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We propose a novel string-to-dependency algorithm for statistical machine translation. This
algorithm employs a target dependency language model during decoding to exploit long distance
word relations, which cannot be modeled with a traditional n-gram language model. Experiments
show that the algorithm achieves significant improvement in MT performance over a state-of-
the-art hierarchical string-to-string system on NIST MT06 and MT08 newswire evaluation sets.

1. Introduction

n-gram Language Models (LMs) have been widely used in current Statistical Machine
Translation (SMT) systems. Because they treat a sentence as a flat string of tokens, a
drawback of traditional n-gram LMs is that they cannot model long range word rela-
tions, such as predicate–argument attachments, that are critical to translation quality.

We propose a hierarchical string-to-dependency translation model that exploits
a dependency LM while decoding (as opposed to during reranking n-best output) to
score alternative translations based on their structural soundness. In order to generate
the structured output (dependency trees) required for dependency LM scoring, transla-
tion rules in our system represent the target side as dependency structures. We restrict
the target side of the rules to well-formed dependency structures to weed out bad
translation rules and enable efficient decoding through dynamic programming. Due to
the flexibility of well-formed dependency structures, such structures can cover a large
set of non-constituent transfer rules (Marcu et al. 2006) that have been shown useful
for MT.

For comparison purposes, as our baseline, we replicated the Hiero decoder (Chiang
2005), a state-of-the-art hierarchical string-to-string model. Our experiments show that
the string-to-dependency decoder significantly improves MT performance. Overall, the
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improvement in BLEU score is around 2 BLEU points on NIST Arabic-to-English and
Chinese-to-English newswire test sets.

Section 2 briefly discusses previous approaches to SMT in order to motivate our
work. Section 3 provides an overview of our string-to-dependency translation system.
Section 4 provides a complete description of our system, including formal definitions
of well-formed dependency structures and their operations, as well as proofs about
their key properties. Section 5 describes the implementation details, which include
rule extraction, decoding, using dependency LM scores, and using labels in translation
rules. We discuss experimental results in Section 6, compare our work with related
work in Section 7, and draw conclusions in Section 8.

2. Previous Approaches to SMT

Phrase-based systems (Koehn, Och, and Marcu 2003; Och 2003) had dominated SMT
until recently. Such systems typically treat the input as a sequence of phrases (word
n-grams), reorder them, and produce a translation for the reordered sentence based on
translation options of each source phrase. A prominent feature of such systems is the
use of an n-gram LM to measure the quality of translation hypotheses. A drawback of
such systems is that the lack of structural information in the output makes it impossible
to score translation hypotheses based on their structural soundness.

The Hiero system (Chiang 2007) was a major breakthrough in SMT. Translation
rules in Hiero contain non-terminals (NTs), as well as words, which allow the input
to be translated in a hierarchical manner. Because both the source and target sides of
its translation rules are strings with NTs, Hiero can be viewed as a hierarchical string-
to-string model. Despite the hierarchical nature of its decoder, Hiero lacks the ability to
measure translation quality based on structural relations such as predicate–argument
agreement.

Yamada and Knight (2001) proposed a syntax-based translation model that transfers
a source parse tree into a target string. This method depends on the quality of source
side parsing, and ignores target information during source side analysis. Mi, Huang,
and Liu (2008) later proposed a translation model that takes the source parse forest as
MT input to reduce translation errors due to imperfect source side analysis.

Galley et al. (2004) proposed an MT model which produces target parse trees for
string inputs in order to exploit the syntactic structure of the target language. Galley
et al. (2006) formalized this approach with tree transducers (Graehl and Knight 2004)
by using context-free parse trees to represent the target side. However, it was later
shown by Marcu et al. (2006) and Wang, Knight, and Marcu (2007) that coverage could
be a big issue for the constituent based rules, even though the translation rule set was
already very large.

Carreras and Collins (2009) introduced a string-to-tree MT model based on spinal
Tree Adjoining Grammar (TAG) (Joshi and Schabes 1997; Shen, Champollion, and Joshi
2008). In this model, a translation rule is composed of a source string and a target
elementary tree. Target hypothesis trees are combined with the adjoining operation,
and there are no NT slots for substitution as in LTAG-spinal parsing (Shen and Joshi
2005, 2008; Carreras, Collins, and Koo 2008). Without the constraint of NT slots, the
adjoining operation allows very flexible composition, so that the search space becomes
much larger. One has to carefully prune the search space.

DeNeefe and Knight (2009) proposed another TAG-based MT model. In their
implementation, a TAG grammar was transformed to an equivalent Tree Insertion
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Grammar (TIG). In this way, they do not have an explicit adjoining operation in their
system, and as such reduce the search space in decoding. Sub-trees are combined with
NT substitution.

Many researchers followed the tree-to-tree approach (Shieber and Schabes 1990) to
take advantage of structural knowledge on both sides—for example, as in the papers
by Hajič et al. (2002), Eisner (2003), Ding and Palmer (2005), and Quirk, Menezes, and
Cherry (2005). Although tree-to-tree models can represent rich structural information
of the input and the output, they have not significantly improved MT performance,
possibly due to a much larger grammar and search space. On the other hand, Smith and
Eisner (2006) showed the necessity of allowing loose transformations between the trees,
which made tree-to-tree models even more complicated.

3. Overview of String-to-Dependency Translation

Our system is designed to address problems with existing SMT approaches. It is novel
in two respects. First, it uses a dependency LM to model long-distance relations. Sec-
ond, it uses well-formed dependency structures to represent translation hypotheses to
achieve an effective trade-off between model coverage and decoding complexity.

3.1 Dependency-Based Translation and Language Models

Our system generates target dependency trees as output and exploits a dependency LM
in scoring translation hypotheses. As described before, the goal of using a dependency
LM is to exploit long-distance word dependencies and as such model the quality of the
output more accurately.

Figure 1 shows an example dependency tree. Each arrow points from a child to its
parent. In this example, the word find is the root.

For the purpose of comparison, we first show how a simplified SMT system uses an
n-gram LM to score translation hypotheses:

S′
e = argmax

Se

P(Se|Sf )
w1P(Sf |Se)

w2P(Se)
w3 (1)

where w1,w2, and w3 are feature weights. Sf is the input and Se’s are outputs. P(Se|Sf )
is the probability of the target string given the source, and P(Sf |Ss) is the probability of
the source given the target. P(Se) is the prior probability of the target string Se using an
n-gram LM.

Figure 1
The dependency tree for sentence the boy will find it interesting.
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In comparison, the scoring function in our system is:

D′ = argmax
D

P(D|Sf )
w1P(Sf |D)w2P(D)w3 (2)

where P(D) is the dependency LM score of target dependency tree D. We will show how
to compute P(D) in Section 5.4.

We can rewrite Equation (2) with a linear model:

D′ = argmax
D

n∑
i=1

wiFi(Sf ,D) (3)

where n = 3,F1 = log P(D|Sf ),F2 = log P(Sf |D), and F3 = log P(D). In practice, we use
both a dependency LM and a traditional n-gram LM (also known as a string LM), as
well as several other features, in our decoder. Section 5.6 lists all the features used in
our decoder.

3.2 Well-Formed Dependency Structures

A central question in our system design is: What kinds of dependency structures are
allowed in translation rules? One extreme would be to allow any arbitrary multiple
level treelets, as in Ding and Palmer (2005) and Quirk, Menezes, and Cherry (2005).
One can define translation rules on any fragment of a parse/dependency tree. It offers
maximum coverage of translation patterns, but suffers from data sparseness and a large
search space.

The other extreme would be to allow only complete (CFG) constituents. This offers
a more robust model and a small search space, but excludes many useful transfer rules.

In our system, the target side hypotheses are restricted to well-formed dependency
structures (see Section 4 for formal definitions) for a trade-off between rule coverage,
model robustness, and decoding complexity. In short, a well-formed dependency struc-
ture is either (1) a single rooted tree, with each child being a complete sub-tree, or (2) a
sequence of siblings, each being a complete sub-tree.

Well-formed dependency structures are very flexible and can represent a variety of
non-constituent rules in addition to rules that are complete constituents. For example,
the following translation

hong
Chinese-to-English
−−−−−−−−−−−−−→ the red

is obviously useful for Chinese-to-English MT, but cannot be represented in some tree-
based translation systems since the red is a partial constituent. However, it is a valid
dependency structure in our system.

4. Formalism

We first formally define the well-formed dependency structures, which are used to
represent target hypotheses. Then, we define the operations to build well-formed de-
pendency structures from the bottom up in decoding.
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4.1 Well-Formed Dependency Structures and Categories

In order to exclude undesirable structures and reduce the search space, we only allow
Se whose dependency structure D is well formed, which we will define subsequently.
The well-formedness requirement will be applied to partial decoding results.

Based on the results of previous work (DeNeefe et al. 2007), we keep two kinds of
dependency structures, fixed and floating. Fixed structures consist of a sub-root with
children, each of which must be a complete constituent. We call them fixed dependency
structures because the head is known or fixed. Floating structures consist of a number
of consecutive sibling nodes of a common head, but the head itself is unspecified. Each
of the siblings must be a complete constituent. Floating structures can represent many
linguistically meaningful non-constituent structures: for example, like the red, a modifier
of a noun. Only those two kinds of dependency structures are well-formed structures in
our system.

In the rest of this section, we will provide formal definitions of well-formed
structures and combinatory operations over them, so that we can easily manipulate
them in decoding. Examples will be provided along with the formal definitions to aid
understanding.

Consider a sentence S = w1w2...wn. Let d1d2...dn represent the parent word IDs for
each word. For example, d4 = 2 means that w4 depends on w2. If wi is a root, we define
di = 0.

Definition 1
A dependency structure didi+1...dj, or di..j for short, is fixed on head h, where h ∈ [i, j],
or fixed for short, if and only if it meets the following conditions

1. dh /∈ [i, j]

2. ∀k ∈ [i, j] and k �= h, dk ∈ [i, j]

3. ∀k /∈ [i, j], dk = h or dk /∈ [i, j]

We say the category of di..j is (−, h,−), where −means this field is undefined.

Definition 2
A dependency structure di...dj is floating with children C, for a non-empty set C ⊆
{i, ..., j}, or floating for short, if and only if it meets the following conditions

1. ∃h /∈ [i, j], s.t.∀k ∈ C, dk = h

2. ∀k ∈ [i, j] and k /∈ C, dk ∈ [i, j]

3. ∀k /∈ [i, j], dk /∈ [i, j]

We say the category of di..j is (C,−,−) if j < h, which means that children are on the left
side of the head, or (−,−,C) otherwise.

A category is composed of the three fields (A, h,B), where h is used to represent the
head, and fields A and B represent left and right dependents of the head, respectively.
A dependency structure is well-formed if and only if it is either fixed or floating.
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Examples

We represent dependency structures with graphs. Figure 2 shows examples of fixed
structures, Figure 3 shows examples of floating structures, and Figure 4 shows ill-
formed dependency structures.

The structures in Figures 2 and 3 are well-formed. Figure 4(a) is ill-formed because
boy does not have its child word the in the tree. Figure 4(b) is ill-formed because it is not
a continuous segment due to the missing it.

As for the example the red mentioned earlier, it is a well-formed floating dependency
structure.

It is easy to see that a floating structure whose child set C has only one element is
also a fixed structure. Actually, this is a desirable property on which we will introduce
meta category operations later. However, for the sake of convenience, we would like to
assign a single category to each well-formed structure.

Figure 2
Fixed dependency structures.

Figure 3
Floating dependency structures.

Figure 4
Ill-formed dependency structures.
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Definition 3
Let structure T be well formed. Category cat of T is defined as follows

cat(T) =




(−, h,−) if T is fixed on h
(C,−,−) if T is floating with children C on the left side AND |C| > 1
(−,−,C) if T is floating with children C on the right side AND |C| > 1

cat is well-defined according to Definitions 1 and 2.

4.2 Operations

One of the purposes of introducing floating dependency structures is that siblings hav-
ing a common parent will become a well-defined entity, although they are not con-
sidered a constituent. We always build well-formed partial structures on the target side
in decoding. Furthermore, we combine partial dependency structures in a way such
that we can obtain all possible well-formed dependency structures (but no ill-formed
ones) during bottom–up decoding.

The solution is to employ categories (introduced earlier). Each well-formed depen-
dency structure has a category. We can apply four combinatory operations over the
categories. If we can combine two categories with a certain category operation, we can
use a corresponding tree operation to combine two dependency structures. The cate-
gory of the combined dependency structure is the result of the combinatory category
operations.

Operations on Well-Formed Dependency Structures

There are four types of operations on well-formed dependency structures. Instead of
providing formal definitions, we use figures to illustrate these operations to make them
easy to understand. Figure 1 shows a traditional dependency tree. Figure 5 shows the
four operations for combining partial dependency structures, which are left adjoining
(LA), right adjoining (RA), left concatenation (LC), and right concatenation (RC). We
always combine two well-formed structures in one of the four ways, and obtain a larger
well-formed structure.

Two structures can be combined by adjoining, which is similar to the traditional
dependency formalism. We can adjoin either a fixed structure or a floating structure to
the head of a fixed structure.

Completed siblings can be combined via concatenation. We can concatenate two
fixed structures, one fixed structure with one floating structure, or two floating struc-
tures in the same direction.

The flexibility of the order of operation allows us to take advantage of various
translation fragments encoded in transfer rules. Figure 6 shows alternative ways of
applying operations on well-formed structures to build larger structures in a bottom–
up style. Numbers represent the order of operation. The fact that the same dependency
structure can have multiple derivations means that we can utilize various rules learned
from different training samples. Such flexibility is important for MT.
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Figure 5
Operations over well-formed structures.

Figure 6
Two alternative derivations of an example dependency tree.

Meta Operations on Categories

We first introduce three meta category operations, which will later be used to define
category operations. Two of the meta operations are unary operations, left raising (LR)
and right raising (RR), and one is the binary operation unification (UF).

Definition 4
Meta Category Operations

� LR((−, h,−)) = ({h},−,−)

� RR((−, h,−)) = (−,−, {h})
� UF((A1, h1,B1), (A2, h2,B2)) = NORM((A1  A2, h1  h2,B1  B2))

First, the raising operations are used to turn a completed fixed structure into a
floating structure, according to Theorem 1.

Theorem 1
A fixed structure with category (−, h,−) for span [i, j] is also a floating structure with
children {h} if there are no outside words depending on word h, which means that

∀k /∈ [i, j], dk �= h (4)

Proof
It suffices to show that all the three conditions of floating structures hold. Conditions 1
and 2 immediately follow from conditions 1 and 2 of the fixed structure, respectively.
Condition 3 is met according to Equation (4) and condition 3 of the fixed structure. �
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Therefore, we can always raise a fixed structure if we assume it is complete, that is,
Equation (4) holds.

Unification is well-defined if and only if we can unify all three elements and the
result is a valid fixed or floating category. For example, we can unify a fixed structure
with a floating structure or two floating structures in the same direction, but we cannot
unify two fixed structures.

h1  h2 =




h1 if h2 = −
h2 if h1 = −
undefined otherwise

A1  A2 =




A1 if A2 = −
A2 if A1 = −
A1 ∪ A2 otherwise

NORM((A, h,B)) =




(−, h,−) if h �= −
(A,−,−) if h = −,B = −
(−,−,B) if h = −,A = −
undefined otherwise

Operations on Categories

Now we define category operations. For the sake of convenience, we use the same
names for category operations and dependency structure operations. We can easily use
the meta category operations to define the four combinatory category operations. The
definition of the operations is as follows.

Definition 5
Combinatory category operations

LA((A1,−,−), (−, h2,−)) = UF((A1,−,−), (−, h2,−))

LA((−, h1,−), (−, h2,−)) = UF(LR((−, h1,−)), (−, h2,−))

LC((A1,−,−), (A2,−,−)) = UF((A1,−,−), (A2,−,−))

LC((A1,−,−), (−, h2,−)) = UF((A1,−,−), LR((−, h2,−)))

LC((−, h1,−), (A2,−,−)) = UF(LR((−, h1,−)), (A2,−,−))

LC((−, h1,−), (−, h2,−)) = UF(LR((−, h1,−)), LR((−, h2,−)))

RA((−, h1,−), (−,−,B2)) = UF((−, h1,−), (−,−,B2))

RA((−, h1,−), (−, h2,−)) = UF((−, h1,−), RR((−, h2,−)))

RC((−,−,B1), (−,−,B2)) = UF((−,−,B1), (−,−,B2))

RC((−, h1,−), (−,−,B2)) = UF(RR((−, h1,−)), (−,−,B2))

RC((−,−,B1), (−, h2,−)) = UF((−,−,B1), RR((−, h2,−)))

RC((−, h1,−), (−, h2,−)) = UF(RR((−, h1,−)), RR((−, h2,−)))
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Based on the definitions of dependency structure operations and category op-
erations, one can verify the one-to-one correspondence. This correspondence can be
formally stated in the following theorem.

Theorem 2
Suppose X and Y are well-formed dependency structures and OP(cat(X), cat(Y)) is well-
defined. We have

cat(OP(X,Y)) = OP(cat(X), cat(Y)) (5)

Proof
The proof of the theorem is rather routine, so we just give a sketch here. One can show
it by induction on the number of nodes in dependency structures. It suffices to show
that Equation (5) holds for all the operations. Actually, the category operations are
designed to meet this requirement; the three fields of a category represent the head
and the children on both sides. �

With category operations, we can easily track the types of dependency structures
and constrain operations in decoding.

Soundness and Completeness

Now we show the soundness and completeness of the operations on dependency
structures. If we follow the operations defined herein, we will build all the well-formed
structures and only the well-formed structures.

Theorem 3 (Soundness)
Let X and Y be two well-defined dependency structures, and OP an operation over X
and Y. It can be shown that OP(X,Y) is also a well-defined dependency structure.

Proof
Theorem 3 immediately follows Theorem 2. �

Theorem 4 (Completeness)
Let Z be a well-defined dependency structure with at least two nodes. It can be
shown that there exist well-formed structures X,Y and an operation OP, such that
Z = OP(X,Y).

Proof
If Z is fixed on h, without losing generality, we assume g is the leftmost child (or
rightmost if there is no left child) of h. We detach g from h, and obtain two sub-trees
X and Y which are rooted on g and h respectively. It can be verified that X and Y are
well-formed, and Z = LA(X,Y).

If Z is floating with children {c1, c2, ..., cn}, where n > 1, we can split it into two
floating structures with children {c1} and {c2, ..., cn}, respectively. It is easy to verify
that they are the sub-structures X and Y that we are looking for. �
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5. Implementation

5.1 Translation Rules

Translation rules are central to an MT system. In our system, each rule translates a
source sub-string into a target dependency structure. The target side of the translation
rules constitutes a tree grammar.

One way to define a tree grammar is in the way we described earlier. Two well-
formed structures can be combined into a larger one with adjoining or concatenation,
and there is no non-terminal slot for substitution. This is similar to tree grammars
without substitution, such as the original TAG (Joshi, Levy, and Takahashi 1975) and
LTAG-spinal (Shen, Champollion, and Joshi 2008). A corresponding MT model was
proposed in Carreras and Collins (2009). Search space is a major problem for such an
approach, as we described earlier.

In our system, we introduced NT substitution to combat the search problem. The
NT slots for substitution come from what we have observed in training data. Combina-
tion of well-formed dependency structures can only happen on NT slots. By replacing
NT slots with well-formed structures, we implicitly adjoin or concatenate sub-structures
based on the dependency information stored in rules. We extract the translation rules
from the training data containing word-to-word alignment and target parse trees, which
we will explain in the next section. A similar strategy was employed by DeNeefe and
Knight (2009). They turned a TAG into an equivalent TIG.

In addition to these extracted rules, we also have special rules to adjoin or concate-
nate two neighboring hypotheses. Each of the special rules has two NT slots, but they
vary on target dependency structures. They are comparable to the glue rules in Chiang
(2005).

To formalize translation rules and grammars, a string-to-dependency grammar G is
a 4-tuple G = 〈R,X,Tf ,Te〉 where R is a set of transfer rules. X is the only non-terminal
type.1 Tf is a set of terminals (words) in the source language, and Te is a set of terminals
in the target language.

A string-to-dependency transfer rule R ∈ R is a 4-tuple R = 〈Sf ,Se,D,A〉 where
Sf ∈ (Tf ∪ {X})+ is a source string, Se ∈ (Te ∪ {X})+ is a target string, D represents the
dependency structure for Se, and A is the alignment between Sf and Se. Non-terminal
alignments in A must be one-to-one. We ignore the left hand side for both source and
target, since there is only one NT type.

5.2 Rule Extraction

Now we explain how we extract string-to-dependency rules from parallel training data.
The procedure is similar to Chiang (2007) except that we maintain tree structures on the
target side, instead of strings.

Given sentence-aligned bilingual training data, we first use GIZA++ (Och and
Ney 2003) to generate word level alignment. We use a statistical CFG parser to parse

1 Later in the article, we will introduce label information for NTs. However, labels are treated as soft
features, and there is still a single NT type. In fact, other useful information can also be treated as soft
features, for example, length distribution for each NT observed in the training data. Details are provided
in Shen et al. (2009).
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Figure 7
An example to show the rule extraction procedure. In this example, the word it is replaced with
a non-terminal X, which generates a hierarchical translation rule.

the English side of the training data, and extract dependency trees with Magerman’s
rules (1995). Then we use heuristic rules to extract transfer rules recursively based on
word alignments and the target dependency trees. The rule extraction procedure is as
follows.

1. Initialization:
All the 4-tuples 〈Pi,j

f ,Pm,n
e ,D,A〉 are valid span templates, where source

phrase Pi,j
f is aligned to target phrase Pm,n

e under alignment2 A. D is a
well-formed dependency structure for Pm,n

e . All valid span templates are
valid rule templates.

2. Inference:
Let 〈Pi,j

f ,Pm,n
e ,D1,A〉 be a valid rule template, and 〈Pp,q

f ,Ps,t
e ,D2,A〉 a

valid span template, where range [p, q] ⊂ [i, j], [s, t] ⊂ [m,n], D2 is a

sub-structure of D1, and at least one word in Pi,j
f but not in Pp,q

f is aligned.
We create a new valid rule template 〈P′

f ,P
′
e,D

′,A〉, where we obtain P′
f

by replacing Pp,q
f with label X in Pi,j

f , and obtain P′
e by replacing Ps,t

e with

X in Pm,n
e . Furthermore, we obtain D′ by replacing sub-structure D2

with X in D1.
3 An example is shown in Figure 7.

By applying the inference rule recursively, we can generate rules with arbitrary
aligned NT slots if there are enough words and alignments. In order to make the size
of the grammar manageable, we keep only rules with at most two NT slots and at most
seven source elements.

Following previous work (Och and Ney 2003; Chiang 2007), we have three features
for each rule, which are P(source|target), P(target|source), and the lexical translation
probability given by GIZA. The two conditional probabilities are simply estimated by
counting in all the extracted rules.

2 Pi,j
f represents the ith to the jth words on the source side, and Pm,n

e represents the mth to the nth words
on the target side. By Pi,j

f aligned to Pm,n
e , we mean all words in Pi,j

f are either aligned to words in
Pm,n

e or unaligned, and vice versa. Furthermore, at least one word in Pi,j
f is aligned to a word in Pm,n

e .
3 If D2 is a floating structure, we need to merge several dependency links into one.
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5.3 Decoding

Following previous work on hierarchical MT (Chiang 2005; Galley et al. 2006), we solve
the decoding problem with chart parsing. We view the target dependency trees as
hidden structures in the input. The task of decoding is then to find the best hidden
structure for the input given the transfer grammar and the language models (a string
n-gram LM and a dependency LM).

The parser scans all source cells in a bottom–up style, and checks matched transfer
rules according to the source side. Once there is a completed rule, we build a larger de-
pendency structure by substituting component dependency structures for correspond-
ing NTs in the target dependency structure of rules.

Hypotheses, that is, candidate dependency structures, are organized in a shared
forest, or AND–OR structures. An AND-structure represents an application of a rule
over component OR-structures, and an OR-structure represents a set of alternative
AND-structures with the same state. A state keeps the necessary information about
hypotheses under it, which is needed for computing scores for higher level hypotheses
for dynamic programming. For example, with an n-gram string LM in decoding, a state
keeps the leftmost n− 1 words and the rightmost n− 1 words shared by hypotheses in
that state. Because of the use of a dependency LM in decoding, the state information
also includes boundary information about dependency structures for the purpose of
computing dependency LM scores for larger structures.

In the next section, we will explain how to extend categories and states to exploit a
dependency language model during decoding.

5.4 Using Dependency LM Scores

For the dependency tree in Figure 1, we calculate the probability of the tree as follows

P = PT(find)

×PL(will | find-as-head)

×PL(boy |will, find-as-head)

×PL(the | boy-as-head)

×PR(it | find-as-head)

×PR(interesting | it, find-as-head)

Here PT(x) is the probability that word x is the root of a dependency tree. PL and PR
are left and right side generative probabilities respectively. Let wh be the head, and
wL1

wL2
...wLn

be all the children on the left side, from the nearest to the farthest. We
use a tri-gram dependency LM,

PL(wL1
wL2

...wLn
|wh-as-head) = PL(wL1

|wh-as-head)× PL(wL2
|wL1

,wh-as-head)× ...

×PL(wLn
|wLn−1

,wLn−2
)× PL(STOP|wLn

,wLn−1
) (6)

In this formula, wh-as-head represents the event that w is used as the head, and wLi

represents the event that wLi
is a sibling word. The computation of STOP probabilities

greatly complicates the implementation of inside dependency LM probabilities, so we
ignored it in practice. Right side probability PR is defined in a similar way.
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We should note that other orders of dependency LMs (e.g., bi-gram or 4-gram) can
be used by changing the independence assumptions in the above formulas. The choice
of using a tri-gram model in our experiments is a trade-off between model robustness
and sharpness given the training data available.

In order to calculate the dependency language model score, or depLM score for
short, on the fly for partial hypotheses in a bottom–up decoding, we need to save more
information in categories and states.

We use a 5-tuple 〈LF,LN, h,RN,RF〉 to represent the category of a dependency
structure. h represents the head. Relative to the head, LF is the farthest children on
the left side and RF the farthest children on the right side. Similarly, LN is the nearest
children on the left side and RN the nearest children on the right. The three types of
categories are as follows.

� fixed: 〈LF,−, h,−,RF〉
� floating left: 〈LF,LN,−,−,−〉
� floating right: 〈−,−,−,RN,RF〉

Furthermore, operations similar to those described in Section 4.2 are used to keep track
of the head and boundary child nodes, which are then used to compute depLM scores
in decoding.

5.5 Using Labels in Transfer Rules

In the formalism introduced in the previous section, there is only a single non-terminal
type X. This may result in loss of information in the training data. For example, there is
a rule whose target dependency structure is X1 → says← X2, where X1 and X2 depend
on says. In the training data, X1 comes from a tree rooted on a noun and X2 comes from a
tree rooted on a verb. Without this information in the rule, any structure could be placed
in either of these two slots in the decoding phase.

We alleviate this problem by associating a label with each non-terminal in the rules.
Specifically, each non-terminal has a label, and the whole target structure side also has
a label. When we replace an NT with a sub-structure, we check if the label of the sub-
structure is the same as the NT label. If they do not match, we assign a penalty to this
replacement.

An obvious choice of the label is the POS tag of the head word, if it is a fixed tree. In
the previous example, the target structure would generate X1(NN)→ says← X2(VBP),
where NN means noun (singular or mass) and VBP means verb (non-3rd person sin-
gular present), and the whole target structure has a label of VBZ, which means verb
(3rd person singular present). If we replace NN with a sub-tree rooted at, for example,
a preposition, there will be a penalty.

In our system, we use the POS tag of the head word as the label of a fixed structure.
We always use the generic label for floating structures. Any NT substitution with this
label involved is regarded as a mismatch. In other words, there is a penalty for inserting
any floating structure during decoding.

This extension does not affect the basic formalism of dependency structures de-
scribed in the previous section. Instead, we modify the representation of translation
rules and states in the decoder. For each rule, if its dependency structure is of a fixed
type, the whole structure has a label which is the POS tag of the head word. Otherwise,
the label is X. Similarly, each NT slot has a label which is defined in the same way,
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based on the dependency structure from which the rule is extracted. In decoding,
each state has an extra field representing the label for the dependency structure of the
hypothesis.

5.6 Other Details

We have nine features in our system.

1. Log probability of the source side given the target side of a rule

2. Log probability of the target side given the source side of a rule

3. Log probability of word alignment

4. Number of target words

5. Number of special rules (see Section 5.1) used

6. Log probability of string LM

7. Log probability of dependency LM

8. Discount on ill-formed dependency structures

9. Discount on unmatched labels

The values of the first four features are accumulated on the rules used in a transla-
tion. The fifth feature counts the number of times the adjoining and concatenation rules
are used in a translation. The string LM score and dependency LM score are the next
two features.

In practice, we also allow hypotheses that do not have well-formed structures in
derivation, but they are penalized. For this purpose, we introduce the null dependency
structure e. For any operation OP and dependency structure X,Y, we have

OP(X,Y) = e if this operation is not defined in Definition 5

OP(X, e) = X

OP(e,X) = X

Because part of a hypothesis may have a null dependency structure, we cannot calculate
dependency LM scores on some of the related words. Therefore, we give a discount for
each of these words. This is the eighth feature.

There are two sources for null dependency structures. One is the use of an unde-
fined operation, for example, left-adjoining a right floating structure to a fixed structure.
The other source is a lack of target structure information in translation rules. The parser
that we used may fail to generate parse trees for short segments—for example, dictio-
nary items. In these cases, we extracted the so-called phrasal rules with null dependency
structures. We limited phrasal rules to at most three lexical items for each side.

The last feature counts the number of substitutions with unmatched labels.
In decoding, partial hypotheses are mapped into states. The states maintain suf-

ficient statistics for feature calculation. For example, each state should memorize the
leftmost two words and rightmost two words for LM score calculation. Similar exten-
sions are required for dependency LM score and NT labels. Therefore, we use beam
search with cube pruning as in Chiang (2005) for speedup. Like chart parsing, the
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computational complexity of decoding time is O(n3 × B× |G|), where n is the length
of the source sentence, B is beam width, and |G| is the maximal number of transfer rules
applicable to a span with translation grammar G. This number agrees with the empirical
results.

We tune the weights with several rounds of decoding and optimization. Following
Och (2003), the k-best results are accumulated as the input to the optimizer. Powell’s
method is used for optimization with 20 random starting points around the weight
vector of the last iteration. For improved results, we rescore 1,000-best translations,
generated using the technique described by Huang and Chiang (2005), by replacing
tri-gram string LM scores in the output with 5-gram string LM scores. The algorithm to
tune the rescoring weights is similar to the one to tune the decoder weights.

6. Experiments

We experimented with four models:

� baseline: hierarchical string to string translation, using our own replication
of the Hiero system (Chiang 2007)

� filtered: like the baseline, it uses string to string rules, except that rules
whose target side does not correspond to a well-formed structure in rule
extraction are excluded. No dependency LM is used in decoding

� str-dep: string-to-dependency system. It uses rules with target dependency
structures and a dependency LM in decoding

� labeled: an enhanced str-dep model with POS tags as labels

We use the Hiero model as our baseline because it is the closest to our string-to-
dependency model. They use similar rule extraction and decoding algorithms. The
major difference is in the representation of target structures. We use dependency
structures instead of strings; thus, the comparison will show the contribution of using
dependency information in decoding.

All models were tuned on BLEU (Papineni, Roukos, and Ward 2001), and evaluated
on BLEU, TER (Snover et al. 2006), and METEOR (Banerjee and Lavie 2005). It is well
known that all automatic scores are crude approximations of translation quality. It is not
uncommon for a technique to improve the metric that is used for tuning but hurt other
metrics. The use of multiple metrics helps us avoid drawing false conclusions based on
metric-specific improvements. For both Arabic-to-English and Chinese-to-English MT,
we tuned on NIST MT02-05 and tested on MT06 and MT08 newswire sets.

The training data for Arabic-to-English MT contains around 1.9 million pairs of
bi-lingual sentences from ten corpora: LDC2004T17, LDC2004T18, LDC2005E46, LDC-
2006E25, LDC2006G05, LDC2005E85, LDC2006E36, LDC2006E82, LDC2006E95, and
SSUSAC27 (Sakhr Arabic-English Parallel Corpus). The training data for Chinese-to-
English MT contains around 1.0 million pairs of bi-lingual sentences from eight corpora:
LDC2002E18, LDC2005T06, LDC2005T10, LDC2006E26, LDC2006G05, LDC2002L27,
LDC2005T34, and LDC2003E07.

The dependency LMs were trained on the same parallel training data. For that pur-
pose, we parsed the English side of the parallel data. Two separate models were
trained: one for Arabic from the Arabic training data and the other for Chinese from
the Chinese training data. Traditional tri-gram and 5-gram string LMs were trained on
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Table 1
Number of transfer rules.

Model Arabic-to-English Chinese-to-English

baseline 337,542,137 193,922,173
filtered 32,057,337 39,005,696
str-dep 35,801,341 41,013,346
labeled 41,201,100 43,705,510

the English side of the parallel data as well as the English Gigaword corpus V3.0 in a
way described by Bulyko et al. (2007).

Table 1 shows the number of transfer rules extracted from the training data for
the tuning and test sets. The constraint of well-formed dependency structures greatly
reduced the size of the rule set. Although the rule size increased a little bit after incorpo-
rating dependency structures and labels in rules, the size of string-to-dependency rule
set is about 10% to 20% of the baseline.

Tables 2 and 3 show the BLEU, TER, and METEOR scores on MT06 and MT08 for
Arabic-to-English MT. Tables 4 and 5 show the scores for Chinese-to-English MT.

For system comparison, we primarily rely on the lower-cased BLEU score of the
decoding output because it is the metric on which all systems were tuned. We measured
the significance of BLEU, TER, and METEOR with paired bootstrap resampling as
proposed by Koehn (2004). In Tables 2 through 5, (+/-) represent being better/worse
than the baseline at 95% confidence level, respectively, and (*) represents insignificant
difference from the baseline.

For Arabic-to-English MT, the str-dep model decoder improved BLEU by 1.3 on
MT06 and 1.2 on MT08 before 5-gram rescoring. For Chinese-to-English MT, the im-
provements in BLEU were 1.0 on MT06 and 1.4 on MT08. After rescoring, the improve-
ments became smaller, ranging from 0.8 to 1.3. All the BLEU improvements on 5-gram
scores are statistically significant.

The use of POS labels in transfer rules further improves the BLEU score by about
0.7 points on average. The overall BLEU improvement on lower-cased decoding output

Table 2
BLEU, TER, and METEOR percentage scores on MT06 Arabic-to-English newswire set.

Model BLEU TER METEOR

lower mixed lower mixed

Decoding (3-gram LM)
baseline 47.50 45.48 44.79 46.97 66.17
filtered 46.64 (-) 44.47 (-) 45.38 (*) 47.96 (-) 66.64 (*)
str-dep 48.75 (+) 46.74 (+) 43.43 (+) 45.79 (+) 67.18 (+)
labeled 49.33 (+) 47.07 (+) 43.09 (+) 45.53 (+) 67.04 (+)

Rescoring (5-gram LM)
baseline 50.38 48.33 42.64 44.87 67.25
filtered 49.60 (-) 47.51 (-) 43.50 (-) 45.81 (-) 67.44 (*)
str-dep 51.24 (+) 49.23 (+) 42.08 (*) 44.42 (*) 67.89 (+)
labeled 51.80 (+) 49.69 (+) 41.54 (+) 43.76 (+) 67.97 (+)
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Table 3
BLEU, TER, and METEOR percentage scores on MT08 Arabic-to-English newswire set.

Model BLEU TER METEOR

lower mixed lower mixed

Decoding (3-gram LM)
baseline 48.41 46.13 43.83 46.18 67.45
filtered 47.37 (-) 45.24 (-) 44.39 (-) 46.83 (-) 67.17 (*)
str-dep 49.58 (+) 47.46 (+) 42.80 (+) 45.08 (+) 68.08 (+)
labeled 50.46 (+) 48.19 (+) 42.27 (+) 44.57 (+) 67.78 (+)

Rescoring (5-gram LM)
baseline 50.50 48.35 42.78 44.92 67.98
filtered 49.56 (-) 47.49 (-) 43.20 (*) 45.44 (*) 67.79 (*)
str-dep 51.23 (+) 49.11 (+) 42.01 (+) 44.15 (+) 68.65 (+)
labeled 51.93 (+) 49.86 (+) 41.27 (+) 43.33 (+) 68.40 (+)

is 1.8 points on MT06 and 2.1 points on MT08 for Arabic-to-English translation, and
2.0 points on MT06 and 1.6 points on MT08 for Chinese-to-English translation.

METEOR scores became significantly better for all conditions. TER improved sig-
nificantly for Arabic-to-English but marginally on Chinese-to-English tasks. The results
on METEOR and TER suggested that the new model did improve translation accuracy.

The filtered string-to-string rules can be viewed as the string projection of string-
to-dependency rules. It shows the performance of using dependency structure for rule
filtering only. The results are very interesting. On Arabic-to-English, the filtered model
was significantly worse, which means that many useful rules were lost due to the
structural constraints. On Chinese-to-English, the tri-gram scores of the filtered model
were a little bit worse. However, after 5-gram rescoring, the BLEU scores became higher
than the baseline, and METEOR scores were even significantly better. We suspect that
the different performance that we observed is due to the difference in source languages
and their tokenization methods.

Table 4
BLEU, TER, and METEOR percentage scores on MT06 Chinese-to-English newswire set.

Model BLEU TER METEOR

lower mixed lower mixed

Decoding (3-gram LM)
baseline 36.40 34.79 54.98 56.53 57.25
filtered 36.02 (*) 34.23 (*) 55.29 (*) 57.03 (*) 57.60 (+)
str-dep 37.44 (+) 35.62 (+) 54.64 (*) 56.47 (*) 57.42 (+)
labeled 38.37 (+) 36.53 (+) 54.14 (+) 55.99 (*) 58.42 (+)

Rescoring (5-gram LM)
baseline 37.88 36.18 53.80 55.45 57.44
filtered 38.52 (*) 36.74 (*) 54.09 (*) 55.69 (*) 58.16 (+)
str-dep 38.91 (+) 37.04 (+) 53.65 (*) 55.45 (*) 57.99 (+)
labeled 39.11 (+) 37.30 (+) 53.61 (*) 55.29 (*) 58.69 (+)
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Table 5
BLEU, TER, and METEOR percentage scores on MT08 Chinese-to-English newswire set.

Model BLEU TER METEOR

lower mixed lower mixed

Decoding (3-gram LM)
baseline 31.64 29.56 57.35 59.37 54.93
filtered 31.26 (*) 29.42 (*) 57.46 (*) 59.28 (*) 55.16(+)
str-dep 33.05 (+) 31.26 (+) 56.79 (*) 58.69 (+) 55.18(+)
labeled 33.25 (+) 31.34 (+) 56.60 (+) 58.49 (+) 56.01(+)

Rescoring (5-gram LM)
baseline 33.06 31.21 55.84 57.71 55.18
filtered 33.25 (*) 31.22 (*) 56.53 (*) 58.39 (-) 56.08 (+)
str-dep 34.34 (+) 32.32 (+) 55.60 (*) 57.60 (*) 55.91 (+)
labeled 35.02 (+) 33.00 (+) 55.39 (*) 57.48 (*) 56.46 (+)

In any case, the purpose of the filtered model is not to propose the use of structural
constraints for rule filtering, although it greatly reduced the rule size and allowed
the use of more useful training data potentially. The use of structural constraints is
compulsory for the introduction of dependency LMs and non-terminal labels, which
compensated for the loss of rule filtering, and led to significant overall improvement.

7. Comparison to Related Work

Fox (2002), Ding and Palmer (2005), and Quirk, Menezes, and Cherry (2005) showed
that, for the purpose of representing word relations, dependency structures are ad-
vantageous over CFG structures because they do not require complete constituents. A
number of techniques have been proposed to improve rule coverage. Marcu et al. (2006)
and Galley et al. (2006) introduced artificial constituent nodes dominating the phrase of
interest. The binarization method used by Wang, Knight, and Marcu (2007) can cover
many non-constituent rules also, but not all of them. DeNeefe et al. (2007) showed that
the best results were obtained by combining these methods.

Charniak, Knight, and Yamada (2003) described a two-step string-to-CFG-tree
translation model which employed a syntax-based language model to select the best
translation from a target parse forest built in the first step. A crucial difference from our
work is that they only used the tree-based LM in rescoring, possibly due to the com-
plexity of the syntax-based LM. In contrast, our system uses a dependency LM directly
in decoding and as such can prune out unpromising hypotheses as soon as possible.

The use of a dependency LM in MT is similar to the use of a structured LM in
ASR (Chelba and Jelinek 2000; Xu, Chelba, and Jelinek 2002), with the same motivation
of exploiting long-distance relations. A difference is that the dependency LM is used
bottom–up in our MT system, whereas the structured LM is used left-to-right in ASR.
Another difference is that long-distance relations are more important in MT due to
word re-orderings.

The well-formed dependency structures defined here are similar to the data struc-
tures in previous work on monolingual parsing (Eisner and Satta 1999; McDonald,
Crammer, and Pereira 2005), which allowed floating structures as well defined states
in derivation, too. However, as for monolingual parsing, one usually wants exactly

667



Computational Linguistics Volume 36, Number 4

one derivation for each parse tree, so as to avoid spurious ambiguity of derivations
for the same parse. The derivation model proposed by Eisner and Satta (1999) satisfied
this prerequisite, and had O(n3) complexity with a bi-lexical probability model, which
was O(n4) in many other derivation models. In our MT model, the motivation is to
exploit various translation fragments learned from the training data, and the opera-
tions in monolingual parsing were designed to avoid artificial ambiguity of derivation.
Another difference is that we have fixed structures growing on both sides, whereas
fixed structures in (Eisner and Satta 1999) can only grow in one direction.

The formalism for well-formed structures and the operations over them were
inspired by the well-known approach of Combinatory Categorial Grammar (CCG)
(Steedman 2000). In fact, the names of left raising and right raising stem from the
raising operation in CCG.

The string-to-dependency formalism can be viewed as a special case of Synchro-
nous Tree Adjoining Grammar (STAG) (Shieber and Schabes 1990). Trees on the source
side are weakened to strings, and multi-rooted structures are employed on the tar-
get side. The adjoining operation in our model is similar to attachment in LTAG-
spinal (Shen, Champollion, and Joshi 2008) and sister adjunction in variants (Rambow,
Shanker, and Weir 1995; Chiang 2000; Carreras, Collins, and Koo 2008) of TAG (Joshi and
Schabes 1997). Translation rules can be viewed as constraints on the tree operations.

8. Conclusions and Future Work

In this article, we propose a novel string-to-dependency algorithm for statistical ma-
chine translation. It employs a target dependency language model to exploit long dis-
tance word relations in decoding, which cannot be captured with a traditional n-gram
language model.

Compared with a state-of-the-art hierarchical string-to-string system, our string-to-
dependency system generates about 80% fewer rules. The overall gain in BLEU score
on lower-cased decoding output is about two points.

Dependency structures provide a desirable platform for employing linguistic
knowledge in MT. We will extend our approach with deeper linguistic features such as
propositional structures (Palmer, Gildea, and Kingsbury 2005). The fixed and floating
structures proposed in this article can be extended to model predicates and arguments.
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