed in the Appendix). The computing time is given in
terms of central processing unit (CPU) time per sentence (on a 450 MHz Pentium
III personal computer). For the SSER, it turns out that restricting the word reorder-
ing such that it may not cross punctuation marks improves translation performance
significantly. The average length of the sentence fragments that are separated by punc-
tuation marks is rather small: 4.5 words per fragment. A coverage pruning threshold
of tC = 5.0 and an observation pruning of no = 50 are applied during the experiments.4

No other type of pruning is used.5

The MON constraint performs worst in terms of both mWER and SSER. The
computing time is small, since no reordering is carried out. Constraints GE and S3
perform nearly identically in terms of both mWER and SSER. The GE constraint,
however, works about three times as fast as the S3 constraint.

Table 7 shows example translations obtained under the three different reordering
constraints. Again, the MON reordering constraint performs worst. In the second and
third translation examples, the S3 word reordering constraint performs worse than the
GE reordering constraint, since it cannot take the word reordering due to the German
verb group properly into account. The German finite verbs bin (second example) and
könnten (third example) are too far away from the personal pronouns ich and Sie (six

4 For the translation experiments, the negative logarithm of the actual pruning thresholds tc and tC is
reported; for simplicity reasons we do not change the notation.

5 In a speech-to-speech demo system, we would use the GE reordering restriction and a slightly sharper
pruning in order to achieve translation times of about one second per sentence.
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Table 7
Example translations for the translation direction German to English using three different
reordering constraints: MON, GE, and S3.

Input: Ja, wunderbar. Können wir machen.
MON: Yes, wonderful. Can we do.
GE: Yes, wonderful. We can do that.
S3: Yes, wonderful. We can do that.

Input: Das ist zu knapp , weil ich ab dem dritten in Kaiserslautern bin.
Genaugenommen nur am dritten.
Wie wäre es denn am ähm Samstag, dem zehnten Februar?

MON: That is too tight , because I from the third in Kaiserslautern.
In fact only on the third. How about ähm Saturday , the tenth
of February?

GE: That is too tight, because I am from the third in Kaiserslautern.
In fact only on the third. Ähm how about Saturday, February
the tenth?

S3: That is too tight, from the third because I will be in
Kaiserslautern. In fact only on the third. Ähm how
about Saturday, February the tenth?

Input: Wenn Sie dann noch den siebzehnten könnten, wäre das toll, ja.
MON: If you then also the seventeenth could, would be the great, yes.
GE: If you could then also the seventeenth, that would be great, yes.
S3: Then if you could even take seventeenth, that would be great, yes.

Input: Ja, das kommt mir sehr gelegen. Machen wir es dann
am besten so.

MON: Yes, that suits me perfectly. Do we should best like that.
GE: Yes, that suits me fine. We do it like that then best.
S3: Yes, that suits me fine. We should best do it like that.

and five source sentence positions, respectively) to be reordered properly. In the last
example, the less restrictive S3 reordering constraint leads to a better translation; the
GE translation is still acceptable, though.

4.2.5 Effect of the Beam Search Pruning Thresholds. In this section, the effect of the
beam search pruning is demonstrated. Translation results on the TEST-331 test set are
presented to evaluate the effectiveness of the pruning techniques.6 The quality of the
search algorithm with respect to the GE and S3 reordering constraints is evaluated
using two criteria:

1. The number of search errors for a certain combination of pruning
thresholds is counted. A search error occurs for a test sentence if the
final translation probability QF for a candidate translation eI

1 as given in
equation (4) is smaller than a reference probability for that test sentence.
We will compute reference probabilities two ways, as explained below.

2. The mWER performance measure is computed as a function of the
pruning thresholds used. Generally, decreasing the pruning threshold

6 The CPU times on the TEST-331 set are higher, since the average fragment length is greater than for the
TEST-147 set.
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Table 8
Effect of the coverage pruning threshold tC on the number of search errors and mWER on the
TEST-331 test set (no cardinality pruning carried out: tc = ∞). A cardinality histogram pruning
of 200,000 is applied to restrict the maximum overall size of the search space. The negative
logarithm of tC is reported.

Reordering tC CPU time Search errors mWER
constraint [sec] Qref > QF QF∗ > QF [%]

GE 0.01 0.21 318 323 73.5
0.1 0.43 231 301 53.1
1.0 1.43 10 226 30.3
2.5 4.75 5 142 25.8
5.0 29.6 — 35 24.6
7.5 156 — 2 24.9

10.0 630 — — 24.9
12.5 1300 — — 24.9

S3 0.01 5.48 314 324 70.0
0.1 9.21 225 303 50.9
1.0 46.2 4 223 31.6
2.5 190 — 129 28.4
5.0 830 — — 28.3

leads to a higher word error rate, since the optimal path through the
translation lattice is missed, resulting in translation errors.

Two automatically generated reference probabilities are used. These probabilities are
computed separately for the reordering constraints GE and S3 (the difference is not
shown in the notation, but will be clear from the context):

Qref: A forced alignment is carried out between each of the test sentences and
its corresponding reference translation; only a single reference translation
for each test sentence is used. The probability obtained for the reference
translation is denoted by Qref.

QF∗ : A translation is carried out with conservatively large pruning thresholds,
yielding a translation close to the one with the maximum translation prob-
ability. The translation probability for that translation is denoted by QF∗ .

First, in a series of experiments we study the effect of the coverage and cardinality
pruning for the reordering constraints GE and S3. (When we report on the different
pruning thresholds, we will show the negative logarithm of those pruning thresholds.)
The experiments are carried out on two different pruning “dimensions”:

1. In Table 8, only coverage pruning using threshold tC is carried out; no
cardinality pruning is applied: tc = ∞.

2. In Table 9, only cardinality pruning using threshold tc is carried out; no
coverage pruning is applied: tC = ∞.

Both tables use an observation pruning of no = 50. The effect of the coverage prun-
ing threshold tC is demonstrated in Table 8. For the translation experiments reported
in this table, the cardinality pruning threshold is set to tc = ∞; thus, no compari-
son between partial hypotheses that do not cover the same set C of source sentence
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Table 9
Effect of the cardinality pruning threshold tc on the number of search errors and mWER on
the TEST-331 test set (no coverage pruning is carried out: tC = ∞). A coverage histogram
pruning of 1,000 is applied to restrict the overall size of the search space. The negative
logarithm of tc is shown.

Reordering tc CPU time Search errors mWER
constraint [sec] Qref > QF QF∗ > QF [%]

GE 1.0 0.03 45 287 48.5
2.0 0.06 20 277 41.9
3.0 0.13 16 266 37.7
4.0 0.30 6 239 34.1
5.0 0.55 2 212 30.5
7.5 3.2 — 106 26.6

10.0 14.2 — 32 25.1
12.5 42.2 — 5 24.9
15.0 93.9 — — 24.9
17.5 176.7 — — 24.9

S3 1.0 0.02 10 331 51.4
2.0 0.05 1 283 46.2
3.0 0.10 1 274 43.3
4.0 0.22 — 251 40.2
5.0 0.50 — 227 37.5
7.5 4.3 — 171 32.9

10.0 26.8 — 99 30.8
12.5 123.3 — 49 28.9
15.0 430 — — 28.2

positions is carried out. To restrict the overall size of the search space in terms of
CPU time and memory requirements, a cardinality pruning of nc = 200,000 is ap-
plied. As can be seen from Table 8, mWER and the number of search errors decrease
significantly as the coverage pruning threshold tC increases. For the GE reordering
constraint, mWER decreases from 73.5% to 24.9%. For a coverage pruning threshold
tC ≥ 5.0, mWER remains nearly constant at 25.0%, although search errors still occur.
For the S3 reordering constraint, mWER decreases from 70.0% to 28.3%. The largest
coverage threshold tested for the S3 constraint is tC = 5.0, since for larger threshold
values tC , the search procedure cannot be carried out because of memory and time
restrictions. The number of search errors is reduced as the coverage pruning thresh-
old is increased. It turns out to be difficult to verify search errors by looking at the
reference translation probabilities Qref alone. The translation with the maximum trans-
lation probability seems to be quite narrowly defined. The coverage pruning is more
effective for the GE constraint than for the S3 constraint, since the overall search space
for the GE reordering is smaller.

Table 9 shows the effect of the cardinality pruning threshold tc on mWER when
no coverage pruning is carried out (a histogram coverage pruning of 1,000 is applied
to restrict the overall size of the search space). The cardinality threshold tc has a
strong effect on mWER, which decreases significantly as the cardinality threshold tc

increases. For the GE reordering constraint, mWER decreases from 48.5% to 24.9%; for
the S3 reordering constraint, mWER decreases from 51.4% to 28.2%. For the coverage
threshold t = 15.0, the GE constraint works about four times as fast as the S3 constraint,
since the overall search space for the S3 constraint is much larger. Although the overall
search space is much larger for the S3 constraint, for smaller values of the coverage
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Table 10
Effect of observation pruning on the number of search errors and mWER on the TEST-331 test
set (parameter setting: tc = ∞, tC = 10.0 ). No histogram pruning is applied. The results are
reported for the GE constraint.

Observation CPU time Search errors mWER
pruning no [sec] Qref > QF QF∗ > QF [%]

1 2.0 13 284 29.3
2 5.9 6 239 26.9
3 10.8 2 196 25.7
5 23.6 2 140 25.3

10 62.9 — 99 24.8
25 238 — 44 24.5
50 630 — — 24.9

threshold tC ≤ 5.0, the S3 constraint works as fast as the GE constraint or even faster,
because only a very small portion of the overall search space is searched for small
values of the cardinality pruning threshold tc. There is some computational overhead
in expanding a partial hypothesis for the GE constraint because the finite-state control
has to be handled. No results are obtained for the S3 constraint and the coverage
threshold tc = 17.5 because of memory restrictions. The number of search errors is
reduced as the cardinality pruning threshold is increased. Again, it is difficult to verify
search errors by looking at the reference translation probabilities alone.

Both coverage and cardinality pruning are more efficient for the GE reordering
constraint than for the S3 reordering constraint. For the S3 constraint, no translation
results are obtained for a coverage threshold tc > 5.0 without cardinality pruning
applied because of memory and computing time restrictions. For the GE constraint
virtually a full search can be carried out where only observation pruning is applied:
Identical target translations and translation probabilities are produced for the hypoth-
esis files for the two cases (1) tC = 10.0, tc = ∞, and (2) tC = ∞, tc = 15.0. (Actually,
for one test sentence in the TEST-331 test set, the translations are different, although
the translation probabilities are exactly the same.) Since the pruning is carried out
independently on two different pruning dimensions, no search errors will occur if the
thresholds are further increased.

Table 10 shows the effect of the observation pruning parameter no on mWER for
the reordering constraint GE. mWER is significantly reduced by hypothesizing up to
the best 50 target words e for a source language word f . mWER increases from 24.9%
to 29.3% when the number of hypothesized words is decreased to only a single word.

Table 11 demonstrates the effect of the combination of the coverage pruning thresh-
old tC = 5.0 and the cardinality pruning threshold tc = 12.5, where the actual values
are found in informal experiments: In a typical setting of the two parameters tc should
be at least twice as big as tC . For the GE reordering constraint, the average computing
time is about seven seconds per sentence without any loss in translation performance
as measured in terms of mWER. For the S3 reordering constraint, the average comput-
ing time per sentence is 27 seconds. Again, the combination of coverage and cardinality
pruning works more efficiently for the GE constraint. The memory requirement for
the algorithm is about 100 MB.

4.2.6 English-to-German Translation Experiments. A series of translation experiments
for the translation direction English to German are also carried out. The results, given
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Table 11
Demonstration of the combination of the two pruning thresholds tC = 5.0 and tc = 12.5 to
speed up the search process for the two reordering constraints GE and S3 (no = 50). The
translation performance is shown in terms of mWER on the TEST-331 test set.

Reordering tC tc CPU time Search errors mWER
constraint [sec] Qref > QF QF∗ > QF [%]

GE 5.0 12.5 6.9 0 38 24.7
S3 5.0 12.5 26.9 0 65 29.2

Table 12
Translation results for the translation direction English to German on the TEST-331 test set.
The results are given in terms of computing time, WER, and PER for three different reordering
constraints: MON, EG, and S3.

Reordering CPU time WER PER
constraint [sec] [%] [%]

MON 0.5 70.6 57.0
EG 10.1 70.1 55.9
S3 53.2 70.1 55.8

in terms of WER and PER, are shown in Table 12. For the English-to-German translation
direction, a single reference translation for each test sentence is used to carry out
the automatic evaluation. The translation task for the translation direction English
to German is more difficult than for the translation direction German to English; the
trigram language model perplexity increases from 38.3 to 68.2 on the TEST-331 test set,
as can be seen in Table 5. No parameter optimization is carried out for this translation
direction; the parameter settings are carried over from the results obtained in Table 11.

The word error rates for the translation direction English to German are signif-
icantly higher than those for the translation direction German to English. There are
several reasons for this: German vocabulary and perplexity are significantly larger
than those for English, and only a single reference translation per test sentence is
available for English-to-German translation. There is only a very small difference in
terms of word error rates for the reordering constraints EG and S3; in particular, WER
is 70.1% for both. The reordering constraint MON performs slightly worse: WER in-
creases to 70.6%, and PER increases to 57.0%. Table 13 shows translation examples
for the translation direction English to German. The MON constraint performs worst;
there is no significant difference in quality of translations produced under the EG and
the S3 constraints.

4.3 Canadian Hansards Translation Experiments
4.3.1 The Task and the Corpus. The second corpus on which we perform translation
experiments is the Hansard corpus. By law, the proceedings of the Canadian parlia-
ment are recorded in both French and English. (For historical reasons, these proceed-
ings are called “Hansards.”) The remarks of the parliament members are written down
in whichever of the two languages they use. They are then translated into the other
language to produce complete sets of the proceedings, one in French and the other
in English. The resulting bilingual data have been sentence-aligned using statistical
methods (Brown et al. 1990). Originally, about three million sentences were selected.
Here, we use a subset of the original training data; the details regarding this subset
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Table 13
Example translations for the translation direction English to German using three different
reordering constraints: MON, EG, and S3.

Input: Yeah , that wouldn’t be bad. Do you have any ideas where
I could stay?

MON: Ja, das wäre schade. Haben Sie irgendwelche Ideen wo ich
könnten übernachten?

EG: Ja, das wäre nicht schlecht. Haben Sie irgendwelche Ideen wo
wir wohnen könnten?

S3: Ja, das wäre nicht schlecht. Haben Sie irgendwelche Ideen
wo wir wohnen könnten?

Input: Oh, that sounds great . Could you arrange a suite for me?
MON: Oh, das klingt gut. Könnten Sie unbedingt ein Suite bei mir?
EG: Oh, das klingt gut. Könnten Sie einen Suite ausmachen für mich?
S3: Oh, das klingt gut. Könnten Sie mir einen Suite ausmachen?

Input: Well, I still need your signature here and then I will check
with your company.

MON: Also, ich konnte Arbeitskraft Unterschrift hier und ich werde
nachsehen mit Ihrer Firma.

EG: Also, ich bräuchte noch Ihre Unterschrift und dann gucke ich hier
mit Ihrer Firma.

S3: Also, ich brauche hier noch Ihre Unterschrift und dann werde ich
veranlassen mit Ihrer Firma.

Table 14
Training and test conditions for the Hansards task (*number of words without punctuation).

French English

Train: Sentences 1,470,473
Words 24,338,195 22,163,092
Words* 22,175,069 20,063,378

Vocabulary: Size 100,269 78,332
Singletons 40,199 31,319

Test: Sentences 5,432
Words 97,646 80,559
Bigr./Tri. Perplexity 196.9/121.8 269.9/179.8

are given in Table 14. The Hansards corpus presents by far a more difficult task than
the Verbmobil corpus in terms of vocabulary size and number of training sentences.
The training and test sentences are less restrictive than for the Verbmobil task. For the
translation experiments on the Hansards corpus, no word joining is carried out. Two
target words can be produced by a single source word, as described in Section 3.9.2.

4.3.2 Translation Results. As can be seen in Table 15 for the translation direction
French to English and in Table 16 for the translation direction English to French, the
word error rates are rather high compared to those for the Verbmobil task. The reason
for the higher error rates is that, as noted in the previous section, the Hansards task
is by far less restrictive than the Verbmobil task, and the vocabulary size is much
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Table 15
Computing time, WER, and PER for the translation direction French to English using the two
reordering constraints MON and S3. An almost “full” search is carried out.

Reordering CPU time WER PER
constraint [sec] [%] [%]

MON 2.5 65.5 53.0
S3 580.0 64.9 51.4

Table 16
Computing time, WER, and PER for the translation direction English to French using the two
reordering constraints MON and S3. An almost “full” search is carried out.

Reordering CPU time WER PER
constraint [sec] [%] [%]

MON 2.2 66.6 56.3
S3 189.1 66.0 54.4

larger. There is only a slight difference in performance between the MON and the
S3 reordering constraints on the Hansards task. The computation time is also rather
high compared to the Verbmobil task: For the S3 constraint, the average translation
time is about 3 minutes per sentence for the translation direction English to French
and about 10 minutes per sentence for the translation direction French to English.
The following parameter setting is used for the experiment conducted here: tC = 5.0,
tc = 10.0, nC = 250, and to = 12. (The actual parameters are chosen in informal
experiments to obtain reasonable CPU times while permitting only a small number of
search errors.) No cardinality histogram pruning is carried out. As for the German-
to-English translation experiments, word reordering is restricted so that it may not
cross punctuation boundaries. The resulting fragment lengths are much larger for
the translation direction English to French, and still larger for the translation direction
French to English, when compared to the fragment lengths for the translation direction
German to English, hence the high CPU times. In an additional experiment for the
translation direction French to English and the reordering constraint S3, we find we can
speed up the translation time to about 18 seconds per sentence by using the following
parameter setting: tC = 3.0, tc = 7.5, nC = 20, nc = 400, and no = 5. For the resulting
hypotheses file, PER increases only slightly, from 51.4% to 51.6%.

Translation examples for the translation direction French to English under the S3
reordering constraint are given in Table 17. The French input sentences show some
preprocessing that is carried out beforehand to simplify the translation task (e.g., des
is transformed into de les and l’est is transformed into le est). The translations pro-
duced are rather approximative in some cases, although the general meaning is often
preserved.

5. Conclusions

We have presented a DP-based beam search algorithm for the IBM-4 translation model.
The approach is based on a DP solution to the TSP, and it gains efficiency by imposing
constraints on the allowed word reorderings between source and target language. A
data-driven search organization in conjunction with appropriate pruning techniques
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Table 17
Example translations for the translation direction French to English using the S3 reordering
constraint.

Input Je crois que cela donne une bonne idée de les principes à
retenir et de ce que devraient être nos responsabilités.

S3 I think it is a good idea of the principles and to what
should be our responsibility.

Input Je pense que, indépendamment de notre parti, nous trouvons
tous cela inacceptable.

S3 I think, regardless of our party, we find that unacceptable.

Input Je ai le intention de parler surtout aujourd’ hui de les nombreuses
améliorations apportées à les programmes de pensions de tous les
Canadiens.

S3 I have the intention of speaking today about the many improvements
in pensions for all Canadians especially those programs.

Input Chacun en lui - même est très complexe et le lien entre les deux le
est encore davantage de sorte que pour beaucoup la situation
présente est confuse.

S3 Each in itself is very complex and the relationship between the two is more
so much for the present situation is confused.

is proposed. For the medium-sized Verbmobil task, a sentence can be translated in a
few seconds on average, with a small number of search errors and no performance
degradation as measured by the word error criterion used.

Word reordering is parameterized using a set of four parameters, in such a way
that it can easily be adopted to new translation directions. A finite-state control is
added, and its usefulness is demonstrated for the translation direction German to
English, in which the word order difference between the two languages is mainly due
to the German verb group. Future work might aim at a tighter integration of the IBM-4
model distortion probabilities and the finite-state control; the finite-state control itself
may be learned from training data.

The applicability of the algorithm applied in the experiments in this article is
not restricted to the IBM translation models or to the simplified translation model
used in the description of the algorithm in Section 3. Since the efficiency of the beam
search approach is based on restrictions on the allowed coverage vectors C alone,
the approach may be used for different types of translation models as well (e.g., for
the multiword-based translation model proposed in Och, Tillmann, and Ney [1999]).
On the other hand, since the decoding problem for the IBM-4 translation model is
provably NP-complete, as shown in Knight (1999) and Germann et al. (2001), word
reordering restrictions as introduced in this article are essential for obtaining an effi-
cient search algorithm that guarantees that a solution close to the optimal one will be
found.

Appendix: Quantification of Reordering Restrictions

To quantify the reordering restrictions in Section 3.5, the four non-negative num-
bers numskip, widthskip, nummove, and widthmove are used (widthskip corresponds
to L, widthmove corresponds to R in Section 3.4; here, we use a more intuitive nota-
tion). Within the implementation of the DP search, the restrictions are provided to the
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algorithm as an input parameter of the following type:

S numskip widthskip M nummove widthmove

The meaning of the reordering string is as follows: The two numbers following S that
are separated by an underscore describe the way words may be skipped; the two
numbers following M that are separated by an underscore describe the way words
may be moved during word reordering. The first number after S and M denotes
the number of positions that may be skipped or moved, respectively (e.g., for the
translation direction German to English [GE in the chart below], one position may
be skipped and two positions may be moved). The second number after S and M
restricts the distance a word may be skipped or moved, respectively. These “width”
parameters restrict the word reordering to take place within a “window” of a certain
size, established by the distance between the positions lmin(C) and rmax(C) as defined
in Section 3.5. In the notation, either the substring headed by S or that headed by M
(or both) may be omitted altogether to indicate that the corresponding reordering is
not allowed. Any numerical value in the string may be set to INF, denoting that an
arbitrary number of positions may be skipped/moved or that the moving or skipping
distance may be arbitrarily large. The following reordering strings are used in this
article:

Word reordering Description
string

ε The empty string denotes the reordering restriction in which
(short: MON) no reordering is allowed.

S 01 04 M 02 10 This string describes the German-to-English word reordering.
(short: GE) Up to one word may be skipped for at most 4 positions,

and up to two words may be moved up to 10 positions.

S 02 10 M 01 04 This string describes the English-to-German word reordering.
(short: EG) Up to two words may be skipped for at most 10 positions

and up to one word may be moved for up to 4 positions.

S 03 INF This string describes the IBM-style word reordering
(short: S3) given in Section 3.6. Up to three words may be skipped for

an unrestricted number of positions. No words may be moved.

S INF INF or These strings denote the word re-ordering without
M INF INF restrictions.
(short: NO)

The word reordering strings can be directly used as input parameters to the DP-based
search procedure to test different reordering restrictions within a single implementa-
tion.
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