
Binarization of Synchronous
Context-Free Grammars

Liang Huang∗
USC/Information Science Institute

Hao Zhang∗∗
Google Inc.

Daniel Gildea†
University of Rochester

Kevin Knight‡
USC/Information Science Institute

Systems based on synchronous grammars and tree transducers promise to improve the quality
of statistical machine translation output, but are often very computationally intensive. The
complexity is exponential in the size of individual grammar rules due to arbitrary re-orderings
between the two languages. We develop a theory of binarization for synchronous context-free
grammars and present a linear-time algorithm for binarizing synchronous rules when possible.
In our large-scale experiments, we found that almost all rules are binarizable and the resulting
binarized rule set significantly improves the speed and accuracy of a state-of-the-art syntax-
based machine translation system. We also discuss the more general, and computationally more
difficult, problem of finding good parsing strategies for non-binarizable rules, and present an
approximate polynomial-time algorithm for this problem.

1. Introduction

Several recent syntax-based models for machine translation (Chiang 2005; Galley et al.
2004) can be seen as instances of the general framework of synchronous grammars
and tree transducers. In this framework, both alignment (synchronous parsing) and
decoding can be thought of as parsing problems, whose complexity is in general ex-
ponential in the number of nonterminals on the right-hand side of a grammar rule.
To alleviate this problem, we investigate bilingual binarization as a technique to fac-
tor each synchronous grammar rule into a series of binary rules. Although mono-
lingual context-free grammars (CFGs) can always be binarized, this is not the case

∗ Information Science Institute, 4676 Admiralty Way, Marina del Rey, CA 90292. E-mail: lhuang@isi.edu,
liang.huang.sh@gmail.com.

∗∗ 1600 Amphitheatre Parkway, Mountain View, CA 94303. E-mail: haozhang@google.com.
† Computer Science Dept., University of Rochester, Rochester NY 14627. E-mail: gildea@cs.rochester.edu.
‡ Information Science Institute, 4676 Admiralty Way, Marina del Rey, CA 90292. E-mail: knight@isi.edu.

Submission received: 14 March 2007; revised submission received: 8 January 2009; accepted for publication:
25 March 2009.

© 2009 Association for Computational Linguistics

Computational Linguistics Volume 35, Number 4

for all synchronous rules; we investigate algorithms for non-binarizable rules as well.
In particular:

r We develop a technique called synchronous binarization and devise a
linear-time binarization algorithm such that the resulting rule set allows
efficient algorithms for both synchronous parsing and decoding with
integrated n-gram language models.

r We examine the effect of this binarization method on end-to-end
translation quality on a large-scale Chinese-to-English syntax-based
system, compared to a more typical baseline method, and a state-of-the-art
phrase-based system.

r We examine the ratio of binarizability in large, empirically derived rule
sets, and show that the vast majority is binarizable. However, we also
provide, for the first time, real examples of non-binarizable cases verified
by native speakers.

r In the final, theoretical, sections of this article, we investigate the general
problem of finding the most efficient synchronous parsing or decoding
strategy for arbitrary synchronous context-free grammar (SCFG) rules,
including non-binarizable cases. Although this problem is believed to be
NP-complete, we prove two results that substantially reduce the search
space over strategies. We also present an optimal algorithm that runs
tractably in practice and a polynomial-time algorithm that is a good
approximation of the former.

Melamed (2003) discusses binarization of multi-text grammars on a theoretical
level, showing the importance and difficulty of binarization for efficient synchronous
parsing. One way around this difficulty is to stipulate that all rules must be binary
from the outset, as in Inversion Transduction Grammar (ITG) (Wu 1997) and the binary
SCFG employed by the Hiero system (Chiang 2005) to model the hierarchical phrases.
In contrast, the rule extraction method of Galley et al. (2004) aims to incorporate more
syntactic information by providing parse trees for the target language and extracting
tree transducer rules that apply to the parses. This approach results in rules with many
nonterminals, making good binarization techniques critical.

We explain how synchronous rule binarization interacts with n-gram language
models and affects decoding for machine translation in Section 2. We define binarization
formally in Section 3, and present an efficient algorithm for the problem in Section 4.
Experiments described in Section 51 show that binarization improves machine trans-
lation speed and quality. Some rules cannot be binarized, and we present a decoding
strategy for these rules in Section 6. Section 7 gives a solution to the general theo-
retical problem of finding optimal decoding and synchronous parsing strategies for
arbitrary SCFGs, and presents complexity results on the nonbinarizable rules from our
Chinese–English data. These final two sections are of primarily theoretical interest, as
nonbinarizable rules have not been shown to benefit real-world machine translation sys-
tems. However, the algorithms presented may become relevant as machine translation
systems improve.

1 A preliminary version of Section 1–5 appeared in Zhang et al. (2006).

560

Huang et al. Binarization of Synchronous Context-Free Grammars

2. Motivation

Consider the following Chinese sentence and its English translation:

(1) ���
Bàowēier
Powell

�
yǔ
with

��
Shālóng
Sharon

>L
jǔxı́ng
hold

�
le
[past.]

��
huı̀tán
meeting

“Powell held a meeting with Sharon”

Suppose we have the following SCFG, where superscripts indicate reorderings (formal
definitions of SCFGs with a more flexible notation can be found in Section 3):

(2)

S → NP 1 PP 2 VP 3 , NP 1 VP 3 PP 2

NP → ��� / Bàowēier, Powell
VP → >L��� / jǔxı́ng le huı̀tán, held a meeting
PP → ��� / yǔ Shālóng, with Sharon

Decoding can be cast as a (monolingual) parsing problem because we only need to parse
the source-language side of the SCFG, as if we were constructing a CFG by projecting
the SCFG onto its Chinese side:

(3)

S → NP PP VP
NP → ��� / Bàowēier
VP → >L��� / jǔxı́ng le huı̀tán
PP → ��� / yǔ Shālóng

The only extra work we need to do for decoding is to build corresponding target-
language (English) subtrees in parallel. In other words, we build synchronous trees
when parsing the source-language input, as shown in Figure 1.

For efficient parsing, we need to binarize the projected CFG either explicitly into
Chomsky Normal Form as required by the CKY algorithm, or implicitly into a dotted
representation as in the Earley algorithm. To simplify the presentation, we will focus on
the former, but the following discussion can be easily adapted to the latter. Rules can be
binarized in different ways. For example, we could binarize the first rule left to right or
right to left (see Figure 2):

S → NP-PP VP
NP-PP → NP PP or

S → NP PP-VP
PP-VP → PP VP

We call these intermediate symbols (e.g., PP-VP) virtual nonterminals and correspond-
ing rules virtual rules, whose probabilities are all set to 1.

Figure 1
A pair of synchronous parse trees in the SCFG (2). The superscript symbols (¦?◦•) indicate pairs
of synchronous nonterminals (and subtrees).

561

Computational Linguistics Volume 35, Number 4

Figure 2
The alignment matrix and two binarization schemes, with virtual nonterminals in gray. (a) A
two-dimensional matrix representation of the first SCFG rule in grammar 2. Rows are positions
in Chinese: columns are positions in English, and black cells indicate positions linked by the
SCFG rule. (b) This scheme groups NP and PP into an intermediate state which contains a gap
on the English side. (c) This scheme groups PP and VP into an intermediate state which is
contiguous on both sides.

These two binarizations are no different in the translation-model-only decoding
described previously, just as in monolingual parsing. However, in the source-channel
approach to machine translation, we need to combine probabilities from the translation
model (TM) (an SCFG) with the language model (an n-gram), which has been shown
to be very important for translation quality (Chiang 2005). To do bigram-integrated
decoding (Wu 1996), we need to augment each chart item (X, i, j) with two target-
language boundary words u and v to produce a bigram-item which we denote

(u ··· v
X

i j

)
.2

Now the two binarizations have very different effects. In the first case, we first com-
bine NP with PP. This step is written as follows in the weighted deduction notation of
Nederhof (2003):

(
Powell ··· Powell

NP
1 2

)
: p

(
with ··· Sharon

PP
2 4

)
: q

(
Powell ··· Powell ··· with ··· Sharon

NP-PP
1 4

)
: pq

where p and q are the scores of antecedent items.
This situation is unpleasant because in the target language NP and PP are not

contiguous so we cannot apply language model scoring when we build the NP-PP item.
Instead, we have to maintain all four boundary words (rather than two) and postpone
the language model scoring till the next step where NP-PP is combined with

(
held ··· meeting

VP
2 4

)

to form an S item. We call this binarization method monolingual binarization because
it works only on the source-language projection of the rule without respecting the
constraints from the other side.

This scheme generalizes to the case where we have n nonterminals in a SCFG
rule, and the decoder conservatively assumes nothing can be done on language model
scoring (because target-language spans are non-contiguous in general) until the real
nonterminal has been recognized. In other words, target-language boundary words

2 An alternative to integrated decoding is rescoring, where one first computes the k-best translations
according to the TM only, and then reranks the k-best list with the language model costs. This method
runs very fast in practice (Huang and Chiang 2005), but often produces a considerable number of search
errors because the true best translation is often outside of the k-best list, especially for longer sentences.

562

Huang et al. Binarization of Synchronous Context-Free Grammars

from each child nonterminal of the rule will be cached in all virtual nonterminals
derived from this rule. In the case of m-gram integrated decoding, we have to maintain
2(m− 1) boundary words for each child nonterminal, which leads to a prohibitive over-
all complexity of O(|w|3+2n(m−1)), which is exponential in rule size (Huang, Zhang, and
Gildea 2005). Aggressive pruning must be used to make it tractable in practice, which
in general introduces many search errors and adversely affects translation quality.

In the second case, however, we have:

(
with ··· Sharon

PP
2 4

)
: r

(
held ··· meeting

VP
4 7

)
: s

(
held ··· Sharon

PP-VP
2 7

)
: rs · Pr(with | meeting)

Here, because PP and VP are contiguous (but swapped) in the target language, we can
include the language model score by multiplying in Pr(with | meeting), and the resulting
item again has two boundary words. Later we multiply in Pr(held | Powell) when the
resulting item is combined with

(Powell ··· Powell
NP

1 2

)
to form an S item. As illustrated in Figure 2,

PP-VP has contiguous spans on both source- and target-sides, so that we can generate a
binary-branching SCFG:

(4)
S → NP 1 PP-VP 2 , NP 1 PP-VP 2

PP-VP → VP 1 PP 2 , PP 2 VP 1

In this case m-gram integrated decoding can be done in O(|w|3+4(m−1)) time, which is a
much lower-order polynomial and no longer depends on rule size (Wu 1996), allowing
the search to be much faster and more accurate, as is evidenced in the Hiero system of
Chiang (2005), which restricts the hierarchical phrases to form binary-branching SCFG
rules.

Some recent syntax-based MT systems (Galley et al. 2004) have adopted the for-
malism of tree transducers (Rounds 1970), modeling translation as a set of rules for a
transducer that takes a syntax tree in one language as input and transforms it into a tree
(or string) in the other language. The same decoding algorithms are used for machine
translation in this formalism, and the following example shows that the same issues of
binarization arise.

Suppose we have the following transducer rules:

(5)

S(x1:NP x2:PP x3:VP) → S(x1 VP(x3 x2))
NP(��� / Bàowēier) → NP(NNP(Powell))
VP(>L��� / jǔxı́ng le huı̀tán) → VP(VBD(held) NP(DT(a) NPS(meeting)))
PP(��� / yǔ Shālóng) → PP(TO(with) NP(NNP(Sharon)))

where the reorderings of nonterminals are denoted by variables xi. In the tree-
transducer formalism of Rounds (1970), the right-hand (target) side subtree can have
multiple levels, as in the first rule above. This system can model non-isomorphic
transformations on English parse trees to “fit” another language, learning, for example,
that the (V S O) structure in Arabic should be transformed into a (S (V O)) structure
in English, by looking at two-level tree fragments (Knight and Graehl 2005). From a
synchronous rewriting point of view, this is more akin to synchronous tree substitution
grammar (STSG) (Eisner 2003; Shieber 2004) (see Figure 3). This larger locality captures
more linguistic phenomena and leads to better parameter estimation. By creating a

563

Computational Linguistics Volume 35, Number 4

Figure 3
Two equivalent representations of the first rule in Example (5): (a) tree transducer; (b)
Synchronous Tree Subsitution Grammar (STSG). The ↓ arrows denote substitution sites,
which correspond to variables in tree transducers.

nonterminal for each right-hand-side tree, we can convert the transducer representation
to an SCFG with the same generative capacity. We can again create a projected CFG
which will be exactly the same as in Example (3), and build English subtrees while
parsing the Chinese input. In this sense we can neglect the tree structures when
binarizing a tree-transducer rule, and consider only the alignment (or permutation) of
the nonterminal variables. Again, rightmost binarization is preferable for the first rule.

In SCFG-based frameworks, the problem of finding a word-level alignment be-
tween two sentences is an instance of the synchronous parsing problem: Given two
strings and a synchronous grammar, find a parse tree that generates both input strings.
The benefit of binary grammars also applies in this case. Wu (1997) shows that parsing
a binary-branching SCFG is in O(|w|6), while parsing SCFG with arbitrary rules is
NP-hard (Satta and Peserico 2005). For example, in Figure 2, the complexity of syn-
chronous parsing for the original grammar (a) is O(|w|8), because we have to maintain
four indices on either side, giving a total of eight; parsing the monolingually binarized
grammar (b) involves seven indices, three on the Chinese side and four on the En-
glish side. In contrast, the synchronously binarized version (c) requires only 3 + 3 =
6 indices, which can be thought of as “CKY in two dimensions.” An efficient alignment
algorithm is guaranteed if a binarization is found, and the same binarization can be
used for decoding and alignment. We show how to find optimal alignment algorithms
for non-binarizable rules in Section 7; in this case different grammar factorizations may
be optimal for alignment and for decoding with n-gram models of various orders.
Handling difficult rules may in fact be more important for alignment than for decoding,
because although we may be able to find good translations during decoding within the
space permitted by computationally friendly rules, during alignment we must handle
the broader spectrum of phenomena found in real bitext data.

In general, if we are given an arbitrary synchronous rule with many nonterminals,
what are the good decompositions that lead to a binary grammar? Figure 2 suggests
that a binarization is good if every virtual nonterminal has contiguous spans on both
sides. We formalize this idea in the next section.

3. Synchronous Binarization

Definition 1
A synchronous CFG (SCFG) is a context-free rewriting system for generating string
pairs. Each rule (synchronous production)

A → α, B → β

564

Huang et al. Binarization of Synchronous Context-Free Grammars

rewrites a pair of synchronous nonterminals (A, B) in two dimensions subject to the
constraint that there is a one-to-one mapping between the nonterminal occurrences in α

and the nonterminal occurrences in β. Each co-indexed child nonterminal pair is a pair
of synchronous nonterminals and will be further rewritten as a unit.

Note that this notation, due to Satta and Peserico (2005), is more flexible than those
in the previous section, in the sense that we can allow different symbols to be synchro-
nized, which is essential to capture the syntactic divergences between languages. For
example, the following rule from Chinese to English

(6) VP → VB 1 NN 2 , VP → VBZ 1 NNS 2

illustrates the fact that Chinese does not have a plural noun (NNS) or third-person-
singular verb (VBZ), although we can always convert this form back into the other
notation by creating a compound nonterminal alphabet:

(VP, VP) → (VB, VBZ) 1 (NN, NNS) 2 , (VB, VBZ) 1 (NN, NNS) 2
.

We define the language L(G) produced by an SCFG G as the pairs of terminal strings
produced by rewriting exhaustively from the start nonterminal pair.

As shown in Section 4.2, terminals do not play an important role in binarization. So
we now write rules in the following notation:

X → X 1
1 ...X n

n , Y → Y π(1)

π(1) ...Y
π(n)

π(n)

where Xi and Yi are variables ranging over nonterminals in the source and target pro-
jections of the synchronous grammar, respectively, and π is the permutation of the rule.
For example, in rule (6), we have n = 2, X = Y = VP, X1 = VB, X2 = NN, Y1 = VBZ,
Y2 = NNS, and π is the identity permutation. Note that this general notation includes
cases where a nonterminal occurs more than once in the right-hand side, for example,
when n = 2, X = Y = A, and X1 = X2 = Y1 = Y2 = B, we can have the following two
rules:

A → B 1 B 2 , A → B 2 B 1 ;

A → B 1 B 2 , A → B 1 B 2
.

We also define an SCFG rule as n-ary if its permutation is of n and call an SCFG
n-ary if its longest rule is n-ary. Our goal is to produce an equivalent binary SCFG for an
input n-ary SCFG.

However, not every SCFG can be binarized. In fact, the binarizability of an n-
ary rule is determined by the structure of its permutation, which can sometimes be
resistant to factorization (Aho and Ullman 1972). We now turn to rigorously defining
the binarizability of permutations.

Definition 2
A permuted sequence is a permutation of consecutive integers. If a permuted sequence
a can be split into the concatenation of two permuted sequences b and c, then (b; c)
is called a proper split of a. We say b < c if each element in b is smaller than any
element in c.

565

Computational Linguistics Volume 35, Number 4

For example, (3, 5, 4) is a permuted sequence whereas (2, 5) is not. As special cases,
single numbers are permuted sequences as well. (3; 5, 4) is a proper split of (3, 5, 4)
whereas (3, 5; 4) is not. A proper split has the following property:

Lemma 1
For a permuted sequence a, a = (b; c) is a proper split if and only if b < c or c < b.

Proof
The ⇒ direction is trivial by the definition of proper split.

We prove the ⇐ direction by contradiction. If b < c but b is not a permuted se-
quence, i.e., the set of b’s elements is not consecutive, then there must be some x ∈ c
such that min b < x < max b, which contradicts the fact that b < c. We have a similar
contradiction if c is not a permuted sequence. Now that both b and c are permuted
sequences, (b; c) is a proper split. The case when b > c is similar. ¥

Definition 3
A permuted sequence a is said to be binarizable if either

1. a is a singleton, that is, a = (a), or

2. there is a proper split a = (b; c) where b and c are both binarizable. We call
such split a binarizable split.

This is a recursive definition, and it implies that there is a hierarchical binarization
pattern associated with each binarizable sequence, which we now rigorously define.

Definition 4
A binarization tree bi(a) of a binarizable sequence a is either

1. a if a = (a), or

2. [bi(b), bi(c)] if b < c, or 〈bi(b), bi(c)〉 otherwise, where a = (b; c) is a
binarizable split, and bi(b) is a binarization tree of b and bi(c) a
binarization tree of c.

Here we use [] and 〈〉 for straight (b < c) and inverted (b > c) combinations, respec-
tively, following the ITG notation of Wu (1997). Note that a binarizable sequence might
have multiple binarization trees. See Figure 4 for a binarizable sequence (1, 2, 4, 3) with
its two possible binarization trees and a non-binarizable sequence (2, 4, 1, 3).

We are now able to define the binarizability of SCFGs:

Definition 5
An SCFG is said to be binarizable if the permutation of each synchronous production
is binarizable. We denote the class of binarizable SCFGs as bSCFG.

This set, bSCFG, represents an important subclass of SCFG that is easy to handle
(for example, parsable in O(|w|6)) and covers many interesting longer-than-two rules.
The goal of synchronous binarization, then, is to convert a binarizable grammar G in
bSCFG, which might be n-ary with n ≥ 2, into an equivalent binary grammar G′ that
generates the same string pairs (see Figure 5). This is always possible because for each
rule in G with its permutation π, there is a binarization tree bi(π) which essentially

566

Huang et al. Binarization of Synchronous Context-Free Grammars

Figure 4
(a)–(c) Alignment matrix and two binarization trees for the permutation sequence (1, 2, 4, 3).
(d) Alignment matrix for the non-binarizable sequence (2, 4, 1, 3).

Figure 5
Subclasses of SCFG. The thick arrow denotes the direction of synchronous binarization and
indicates bSCFG can collapse to binary SCFG.

decomposes the original permutation into a set of binary ones. All that remains is to
decorate the skeleton binarization tree with nonterminal symbols and attach terminals
to the skeleton appropriately (see the next section for details). We state this result as the
following theorem:

Theorem 1
For each grammar G in bSCFG, there exists a binary SCFG G′, such that L(G′) = L(G).

4. Binarization Algorithms

We have reduced the problem of binarizing an SCFG rule into the problem of binarizing
its permutation. The simplest algorithm for this problem is to try all bracketings of a
permutation and pick one that corresponds to a binarization tree. The number of all
possible bracketings of a sequence of length n is known to be the Catalan Number
(Catalan 1844)

Cn = 1
n + 1

(
2n
n

)

which grows exponentially with n. A better approach is to reduce this problem to an
instance of synchronous ITG parsing (Wu 1997). Here the parallel string pair that we
are parsing is the integer sequence (1...n) and its permutation (π(1)...π(n)). The goal of
the ITG parsing is to find a synchronous tree that agrees with the alignment indicated
by the permutation. Synchronous ITG parsing runs in time O(n6) but can be improved
to O(n4) because there is no insertion or deletion in a permutation.

567

Computational Linguistics Volume 35, Number 4

Another problem besides efficiency is that there are possibly multiple binarization
trees for many permutations whereas we just need one. We would prefer a consistent
pattern of binarization trees across different permutations so that sub-binarizations (vir-
tual nonterminals) can be shared. For example, permutations (1, 3, 2, 5, 4) and (1, 3, 2, 4)
can share the common sub-binarization tree [1, 〈3, 2〉]. To this end, we can borrow the
non-ambiguous ITG of Wu (1997, Section 7) that prefers left-heavy binarization trees so
that for each permutation there is a unique synchronous derivation.3 We now refine the
definition of binarization trees accordingly.

Definition 6
A binarization tree bi(a) is said to be canonical if the split at each non-leaf node of the
tree is the rightmost binarizable split.

For example, for sequence (1, 2, 4, 3), the binarization tree [[1, 2], 〈4, 3〉] is canonical,
whereas [1, [2, 〈4, 3〉]] is not, because its top-level split is not at the rightmost binarizable
split (1, 2; 4, 3). By definition, there is a unique canonical binarization tree for each
binarizable sequence.

We next present an algorithm that is both fast and consistent.

4.1 The Linear-Time Skeleton Algorithm

Shapiro and Stephens (1991, page 277) informally present an iterative procedure that,
in each pass, scans the permuted sequence from left to right and combines two adja-
cent subsequences whenever possible. This procedure produces canonical binarization
trees and runs in O(n2) time because we need n passes in the worst case. Inspired by
the Graham Scan Algorithm (Graham 1972) for computing convex hulls from computa-
tional geometry, we modify this procedure and improve it into a linear-time algorithm
that only needs one pass through the sequence.

The skeleton binarization algorithm is an instance of the widely used left-to-right
shift-reduce algorithm. It maintains a stack for contiguous subsequences discovered so
far; for example: 2–5, 1. In each iteration, it shifts the next number from the input and
repeatedly tries to reduce the top two elements on the stack if they are consecutive. See
Algorithm 1 for the pseudo-code and Figures 6 and 7 for example runs on binarizable
and non-binarizable permutations, respectively.

We need the following lemma to prove the properties of the algorithm:

Lemma 2
If c is a permuted sequence (properly) within a binarizable permuted sequence a, then
c is also binarizable.

Proof
We prove by induction on the length of a. Base case: |a| = 2, a (proper) subsequence of
a, has length 1, so it is binarizable. For |a| > 2, because a has a binarization tree, there

3 We are not aiming at optimal sharing, that is, a strategy that produces the smallest binarized grammar for a
given ruleset, which would require a global optimization problem over the whole set. In practice, we can
only use online algorithms that binarize rules one by one. The left-heavy (or its symmetric variant,
right-heavy) preference we choose here is one of the obvious candidates for consistency.

568

Huang et al. Binarization of Synchronous Context-Free Grammars

Algorithm 1 The linear-time binarization algorithm.
1: function SYNCHRONOUSBINARIZER(π)
2: top ← 0 . stack top pointer
3: PUSH(stack, (π(1), π(1))) . initial shift
4: for i ← 2 to |π| do . for each remaining element
5: PUSH(stack, (π(i), π(i))) . shift
6: while top > 1 and CONSECUTIVE(stack[top], stack[top− 1]) do
7: . keep reducing if possible
8: (p, q) ← COMBINE(stack[top], stack[top− 1])
9: top ← top− 2

10: PUSH(stack, (p, q))
11: return (top = 1) . returns true iff. the input is reduced to a single element
12:
13: function CONSECUTIVE((a, b), (c, d))
14: return (b = c− 1) or (d = a− 1) . either straight or inverted
15: function COMBINE((a, b), (c, d))
16: A = {min(a, c)...max(b, d)}
17: B = {a...b}
18: C = {c...d}
19: rule[A] = A→ B C
20: return (min(a, c), max(b, d))

Figure 6
Example of Algorithm 1 on the binarizable input (1, 5, 3, 4, 2). The rightmost column shows the
binarization-trees generated at each reduction step.

exists a (binarizable) split which is nearest to the root and splits c into two parts. Let the
split be (b1, c1; c2, b2), where c = (c1; c2), and either b1 or b2 can be empty. By Lemma 1,
we have c1 < c2 or c1 > c2. By Lemma 1 again, we have that (c1; c2) is a proper split of c,
i.e., both c1 and c2 are themselves permuted sequences. We also know both (b1, c1) and
(c2, b2) are binarizable. By the induction hypothesis, c1 and c2 are both binarizable. So
we conclude that c = (c1; c2) is binarizable (See figure 8). ¥

We now state the central result of this work.

Theorem 2
Algorithm 1 runs in time linear to the length of the input, and succeeds (i.e., it reduces
the input into one single element) if and only if the input permuted sequence a is
binarizable, in which case the binarization tree recovered is canonical.

569

Computational Linguistics Volume 35, Number 4

Figure 7
Example of Algorithm 1 on the non-binarizable input (2, 5, 4, 1, 3).

Figure 8
Illustration of the proof of Lemma 2. The arrangement of (b1, c1; c2, b2) must be either all straight
as in (a) or all inverted as in (b).

Proof
We prove the following three parts of this theorem:

1. If Algorithm 1 succeeds, then a is binarizable because we can recover a
binarization tree from the algorithm.

2. If a is binarizable, then Algorithm 1 must succeed and the binarization tree
recovered must be canonical:
We prove by a complete induction on n, the length of a.
Base case: n = 1, trivial. Assume it holds for all n′ < n.
If a is binarizable, then let a = (b; c) be its rightmost binarizable split. By
definition, both b and c are binarizable. By the induction hypothesis, the
algorithm succeeds on the partial input b, reducing it to the single element
stack[0] on the stack and recovering its canonical binarization tree bi(b).
If c is a singleton, the algorithm will combine it with the element stack[0]
and succeed. The final binarization tree is canonical because the top-level
split is at the rightmost binarizable split, and both subtrees are canonical.
If c is not a singleton, we want to show by contradiction that the algorithm
will never combine b with a proper prefix of c. Because a = (b; c) is a
proper split, we know that either b < c or c < b. Now if the algorithm
makes a combination of (b; c1) for some proper prefix c1 where c = (c1; c2),
we have either c1 < c2 or c1 > c2. By Lemma 1, (c1; c2) is a proper split.
Because c is binarizable, by Lemma 2, c2 is also binarizable. So (b, c1; c2) is
a binarizable split to the right of (b; c), which contradicts the assumption
that the latter is the rightmost binarizable split (see Figure 9).

570

Huang et al. Binarization of Synchronous Context-Free Grammars

Figure 9
Illustration of the proof of Theorem 2. The combination of (b; c1) (in dashed squares) contradicts
the assumption that (b; c) is the rightmost binarizable split of a.

Therefore, the algorithm will scan through the whole c as if from the empty
stack. By the induction hypothesis again, it will reduce c into stack[1] on
the stack and recover its canonical binarization tree bi(c). Because b and c
are combinable, the algorithm reduces stack[0] and stack[1] in the last step,
forming the canonical binarization tree for a, which is either [bi(b), bi(c)] or
〈bi(b), bi(c)〉.

3. The running time of Algorithm 1 (regardless of success or failure) is linear
in n:
By amortized analysis (Cormen, Leiserson, and Rivest 1990), there are
exactly n shifts and at most n− 1 reductions, and each shift or reduction
takes O(1) time. So the total time complexity is O(n).

¥

4.2 Dealing with Terminals and Adapting to Tree Transducers

Thus far we have discussed how to binarize synchronous productions involving only
nonterminals through binarizing the corresponding skeleton permutations. We now
turn to technical details for the implementation of a synchronous binarizer in real MT
systems. We will first show how to deal with the terminal symbols, and then describe
how to adapt it to tree transducers.

Consider the following SCFG rule:

(7) ADJP → RB 1 �# / fùzé PP 2 � / de NN 3 ,
ADJP → RB 1 responsible for the NN 3 PP 2

whose permutation is (1, 3, 2). We run the skeleton binarization algorithm and get
the (canonical) binarization tree [1, 〈3, 2〉], which corresponds to [RB, 〈NN, PP〉] (see
Figure 10(a)). The alignment matrix is shown in Figure 11.

We will then do a post-order traversal of the skeleton tree, and attach the terminals
from both languages when appropriate. It turns out we can do this quite freely as long
as we can uniquely reconstruct the original rule from its binary parse tree. We use the
following rules for this step:

1. Attach source-language terminals to the leaf nodes of the skeleton tree.
Consecutive terminals are attached to the nonterminal on their left

571

Computational Linguistics Volume 35, Number 4

Figure 10
Attaching terminals in SCFG binarization. (a) The skeleton binarization tree, (b) attaching
Chinese words at leaf nodes, (c) attaching English words at internal nodes.

Figure 11
Alignment matrix of the SCFG rule (7). Areas shaded in gray and light gray denote virtual
nonterminals (see rules in Example (8)).

(except for the initial ones which are attached to the nonterminal on
their right).

2. Attach target-language terminals to the internal nodes (virtual
nonterminals) of the skeleton tree. These terminals are attached greedily:
When combining two nonterminals, all target-side terminal strings
neighboring either nonterminal will be included. This greedy merging is
motivated by the idea that the language model score helps to guide the
decoder and should be computed as early as possible.

For example, at the leaf nodes, the Chinese word �# / fùzé is attached to RB 1 , and
� / de to PP 1 (Figure 10(b)). Next, when combining NN 3 and the virtual nonterminal
PP-� / de, we also include the English-side string responsible for the (Figure 10(c)). In
order to do this rigorously we need to keep track of sub-alignments including both
aligned nonterminals and incorporated terminals. A pre-order traversal of the fully
decorated binarization tree gives us the following binary SCFG rules:

(8)

ADJP → V1
1 V2

2 , ADJP → V1
1 V2

2

V1 → RB 1 �# / fùzé, V1 → RB 1

V2 → V 1
3 NN 2 , V2 → responsible for the NN 2 V 1

3
V3 → PP 1 � / de, V3 → PP 1

572

Huang et al. Binarization of Synchronous Context-Free Grammars

where the virtual nonterminals (illustrated in Figure 11) are:

V1: RB-�# / fùzé
V2: 〈 resp. for the NN, PP-� / de〉
V3: PP-� / de

Analogous to the “dotted rules” in Earley parsing for monolingual CFGs, the names
we create for the virtual nonterminals reflect the underlying sub-alignments, ensuring
intermediate states can be shared across different string-to-tree rules without causing
ambiguity.

The whole binarization algorithm still runs in time linear in the number of symbols
in the rule (including both terminals and nonterminals).

We now turn to tree transducer rules. We view each left-hand side subtree as a
monolithic nonterminal symbol and factor each transducer rule into two SCFG rules:
one from the root nonterminal to the subtree, and the other from the subtree to the
leaves. In this way we can uniquely reconstruct the transducer derivation using the
two-step SCFG derivation. For example, consider the following tree transducer rule:

We create a specific nonterminal, say, T859, which uniquely identifies the left-hand
side subtree. This gives the following two SCFG rules:

ADJP → T859
1 , ADJP → T859

1

T859 → RB 1 �# / fùzé PP 2 � / de NN 3 , T859 → RB 1 resp. for the NN 3 PP 2

The newly created nonterminals ensure that the newly created rules can only combine
with one another to reconstruct the original rule, leaving the output of the transducer,
as well as the probabilities it assigns to transductions, unchanged. The problem of
binarizing tree transducers is now reduced to the binarization of SCFG rules, which
we solved previously.

5. Experiments

In this section, we investigate two empirical questions with regard to synchronous
binarization.

5.1 How Many Rules are (Synchronously) Binarizable?

Shapiro and Stephens (1991) and Wu (1997, Section 4) show that the percentage of
binarizable cases over all permutations of length n quickly approaches 0 as n grows

573

Computational Linguistics Volume 35, Number 4

(see Figure 12). However, for machine translation, the percentage of synchronous rules
that are binarizable is what we care about. We answer this question in both large-scale
automatically aligned data and small-scale hand-aligned data.

Automatically Aligned Data. Our rule set here is obtained by first doing word alignment
using GIZA++ on a Chinese–English parallel corpus containing 50 million words in
English, then parsing the English sentences using a variant of the Collins parser, and
finally extracting rules using the graph-theoretic algorithm of Galley et al. (2004). We
did a spectrum analysis on the resulting rule set with 50,879,242 rules. Figure 12 shows
how the rules are distributed against their lengths (number of nonterminals). We can
see that the percentage of non-binarizable rules in each bucket of the same length does
not exceed 25%. Overall, 99.7% of the rules are binarizable. Even for the 0.3% of rules
that are not binarizable, human evaluations show that the majority are due to alignment
errors. Because the rule extraction process looks for rules that are consistent with both
the automatic parses of the English sentences, and automatic word level alignments
from GIZA++, errors in either parsing or word-level alignment can lead to noisy rules
being input to the binarizer. It is also interesting to know that 86.8% of the rules have
monotonic permutations, i.e., either taking identical or totally inverted order.

5.2 Hand-Aligned Data

One might wonder whether automatic alignments computed by GIZA++ are system-
atically biased toward or against binarizability. If syntactic constraints not taken into
account by GIZA++ enforce binarizability, automatic alignments could tend to contain
spurious non-binarizable cases. On the other hand, simply by preferring monotonic
alignments, GIZA++ might tend to miss complex non-binarizable patterns. To test this,
we carried out experiments on hand-aligned sentence pairs with three language pairs:
Chinese–English, French–English, and German–English.

Chinese–English Data. For Chinese–English, we used the data of Liu, Liu, and Lin (2005)
which contains 935 pairs of parallel sentences. Of the 13,713 rules extracted using the
same method described herein, 0.3% (44) are non-binarizable, which is exactly the

Figure 12
The solid-line curve represents the distribution of all rules against permutation lengths. The
dashed-line stairs indicate the percentage of non-binarizable rules in our initial rule set, and the
dotted line denotes that percentage among all permutations.

574

Huang et al. Binarization of Synchronous Context-Free Grammars

same ratio as the GIZA-aligned data. The following is an interesting example of non-
binarizable rules:

where ... in with ... Mishira is the long phrase in shadow modifying Mishira. Here the
non-binarizable permutation is (3, 2, 5, 1, 4), which is reducible to (2, 4, 1, 3). The SCFG
version of the tree-transducer rule is as follows:

where we indicate dependency links in solid arcs and permutation in dashed lines.
It is interesting to examine dependency structures, as some authors have argued that
they are more likely to generalize across languages than phrase structures. The Chinese
ADVP 1 S) / dāngtiān (lit., that day) is translated into an English PP 1 (on the same day),
but the dependency structures on both sides are isomorphic (i.e., this is an extremely
literal translation).

A simpler but slightly non-literal example is the following:

(10) ...
...
...

Û�e1
jı̀nyı̄bù
further

[1
jiù
on

-�
zhōngdōng
Mideast

q:
wēijı̄
crisis

]2 >L3
jǔxı́ng
hold

��4
huı̀tán
talk

... hold3 further1 talks4 [on the Mideast crisis]2

where the SCFG version of the tree-transducer rule (in the same format as the previous
example) is:

Note that the Chinese ADVP 1 Û�e / jı̀nyı̄bù modifying the verb VB 3 becomes
a JJ 1 (further) in the English translation modifying the object of the verb, NNS 4 , and
this change also happens to PP 2 . This is an example of syntactic divergence, where the
dependency structures are not isomorphic between the two languages (Eisner 2003).

Wu (1997, page 158) has “been unable to find real examples” of non-binarizable
cases, at least in “fixed-word-order languages that are lightly inflected, such as English

575

Computational Linguistics Volume 35, Number 4

and Chinese.” Our empirical results not only confirm that this is largely correct (99.7% in
our data sets), but also provide, for the first time, “real examples” between English and
Chinese, verified by native speakers. It is interesting to note that our non-binarizable
examples include both cases of isomorphic and non-isomorphic dependency structures,
indicating that it is difficult to find any general linguistic explanation that covers all
such examples. Wellington, Waxmonsky, and Melamed (2006) used a different measure
of non-binarizability, which is on the sentence-level permutations, as opposed to rule-
level permutation as in our case, and reported 5% non-binarizable cases for a different
hand-aligned English–Chinese data set, but they did not provide real examples.

French–English Data. We analyzed 447 hand-aligned French–English sentences from the
NAACL 2003 alignment workshop (Mihalcea and Pederson 2003). We found only 2
out of 2,659 rules to be non-binarizable, or 0.1%. One of these two is an instance of
topicalization:

The second instance is due to movement of an adverbial:

German–English Data. We analyzed 220 sentences from the Europarl corpus, hand-
aligned by a native German speaker (Callison-Burch, personal communication). Of
2,328 rules extracted, 13 were non-binarizable, or 0.6%. Some cases are due to separable
German verb prefixes:

Here the German prefix auf is separated from the verb auffordern (request). Another
cause of non-binarizability is verb-final word order in German in embedded clauses:

Although fewer than 1% of the rules were non-binarizable in each language pair
we studied, German–English had the highest percentage with 0.6%. The fact that the
German–English examples are due to syntactic phenomena such as separable prefixes
and verb-final word order may indicate that an MT system would have less freedom
to choose an equivalent binarizable reordering than in the case of the examples due
to adverbial placement, heavy NP shift, and topicalization that we see in the Chinese–

576

Huang et al. Binarization of Synchronous Context-Free Grammars

English and French–English data. The results on binarizability of hand-aligned data for
the three language pairs are summarized in Table 1.

It is worth noting that for most of these non-binarizable examples, there do exist
alternative translations that only involve binarizable permutations. For example, in
Chinese–English Example (9), we can move the English PP on the same day to the first
position (before will), which results in a binarizable permutation (1, 3, 2, 5, 4). Simi-
larly, we can avoid non-binarizability in French–English Example (12) by moving the
English adverbial still under private ownership to the third position. German–English
Example (13) would also become binarizable by replacing call on with a single word
request on the English side. However, the point of this experiment is to test the ITG
hypothesis by attempting to explain existing real data (the hand-aligned parallel text),
rather than to generate fresh translations for a given source sentence, which is the topic of
the subsequent decoding experiment. This subsection not only provides the first solid
confirmation of the existence of linguistically-motivated non-binarizable reorderings,
but also motivates further theoretical studies on parsing and decoding with these non-
binarizable synchronous grammars, which is the topic of Sections 6 and 7.

5.3 Does Synchronous Binarization Help Decoding?

We did experiments on our CKY-based decoder with two binarization methods. It is
the responsibility of the binarizer to instruct the decoder how to compute the language
model scores from children nonterminals in each rule. The baseline method is mono-
lingual left-to-right binarization. As shown in Section 2, decoding complexity with this
method is exponential in the size of the longest rule, and because we postpone all the
language model scorings, pruning in this case is also biased.

To move on to synchronous binarization, we first did an experiment using this
baseline system without the 0.3% of rules that are non-binarizable and did not observe
any difference in BLEU scores. This indicates that we can safely focus on the binarizable
rules, discarding the rest.

The decoder now works on the binary translation rules supplied by an external
synchronous binarizer. As shown in Section 1, this results in a simplified decoder with a
polynomial time complexity, allowing less aggressive and more effective pruning based
on both translation model and language model scores.

We compare the two binarization schemes in terms of translation quality with
various pruning thresholds. The rule set is that of the previous section. The test set
has 116 Chinese sentences of no longer than 15 words, taken from the NIST 2002 test
set. Both systems use trigram as the integrated language model. Figure 13 demonstrates
that decoding accuracy is significantly improved after synchronous binarization. The
number of edges (or items, in the deductive parsing terminology) proposed during

Table 1
Summary of non-binarizable ratios from hand-aligned data.

Sentence Non-Binarizable
Language Pair Pairs Rules Rules Major Causes for Non-Binarization

Chinese–English 935 13,713 44 (0.3%) Adverbials, Heavy NP Shift
French–English 447 2,659 2 (0.1%) Adverbials, Topicalization
German–English 220 2,328 13 (0.6%) V-final, separable prefix, etc.

577

Computational Linguistics Volume 35, Number 4

Figure 13
Comparing the two binarization methods in terms of translation quality against search effort.

Table 2
Machine translation results for syntax-based systems vs. the phrase-based Alignment Template
System.

System BLEU

monolingual binarization 36.25
synchronous binarization 38.44
alignment-template system 37.00

decoding is used as a measure of the size of search space, or time efficiency. Our system
is consistently faster and more accurate than the baseline system.

We also compare the top result of our synchronous binarization system with the
state-of-the-art alignment-template system (ATS) (Och and Ney 2004). The results are
shown in Table 2. Our system has a promising improvement over the ATS system,
which is trained on a larger data set but tuned independently. A larger-scale system
based on our best result performs very well in the 2006 NIST MT Evaluation (ISI
Machine Translation Team 2006), achieving the best overall BLEU scores in the Chinese-
to-English track among all participants.4 The readers are referred to Galley et al. (2004)
for details of the decoder and the overall system.

6. One-Sided Binarization

In this section and the following section, we discuss techniques for handling rules
that are not binarizable. This is primarily of theoretical interest, as we found that they
constitute a small fraction of all rules, and removing these did not affect our Chinese-to-
English translation results. However, non-binarizable rules are shown to be important
in explaining existing hand-aligned data, especially for other language pairs such as
German–English (see Section 5.2, as well as Wellington, Waxmonsky, and Melamed
[2006]). Non-binarizable rules may also become more important as machine translation

4 NIST 2006 Machine Translation Evaluation Official Results: see
http://www.nist.gov/speech/tests/mt/2006/doc/mt06eval official results.html.

578

Huang et al. Binarization of Synchronous Context-Free Grammars

Table 3
A summary of the four factorization algorithms, and the “incremental relaxation” theme of the
whole paper. Algorithms 2–4 are for non-binarizable SCFGs, and are mainly of theoretical
interest. Algorithms 1–3 make fewer and fewer assumptions on the strategy space, and produce
parsing strategies closer and closer to the optimal. Algorithm 4 further improves Algorithm 3.

Section Algorithm Assumptions of Strategy Space Complexity

3–4 Alg. 1 (synchronous) Contiguous on both sides O(n)
6 Alg. 2 (one-sided, CKY) Contiguous on one side O(n3)

7.2
Alg. 3 (optimal)

No assumptions
O(3n)

⇒ Alg. 4 (best-first) O(9kn2k)

systems improve. Synchronous grammars that go beyond the power of SCFG (and
therefore binary SCFG) have been defined by Shieber and Schabes (1990) and Rambow
and Satta (1999), and motivated for machine translation by Melamed (2003), although
previous work has not given algorithms for finding efficient and optimal parsing strate-
gies for general SCFGs, which we believe is an important problem.

In the remainder of this section and the next section, we will present a series of
algorithms that produce increasingly faster parsing strategies, by gradually relaxing
the strong “continuity” constraint made by the synchronous binarization technique. As
that technique requires continuity on both languages, we will first study a relaxation
where binarized rules are always continuous in one of the two languages, but may
be discontinuous in the other. We will present a CKY-style algorithm (Section 6.2) for
finding the best parsing strategy under this new constraint, which we call one-sided
binarization. In practice, this factorization has the advantage that we need to maintain
only one set of language model boundary words for each partial hypothesis.

We will see, however, that it is not always possible to achieve the best asymptotic
complexity within this constraint. But most importantly, as the synchronous binariza-
tion algorithm covers most of the SCFG rules in real data, the one-sided binarization
we discuss in this section is able to achieve optimal parsing complexity for most of
the non-binarizable rules in real data. So this section can be viewed as a middle step
between the synchronous binarization we focus on in the previous sections and the
optimal factorization coming in Section 7, and also a trade-off point between simplicity
and asymptotic complexity for parsing strategies of SCFGs. Table 3 summarizes this
incremental structure of the whole paper.

6.1 Formalizing the Problem

The complexity for decoding given a grammar factorization can be expressed in terms of
the number of spans of the items being combined at each step. As an example, Figure 14
shows the three combination steps for one factorization of the non-binarizable rule:

X → A 1 B 2 C 3 D 4 , X → B 2 D 4 A 1 C 3 (15)

At each step, we consider all positions in the Chinese string as possible end-points for
the rule’s child nonterminals. Each step combines two dynamic programming items
covering disjoint spans of the Chinese input, and creates a new item covering the union
of the spans. For example, in the first combination step shown in Figure 14, where
nonterminals A and B are combined, A has one span in Chinese, from position y1 to
y2 in the string, and B has one span from y3 to y4. The chart entry for the nonterminal

579

Computational Linguistics Volume 35, Number 4

Figure 14
The tree at the top of the figure defines a three-step decoding strategy for rule (15), building an
English output string on the horizontal axis as we process the Chinese input on the vertical axis.
In each step, the two subsets of nonterminals in the inner marked spans are combined into a new
chart item with the outer spans. The intersection of the outer spans, shaded, has now been
processed.

pair {A, B} must record a total of four string indices: positions y1, y2, y3, and y4 in the
Chinese string.

Any combination of two subsets of the rule’s nonterminals involves the indices for
the spans of each subset. However, some of the indices are tied together: If we are joining
two spans into one span in the new item, one of the original spans’ end-points must be
equal to another span’s beginning point. For example, the index y2 is the end-point of
A in Chinese, as well as the beginning position of D. In general, if we are combining a
subset B of nonterminals having b spans with a subset C having c spans, to produce a
spans for a combined subset A = B ∪ C, the number of linked indices is b + c− a. In the
example of the first step of Figure 14, subset {A} has two spans (one in each language)
so b = 1, and {B} also has two spans, so c = 1. The combined subset {A, B} has two
spans, so a = 2. The total number of indices involved in a combination of two subsets is

2(b + c)− (b + c− a) = a + b + c (16)

where 2(b + c) represents the original beginning and end points, and b + c− a the
number of shared indices. In the first step of Figure 14, a + b + c = 1 + 1 + 2 = 4 total
indices, and therefore the complexity of this step is O(|w|4) where |w| is the length of the
input Chinese strings, and we ignore the language model for the moment. Applying
this formula to the second and third step, we see that the second is O(|w|5), and the
third is again O(|w|4).

In order to find a good decoding strategy for a given grammar rule, we need to
search over possible orders in which partial translation hypotheses can be built by suc-
cessively combining nonterminals. Any strategy we find can be used for synchronous
parsing as well as decoding. For example, the strategy shown in Figure 14 can be used to
parse an input Chinese/English string pair. The complexity of each step is determined
by the total number of indices into both the Chinese and English strings. Each step in

580

Huang et al. Binarization of Synchronous Context-Free Grammars

Algorithm 2 An O(n3) CKY-style algorithm for parsing strategies, keeping continuous
spans in one language. Takes an SCFG rule’s permutation as input and returns the
complexity of the best parsing strategy found.

1: function BESTCONTINUOUSPARSER(π)
2: n = |π|
3: for span ← 1 to n− 1 do
4: for i ← 1 to n− span do
5: A = {i...i + span}
6: best[A] = ∞
7: for j ← i + 1 to i + span do
8: B = {i...j− 1}
9: C = { j...i + span}

10: Let aπ, bπ, and cπ denote the number of π(A), π(B), and π(C)’s spans
11: compl[A→ B C] = max {aπ + bπ + cπ, best[B], best[C]}
12: if compl[A→ B C] < best[A] then
13: best[A] = compl[A→ B C]
14: rule[A] = A→ B C
15: return best[{1...n}]

the diagram has three indices into the English string, so the complexity of the first step
is O(|w|4+3) = O(|w|7), the second step is O(|w|8), and the third is again O(|w|7).

6.2 A CKY-Style Algorithm for Parsing Strategies

The O(n3) algorithm we present in this section can find good factorizations for most
non-binarizable rules; we discuss optimal factorization in the next section. This
algorithm, shown in Algorithm 2, considers only factorizations that have only one
span in one of the two languages, and efficiently searches over all such factorizations
by combining adjacent spans with CKY-style parsing.5 The input is an SCFG grammar
rule in its abstract form, which is a permutation, and best is a dynamic programming
table used to store the lowest complexity with which we can parse a given subset of the
input rule’s child nonterminals.

Although this CKY-style algorithm finds the best grammar factorization maintain-
ing continuous spans in one of the two dimensions, in general the best factorization
may require discontinuous spans in both dimensions. As an example, the following
pattern causes problems for the algorithm regardless of which of the dimensions it
parses across:

1 ↔ 1 n/2 + 1 ↔ 2
2 ↔ n/2 + 1 n/2 + 2 ↔ n/2 + 2
3 ↔ 3 n/2 + 3 ↔ 4
4 ↔ n/2 + 3 n/2 + 4 ↔ n/2 + 4

... ...

This pattern, shown graphically in Figure 15 for n = 16, can be parsed in time O(|w|10)
by maintaining a partially completed item with two spans in each dimension, one

5 A special case of this algorithm, target-side binarization, is discussed in Huang (2007). It binarizes
left-to-right on the target side while leaving gaps on the source side, and is shown to be preferable to
source-side monolingual binarization in m-gram integrated decoding.

581

Computational Linguistics Volume 35, Number 4

Figure 15
Left, a general pattern of non-binarizable permutations. Center, a partially completed chart item
with two spans in each dimension; the intersection of the completed spans is shaded. Right, the
combination of the item from the center panel with a singleton item. The two subsets of
nonterminals in the inner marked spans are combined into a new chart item with the outer
spans.

beginning at position 1 and one beginning at position n
2 + 1, and adding one non-

terminal at a time to the partially completed item, as shown in Figure 15 (right). How-
ever, our CKY factorization algorithm will give a factorization with n/2 discontinuous
spans in one dimension. Thus in the worst case, the number of spans found by the
cubic-time algorithm grows with n, even when a constant number of spans is possible,
implying that there is no approximation ratio on how close the algorithm will get to the
optimal solution.

7. Optimal Factorization

The method presented in the previous section is not optimal for all permutations,
because in some cases it is better to maintain multiple spans in the output language
(despite the extra language model state that is needed) in order to maintain continuous
spans in the input language. In this section we give a method for finding decoding
strategies that are guaranteed to be optimal in their asymptotic complexity.

This method can also be used to find the optimal strategy for synchronous parsing
(alignment) using complex rules. This answers a question left open by earlier work in
synchronous grammars: Although Satta and Peserico (2005) show that tabular parsing
of a worst-case SCFG can be NP-hard, they do not give a procedure for finding the com-
plexity of an arbitrary input grammar. Similarly, Melamed (2003) defines the cardinality
of a grammar, and discusses the interaction of this property with parsing complexity,
but does not show how to find a normal form for a grammar with the lowest possible
cardinality.

We show below how to analyze parsing and decoding strategies for a given SCFG
rule in Section 7.1, and then present an exponential-time dynamic programming algo-
rithm for finding the best strategy in Section 7.2. We prove that factorizing an SCFG
rule into smaller SCFG rules is a safe preprocessing step for finding the best strategy
in Section 7.4, which leads to much faster computation in many cases. First, however,
we take a brief detour to discuss modifying our a + b + c formula from the previous
section in order to take the state from an m-gram language model into account during
MT decoding.

582

Huang et al. Binarization of Synchronous Context-Free Grammars

7.1 Taking the Language Model into Account

First, how do we analyze algorithms that create discontinuous spans in both the source
and target language? It turns out that the analysis in Section 6.1 for counting string
indices in terms of spans in fact applies in the same way to both of our languages.
For synchronous parsing, if we are combining item B with be target spans and bf
source spans with item C having ce target spans and cf source spans to form new
item A having ae target spans and af source spans, the complexity of the operation is
O(|w|ae+be+ce+af +bf +cf).

The a + b + c formula can also be generalized for decoding with an integrated
m-gram language model. At first glance, because we need to maintain (m− 1) boundary
words at both the left and right edges of each target span, the total number of interacting
variables is:

2(m− 1)(be + ce) + af + bf + cf

However, by using the “hook trick” suggested by Huang, Zhang, and Gildea (2005),
we can optimize the decoding algorithm by factorizing the dynamic programming
combination rule into two steps. One step incorporates the language model probability,
and the other step combines adjacent spans in the input language and incorporates the
SCFG rule probability. The hook trick for a bigram language model and binary SCFG
is shown in Figure 16. In the equations of Figure 16, i,j,k range over 1 to |w|, the length
of the input foreign sentence, and u,v,v1,u2 (or u,v,v2,u1) range over possible English
words, which we assume to take O(|w|) possible values. There are seven free variables
related to input size for doing the maximization computation, hence the algorithmic
complexity is O(|w|7).

The two terms in Figure 16 (top) within the first level of the max operator corre-
spond to straight and inverted ITG rules. Figure 16 (bottom) shows how to decom-
pose the first term; the same method applies to the second term. Counting the free
variables enclosed in the innermost max operator, we get five: i, k, u, v1, and u2. The

β(X[i, j, u, v]) = max

max
k,v1,u2,Y,Z

[
β(Y[i, k, u, v1]) · β(Z[k, j, u2, v])
· P(X → [YZ]) · bigram(v1, u2)

]
,

max
k,v2,u1,Y,Z

[
β(Y[i, k, u1, v]) · β(Z[k, j, u, v2])
· P(X → 〈YZ〉) · bigram(v2, u1)

]

where

max
k,v1,u2,Y,Z

[
β(Y[i, k, u, v1]) · β(Z[k, j, u2, v]) · P(X → [YZ]) · bigram(v1, u2)

]

= max
k,u2,Z

[
max
v1,Y

[
β(Y[i, k, u, v1]) · P(X → [YZ]) · bigram(v1, u2)

]
· β(Z[k, j, u2, v])

]

Figure 16
The hook trick for machine translation decoding with a binary SCFG (equivalent to Inversion
Transduction Grammar). The fundamental dynamic programming equation is shown at the top,
with an efficient factorization shown below.

583

Computational Linguistics Volume 35, Number 4

decomposition eliminates one free variable, v1. In the outermost level, there are six free
variables left. The maximum number of interacting variables is six overall. So, we have
reduced the complexity of ITG decoding using the bigram language model from O(|w|7)
to O(|w|6).

When we generalize the hook trick for any m-gram language model and more
complex SCFGs, each left boundary for a substring of an output language hypothesis
contains m− 1 words of language model state, and each right boundary contains a
“hook” specifying what the next m− 1 words must be. This yields a complexity analysis
similar to that for synchronous parsing, based on the total number of boundaries, but
now multiplied by a factor of m− 1:

(m− 1)(ae + be + ce) + af + bf + cf (17)

for translation from source to target.

Definition 7
The number of m-gram weighted spans of a constituent, denoted am, is defined as the
number of source spans plus the number target spans weighted by the language model
factor (m− 1):

am = af + (m− 1)ae (18)

Using this notation, we can rewrite the expression for the complexity of decoding
in Equation 17 as a simple sum of the numbers of weighted spans of constituent subsets
A, B, and C:

am + bm + cm (19)

and more generally when k ≥ 2 constituents are combined together:

(af + (m− 1)ae) +
k∑

i=1

(bfi + (m− 1)bei) = am +
k∑

i=1

bmi (20)

It can be seen that, as m grows, the parsing/decoding strategies that favor contiguity on
the output side will prevail. This effect is demonstrated by the experimental results in
Section 7.5.

This analysis applies to one combination of two subsets of a rule’s children during
parsing or decoding. A strategy for parsing (or decoding) the entire rule must build up
the complete set of the rule’s children through a sequence of such combinations. Thus
a parsing strategy corresponds to a recursive partitioning of the rule’s children, that
is, an unordered rooted tree having the child nonterminals as leaves. Each node in the
partition tree represents a subset of nonterminals used as a partial result in the chart
for parsing, built by combining the subsets corresponding to the node’s children. This
combination step at each node has complexity determined by the number of spans,
and the overall complexity of a parsing strategy is the complexity of the strategy’s
worst combination step. We wish to find the recursive partition with the lowest overall
complexity. Unfortunately, the number of recursive partitions of n items grows super-

584

Huang et al. Binarization of Synchronous Context-Free Grammars

exponentially, as 0.175n!n−3/22.59n = Θ(Γ(n + 1)2.59n) (Schröder 1870, Problem IV).6

More formally, the optimization over the space of all recursive partitions is expressed as:

best(A) = min
B:A=

⋃k
i=1 Bi

max{compl(A→ B1...Bk), maxk
i=1 best(Bi)} (21)

where compl(A→ B1...Bk) is given by Equation (20). This recursive equation implies
that we can solve the optimization problem using dynamic programming techniques.

7.2 Combining Two Subsets at a Time Is Optimal

In this section we show that a branching factor of more than two is not necessary
in our recursive partitions, by showing that any ternary combination can be factored
into two binary combinations with no increase in complexity. This fact leads to a more
efficient, but still exponential, algorithm for finding the best parsing strategy for a given
SCFG rule.

Theorem 3
For any SCFG rule, if there exists a recursive partition of child nonterminals which
enables tabular parsing of an input sentence w in time O(|w|k), then there exists a
recursive binary partition whose corresponding parser is also O(|w|k).

Proof
We use the notion of number of weighted spans (Equation (20)) to concisely analyze the
complexity of synchronous parsing/decoding. For any fixed m, we count a constituent’s
number of spans using the weighted span value from Equation (18), and we drop both
the adjective “weighted” and the m subscript from this point forward.

If we are combining k subsets Bi (i = 1, ..., k, k ≥ 2) together to produce a new subset
A =

⋃
i Bi, the generalized formula for counting the total number of indices is

a +
k∑

i=1

bi (22)

where bi is the number of spans for Bi and a is the number of spans for the resulting
item A.

Consider a ternary rule X → AB C where X has x spans, A has a spans, B has b
spans, and C has c spans. In the example shown in Figure 17, x = 2, a = 2, b = 1, and c =
2. The complexity for parsing this is O(|w|a+b+c+x). Now factor this rule into two rules:

X → Y C

Y → AB

6 We use Θ to indicate an asymptotic bound that is tight in both directions.

585

Computational Linguistics Volume 35, Number 4

and refer to the number of spans in partial constituent Y as y. Parsing Y → AB takes
time O(|w|y+a+b), so we need to show that

y + a + b ≤ a + b + c + x

to show that we can parse this new rule in no more time than the original ternary rule.
Subtracting a + b from both sides, we need to prove that

y ≤ c + x

Each of the y spans in Y corresponds to a left edge. (In the case of decoding, each edge
has a multiplicity of (m− 1) on the output language side.) The left edge in each span
of Y corresponds to the left edge of a span in X or to the right edge of a span in C.
Therefore, Y has at most one span for each span in C ∪ X , so y ≤ c + x.

Returning to the first rule in our factorization, the time to parse X → Y C is
O(|w|x+y+c). We know that

y ≤ a + b

since Y was formed from A and B. Therefore

x + y + c ≤ x + (a + b) + c

so parsing X → Y C also takes no more time than the original rule X → AB C. By
induction over the number of subsets, a rule having any number of subsets on the right-
hand side can be converted into a series of binary rules. ¥

Our finding that combining no more than two subsets of children at a time is opti-
mal implies that we need consider only binary recursive partitions, which correspond to
unordered binary rooted trees having the SCFG rule’s child nonterminals as leaves. The
total number of binary recursive partitions of n nodes is (2n−3)!

2n−2(n−2)! = Θ(Γ(n− 1
2)2n−1)

(Schröder 1870, Problem III). Note that this number grows much faster than the Catalan
Number, which characterizes the number of bracketings representing the search space of
synchronous binarization (Section 4).

Although the total number of binary recursive partitions is still superexponential,
the binary branching property also enables a straightforward dynamic programming
algorithm, shown in Algorithm 3. The same algorithm can be used to find optimal
strategies for synchronous parsing or for m-gram decoding: for parsing, the variables
a, b, and c in Line 9 refer to the total number of spans of A, B, and C (Equation (16)),

Figure 17
Left, example spans for a ternary rule decomposition X → AB C. Each symbol represents a
subset of nonterminals from the original SCFG rule, and the subsets may cover discontinuous
spans in either language. Line segments represent the projection of each set of child nonterminals
into a single language, as in Figure 15. Right, factorization into X → Y C and Y → AB.

586

Huang et al. Binarization of Synchronous Context-Free Grammars

Algorithm 3 An O(3n) search algorithm for the optimal parsing strategy that may
contain discontinuous spans.

1: function BESTDISCONTINUOUSPARSER(π)
2: n = |π|
3: for i ← 2 to n do
4: for A ⊂ {1...n} s.t. |A| = i do
5: best[A] ←∞
6: for B, C s.t. A = B ∪ C ∧ B ∩ C = ∅ do
7: Let a, b, and c denote the number of
8: (A, π(A)), (B, π(B)), and (C, π(C))’s spans
9: compl[A→ B C] = max {a + b + c, best[B], best[C]}

10: if compl[A→ B C] < best[A] then
11: best[A] ← compl[A→ B C]
12: rule[A] ← A→ B C
13: return best[{1...n}]

while for decoding, a, b, and c refer to weighted spans (Equation (19)). The dynamic
programming states correspond to subsets of the input rule’s children, for which an
optimal strategy has already been computed. In each iteration of the algorithm’s inner
loop, each of the child nonterminals is identified as belonging to B, C, or neither B nor
C, making the total running time of the algorithm O(3n). Although this is exponential in
n, it is a significant improvement over considering all recursive partitions.

The algorithm can be improved by adopting a best-first exploration strategy (Knuth
1977), in which dynamic programming items are placed on a priority queue sorted
according to their complexity, and only used to build further items after all items of
lower complexity have been exhausted. This technique, shown in Algorithm 4, guar-
antees polynomial-time processing on input permutations of bounded complexity. To
see why this is, observe that each rule of the form A→ B C that has complexity no
greater than k can be written using a string of ke < k indices into the target nonterminal
string to represent the spans’ boundaries. For each index we must specify whether the
corresponding nonterminal either starts a span of subset B, starts a span of subset C, or
ends a span of B ∪ C. Therefore there are O((3n)k) rules of complexity no greater than
k. If there exists a parsing strategy for the entire rule with complexity k, the best-first
algorithm will find it after, in the worst case, popping all O((3n)k) rules of complexity
less than or equal to k off of the heap in the outer loop, and combining each one with all
other O((3n)k) such rules in the inner loop, for a total running time of O(9kn2k). Although
the algorithm is still exponential in the rule length n in the worst case (when k is linearly
correlated to n), the best-first behavior makes it much more practical for our empirically
observed rules.

7.3 Adding One Nonterminal at a Time Is Not Optimal

One might wonder whether it is necessary to consider all combinations of all subsets
of nonterminals, or whether an optimal parsing strategy can be found by adding one
nonterminal at a time to an existing subset of nonterminals until the entire permutation
has been covered. Were such an assumption warranted, this would enable an O(n2n)
dynamic programming algorithm. It turns out that one-at-a-time parsing strategies
are sometimes not optimal. For example, the permutation (4, 7, 3, 8, 1, 6, 2, 5), shown
in Figure 18, can be parsed in time O(|w|8) using unconstrained subsets, but only in

587

Computational Linguistics Volume 35, Number 4

Figure 18
The permutation (4, 7, 3, 8, 1, 6, 2, 5) cannot be efficiently parsed by adding one nonterminal at a
time. The optimal grouping of nonterminals is shown on the right.

time O(|w|10) by adding one nonterminal at a time. All permutations of less than eight
elements can be optimally parsed by adding one element at a time.

7.4 Discontinuous Parsing Is Necessary Only for Non-Decomposable Permutations

In this subsection, we show that an optimal parsing strategy can be found by first
factoring an SCFG rule into a sequence of shorter SCFG rules, if possible, and then
considering each of the new rules independently. The first step can be done efficiently
using the algorithms of Zhang and Gildea (2007). The second step can be done in time
O(9kc · n2kc) using Algorithm 4, where kc is the complexity of the longest SCFG rule
after factorizations, implying that kc ≤ (n + 4). We show that this two-step process is
optimal, by proving that the optimal parsing strategy for the initial rule will not need
to build subsets of children that cross the boundaries of the factorization into shorter
SCFG rules.

Figure 19 shows a permutation that contains permutations of fewer numbers within
itself so that the entire permutation can be decomposed hierarchically. We prove that
if there is a contiguous block of numbers that are permuted within a permutation, the

Algorithm 4 Best-first search for the optimal parsing strategy.
1: function BESTDISCONTINUOUSPARSER(π)
2: n = |π|
3: for A ⊂ {1...n} do
4: chart[A] = ∞
5: for i ← 1...n do
6: push[heap, 0, {i}] . Priority queue of good subsets
7: while chart[{1 . . . n}] = ∞ do
8: B ← pop(heap)
9: chart[B] ← best[B] . guaranteed to have found optimal analysis for subset B

10: for C s.t. B ∩ C = ∅ ∧ chart[C] < ∞ do
11: A← B ∪ C
12: Let a, b, and c denote the number of
13: (A, π(A)), (B, π(B)), and (C, π(C))’s spans
14: compl[A→ B C] = max {a + b + c, best[B], best[C]}
15: if compl[A→ B C] < best[A] then
16: best[A] ← compl[A→ B C]
17: rule[A] ← A→ B C
18: push(heap, best[A],A)
19: return best[{1...n}]

588

Huang et al. Binarization of Synchronous Context-Free Grammars

Figure 19
A permutation that can be decomposed into smaller permutations hierarchically. We prove that
this decomposition corresponds to the optimal parsing strategy for an SCFG rule with this
permutation.

optimal parsing strategy for the entire permutation does not have to involve interactions
between subsets of numbers inside and outside the block. We call filled entries in the
permutation matrix pebbles; the contiguous blocks are shaded in Figure 19, and form
submatrices with a pebble in each row and column. We can first decompose a given
permutation into a hierarchy of smaller permutations as the tree shown in Figure 19
and then apply the discontinuous strategy to the non-decomposable permutations in
the tree. So, in this example, we just need to focus on the optimal parsing strategy for
(2, 4, 1, 3), which is applied to permute (4, 5, 6, 7) into (5, 7, 4, 6). By doing this kind of
minimization, we can effectively reduce the search space without losing optimality of
the parsing strategy for the original permutation.

Theorem 4
For any SCFG rule, if there exists a recursive partition of child nonterminals which
enables tabular parsing of an input sentence w in time O(|w|k), and if S is a subset
of child nonterminals forming a single continuous span in each language, then there
exists a recursive partition containing S as a member whose corresponding parser is
also O(|w|k).

See the Appendix for the proof. See Table 3 for a summary of the four factorization
algorithms presented in this article (Algorithms 3 and 4 can be improved by first
factorizing the permutation into smaller permutations [Section 7.4]).

7.5 Experiments

The combination of minimizing SCFG rule length as a preprocessing step and then
applying the best-first version of Algorithm 3 makes it possible to find optimal parsing
strategies for all of the rules in the large Chinese–English rule set used for our decoding
experiments. For the 157,212 non-binarizable rules (0.3% of the total), the complexity
of the optimal parsing strategies is shown in Table 4. Although the worst parsing
complexity is O(|w|12), this is only achieved by a single rule. The best-first analyzer
takes approximately five minutes of CPU time to analyze this single rule, but processes
all others in less than one second.

We tested the CKY-based factorization algorithm on our set of non-binarizable
rules extracted from the Chinese–English data. The CKY-on-English method found an
optimal parsing strategy for 98% of the rules, and its worst-case complexity over the
entire ruleset was O(|w|15), rather than the optimal O(|w|12). If we run CKY factorization
from two directions (one for the permutation π and the other for the permutation π−1)
and take the minimum of both, we can get an even better approximation. In Table 4,
we compare the approximate strategy which takes the minimum of CKY runs for

589

Computational Linguistics Volume 35, Number 4

Table 4
The distribution of parsing complexities of non-binarizable rules extracted from the
GIZA-aligned Chinese–English data in Section 5. The first column denotes the exponent of the
time complexity—for example, 10 means O(|w|10). opt denotes the optimal parsing strategy and
cky-min denotes the approximation strategy that takes the better of the CKY results on both sides.

Complexities Synchronous Parsing Trigram Decoding Trigram Decoding
/Bigram Decoding (Chinese to English) (English to Chinese)

opt cky-min opt cky-min opt cky-min

19 1
18 1
17 1 1
16
15 1 7 10 3 4
14 4 3 6 6
13 2240 2238 1080 1079
12 1 1 610 610 548 548
11 154,350 154,350 155,574 155,574
10 68 156

9 101 307
8 157,042 156,747

two languages, which we call CKY-min, with the optimal strategy. For synchronous
parsing, for 99.77% of the rules, the CKY-min method found an optimal strategy. When
generalized for m-gram integrated decoding, CKY maintains continuous spans on the
output language and allows for discontinuous parsing on the input sentence. The differ-
ence between CKY-on-output and the optimal decoding strategy was negligible in the
situation of trigram-integrated decoding for the given rules. The worst-case complexity
for decoding into English by CKY-on-English was O(|w|18), versus O(|w|17) from the
optimal strategy. The CKY-on-English approach found an optimal decoding strategy
for 99.97% of the non-binarizable rules. The CKY-min strategy was even better, only
finding sub-optimal results for six rules out of all rules, which translates to 99.996%. In
Table 4, we have also included the comparison for translating into Chinese, in which
case the inverted permutations are used and the language model weight is put on the
Chinese side. A similar approximation accuracy was achieved.

7.6 Bounds on Complexity of Factorization

Given that our algorithms for optimal factorization are exponential, it is natural to
ask whether the problem is provably NP-complete. Gildea and Štefankovič (2007)
relate the problem of finding the optimal parsing strategy for a rule to computing
the treewidth of a graph derived from the rule’s permutation. Computing treewidth of
arbitrary graphs is NP-complete (Arnborg, Corneil, and Proskurowski 1987), but the
graphs derived from SCFG permutations have a restricted structure that it might be
possible to exploit. In particular, the graphs have degree no greater than six. While
computing treewidth for graphs of bounded degree nine was shown to be NP-complete
by Bodlaender and Thilikos (1997), whether the treewidth problem for graphs of degree
between three and eight is NP-complete is not known. Thus, whether computing the
optimal parsing strategy for an SCFG rule is NP-complete remains an interesting open
problem.

590

Huang et al. Binarization of Synchronous Context-Free Grammars

8. Conclusion

This work develops a theory of binarization for synchronous context-free grammars. We
present a technique called synchronous binarization along with an efficient binariza-
tion algorithm. Empirical study shows that the vast majority of syntactic reorderings, at
least between languages like English and Chinese, can be efficiently decomposed into
hierarchical binary reorderings. As a result, decoding with n-gram models can be fast
and accurate, making it possible for our syntax-based system to overtake a comparable
phrase-based system in BLEU score.

There are, however, some interesting rules that are not binarizable, and we pro-
vide, for the first time, real examples verified by native speakers. For these remaining
rules, we have shown an exponential time algorithm for finding optimal parsing strate-
gies, which runs quite fast with the help of two optimality-maintaining operations and
the A* search strategy. We also provide an efficient approximation, which usually finds
optimal parsing strategies in practice. As non-binarizable rules did not improve our
translation system, these parsing strategies are primarily of theoretical interest, though
they may become more important in future systems.

Acknowledgments
Much of this work was done while the first two authors were visiting USC/ISI. This work was
partially funded by NSF grants IIS-0428020 and EIA-0205456.

Appendix A. Proof of Theorem 4

We prove by contradiction. Let us suppose that the optimal parsing strategy for a
permutation P splits a contiguous block S of P into two subtrees TL and TR, as shown
at the top of Figure 20, in either or both of which there are some pebbles from outside
S. As in Section 7, we count spans in this section using the weighted span value of
Equation (18) to account for m-gram language model state. We use dLO to denote the
number of spans of the pebbles outside of S in TL. dLI is the number of spans of the
pebbles inside S for TL. We use rL to denote the reduction in the number of spans
achieved by merging the pebbles inside and outside of S for TL. So, the number of spans
of the root of TL is dLO + dLI − rL. We have symmetric notions for TR. We use d to denote
the number of spans of the root of the subtree T after merging TL and TR. The number
of spans is annotated for each node in Figure 20.

Notice that (rR + rL) ≤ 2m because there are at most two boundaries shared by
inside pebbles and outside pebbles in each language. Each boundary in the source
corresponds to the reduction of one span. Each boundary in the target corresponds to
the reduction of one weighted span of (m− 1). In total, we can reduce the number of
(weighted) spans by no more than 2(m− 1) + 2 = 2m. This inequality implies either
rR ≤ m or rL ≤ m. Without loss of generality, we assume

rR ≤ m (A.1)

Given the decomposition into TL and TR, the yield of the best strategy throughout
T is

best(T) = max { best(TL), best(TR), ((dLO + dLI − rL) + (dRI + dRO − rR) + d) } (A.2)

591

Computational Linguistics Volume 35, Number 4

Figure 20
Reorganization of a parsing strategy to build a continuous span S first.

Figure 21 gives a concrete example. The permutation is (5, 7, 4, 6, 1, 2, 3). The block S
we focus on is (5, 7, 4, 6). The original strategy at the top of the figure splits the block into
TL and TR. The improved strategy on the bottom merges the pebbles inside S together
before making combinations with pebbles outside S.

Figure 21
An actual example of reorganization of a parsing strategy to build a continuous span S first.
Before, the overall strategy cost is (7m− 3). After, the cost is (5m− 2). Note that (m ≥ 2). We use
black to represent pebbles in the right branch of the root node and white for the left branch. Gray
areas are continuous blocks within the permutation. The reorganized strategy can be further
improved by making another such transformation to allow for the lower right corner pebbles to
group before interacting with the upper left corner.

592

Huang et al. Binarization of Synchronous Context-Free Grammars

In general, we argue that we can have an equally good or better strategy by separat-
ing each of TL and TR into two trees involving pebbles purely inside or outside of S, as
shown at the bottom of Figure 20. The separation works by simply ignoring the pebbles
that are not inside when creating the inside half of the tree or outside when doing the
outside half throughout TL and TR. Then we have four elementary subtrees TLO, TLI,
TRI, and TRO. In our new strategy, we recombine the four elementary trees by merging
TLI and TRI to create a pebble first and merging the resulting pebble back into TLO to
make a T′LO, and finally merging T′LO with TRO.

The elementary trees yield better strategies because the number of spans of each
node in these trees is reduced or not changed as compared to that before separation.
Using the a + b + c formula with reduced a, b, and c will produce lower complexity.
Roughly speaking, the reason is the inside pebbles and outside pebbles are positioned
side by side instead of mixed together. Mathematically, the reduction of spans by
combining both sides is upper-bounded by 2m, considering there are two boundaries
in each language. At the same time, the number of spans of either the inside pebbles
or the outside pebbles is lower-bounded by 2m because both TL and TR only partially
cover S. Hence, we have the following set of inequalities:

best(TLI) ≤ best(TL) (A.3)

best(TRI) ≤ best(TR) (A.4)

best(TRO) ≤ best(TR) (A.5)

Now we consider what happens when the pebble of S joins TLO. Because TLO is
created from TL by pruning away the pebbles that are inside S, the pebble of S can join
TLO by taking the place of any trace of the pruned leaves and making the number of
spans from the bottom up to the root no greater than in the counterpart nodes in TL.

So the fragment of the new left subtree T′LO with S being its leaf has a better yield
than the original TL:

best(T′LO/S) ≤ best(TL) (A.6)

where we use T′LO/S to denote the tree fragment excluding the nodes under S. The
number of spans for each node in the reorganized tree is shown in Figure 20 (bottom),
where r (≤ 2m) is the reduction in spans after combining the new pebble S with TLO. r
sums up the reductions achievable on the four boundaries of S with TLO, while rL sums
up the reductions on some of the four boundaries. Thus,

rL ≤ r (A.7)

The final yield of the updated strategy is

best(T′) = max

best(T′LO/S), best(TLI), best(TRI), best(TRO),
(dLI + dRI + m),

((dLO + m− r) + dRO + d)

 (A.8)

We have shown the first four terms inside the maximization are bounded by the
yield of the old strategy (Equations [A.3–A.6]). We need to bound the remaining terms.

593

Computational Linguistics Volume 35, Number 4

Both of them can be bounded by the third term inside the maximization of Equa-
tion (A.2). The first inequality is

dLI + dRI + m ≤ (dLO + dLI − rL) + (dRI + dRO − rR) + d (A.9)

which is equivalent to

m ≤ (dLO + dRO)− (rL + rR) + d

which is true because d ≥ m (since T has at least one pebble), and dLO ≥ rL and dRO ≥ rR
(since the number of reducible spans is less than the total number of outside spans).

Our final bound relates the last terms of Equations (A.2) and (A.8)

((dLO + m− r) + dRO + d) ≤ ((dLO + dLI − rL) + (dRI + dRO − rR) + d) (A.10)

This simplifies to

m− r ≤ dLI + dRI − rR − rL

This inequality is true because m ≤ dLI, since there is at least one inside pebble in TL, and
dRI ≥ rR because dRI ≥ m ≥ rR, referring to Equation (A.1), and finally r ≥ rL, as shown
in Equation (A.7).

Figure 20 also demonstrates the re-distribution of numbers of spans after the reor-
ganization. In the example, the updated parsing/decoding complexity is O(|w|5m−2),
better than before (O(|w|7m−3)).

Therefore, any synchronous parsing/decoding strategy that crosses decomposition
boundaries cannot be better than an optimized strategy that respects such boundaries.
¥

References
Aho, Albert V. and Jeffery D. Ullman. 1972.

The Theory of Parsing, Translation, and
Compiling, volume 1. Prentice-Hall,
Englewood Cliffs, NJ.

Arnborg, Stefen, Derek G. Corneil, and
Andrzej Proskurowski. 1987. Complexity
of finding embeddings in a k-tree. SIAM
Journal of Algebraic and Discrete Methods,
8:277–284.

Bodlaender, H. L. and D. M. Thilikos. 1997.
Treewidth for graphs with small
chordality. Discrete Applied Mathematics,
79:45–61.

Catalan, Eugène. 1844. Note extraite d’une
lettre adressée. Journal fürdie reine und
angewandte Mathematik, 27:192.

Chiang, David. 2005. A hierarchical
phrase-based model for statistical
machine translation. In Proceedings
of the 43rd Annual Conference of the
Association for Computational
Linguistics (ACL-05), pages 263–270,
Ann Arbor, MI.

Cormen, Thomas H., Charles E. Leiserson,
and Ronald L. Rivest. 1990. Introduction
to Algorithms. MIT Press, Cambridge, MA.

Eisner, Jason. 2003. Learning non-isomorphic
tree mappings for machine translation. In
Proceedings of the 41st Meeting of the
Association for Computational Linguistics,
pages 205–208, Sapporo, Japan.

Galley, Michel, Mark Hopkins, Kevin Knight,
and Daniel Marcu. 2004. What’s in a
translation rule? In Proceedings of the 2004
Meeting of the North American chapter of the
Association for Computational Linguistics
(NAACL-04), pages 273–280, Boston, MA.

Gildea, Daniel and Daniel Štefankovič. 2007.
Worst-case synchronous grammar rules. In
Proceedings of the 2007 Meeting of the North
American Chapter of the Association for
Computational Linguistics (NAACL-07),
pages 147–154, Rochester, NY.

Graham, Ronald. 1972. An efficient
algorithm for determining the convex hull
of a finite planar set. Information Processing
Letters, 1:132–133.

594

Huang et al. Binarization of Synchronous Context-Free Grammars

Huang, Liang. 2007. Binarization,
synchronous binarization, and target-side
binarization. In Proceedings of the
NAACL/AMTA Workshop on Syntax and
Structure in Statistical Translation (SSST),
pages 33–40, Rochester, NY.

Huang, Liang and David Chiang. 2005.
Better k-best parsing. In International
Workshop on Parsing Technologies (IWPT05),
pages 53–64, Vancouver.

Huang, Liang, Hao Zhang, and Daniel
Gildea. 2005. Machine translation as
lexicalized parsing with hooks. In
International Workshop on Parsing
Technologies (IWPT05), pages 65–73,
Vancouver.

ISI Machine Translation Team. 2006. ISI at
NIST-06. Working Notes of the NIST MT
Evaluation Workshop, September.
Washington, D.C.

Knight, Kevin and Jonathan Graehl. 2005. An
overview of probabilistic tree transducers
for natural language processing. In
Conference on Intelligent Text Processing and
Computational Linguistics (CICLing),
pages 1–24. Mexico City.

Knuth, D. 1977. A generalization of Dijkstra’s
algorithm. Information Processing Letters,
6(1):1–5.

Liu, Yang, Qun Liu, and Shouxun Lin. 2005.
Log-linear models for word alignment. In
Proceedings of the 43rd Annual Conference
of the Association for Computational
Linguistics (ACL-05), pages 459–466,
Ann Arbor, MI.

Melamed, I. Dan. 2003. Multitext grammars
and synchronous parsers. In Proceedings of
the 2003 Meeting of the North American
Chapter of the Association for Computational
Linguistics (NAACL-03), pages 158–165,
Edmonton.

Mihalcea, Rada and Ted Pederson. 2003. An
evaluation exercise for word alignment. In
HLT-NAACL 2003 Workshop on Building and
Using Parallel Texts: Data Driven Machine
Translation and Beyond, pages 1–10,
Edmonton.

Nederhof, M.-J. 2003. Weighted deductive
parsing and knuth’s algorithm.
Computational Linguistics, 29(1):135–144.

Och, Franz Josef and Hermann Ney. 2004.
The alignment template approach to
statistical machine translation.
Computational Linguistics, 30(4):417–449.

Rambow, Owen and Giorgio Satta. 1999.
Independent parallelism in finite copying
parallel rewriting systems. Theoretical
Computer Science, 223(1-2):87–120.

Rounds, William C. 1970. Mappings and
grammars on trees. Mathematical Systems
Theory, 4(3):257–287.

Satta, Giorgio and Enoch Peserico. 2005.
Some computational complexity results for
synchronous context-free grammars. In
Proceedings of Human Language Technology
Conference and Conference on Empirical
Methods in Natural Language Processing
(HLT/EMNLP), pages 803–810, Vancouver.

Schröder, E. 1870. Vier combinatorische
Probleme. Zeitschrift für Mathematik und
Physik, 15:361–376.

Shapiro, L. and A. B. Stephens. 1991.
Bootstrap percolation, the Schröder
numbers, and the n-kings problem.
SIAM Journal on Discrete Mathematics,
4(2):275–280.

Shieber, Stuart M. 2004. Synchronous
grammars as tree transducers. In
Proceedings of the Seventh International
Workshop on Tree Adjoining Grammar and
Related Formalisms (TAG+ 7), pages 88–95,
Vancouver.

Shieber, Stuart and Yves Schabes. 1990.
Synchronous tree-adjoining grammars.
In Proceedings of the 13th International
Conference on Computational Linguistics
(COLING-90), volume III, pages 253–258,
Helsinki.

Wellington, Benjamin, Sonjia Waxmonsky,
and I. Dan Melamed. 2006. Empirical
lower bounds on the complexity of
translational equivalence. In Proceedings
of the International Conference on
Computational Linguistics/Association
for Computational Linguistics
(COLING/ACL-06), pages 977–984, Sydney.

Wu, Dekai. 1996. A polynomial–time
algorithm for statistical machine
translation. In 34th Annual Meeting of the
Association for Computational Linguistics,
pages 152–158, Santa Cruz, CA.

Wu, Dekai. 1997. Stochastic inversion
transduction grammars and bilingual
parsing of parallel corpora. Computational
Linguistics, 23(3):377–403.

Zhang, Hao and Daniel Gildea. 2007.
Factorization of synchronous context-free
grammars in linear time. In NAACL
Workshop on Syntax and Structure in
Statistical Translation (SSST), pages 25–32,
Rochester, NY.

Zhang, Hao, Liang Huang, Daniel Gildea,
and Kevin Knight. 2006. Synchronous
binarization for machine translation.
In Proceedings of the NAACL,
pages 256–263, New York.

595

