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ABSTRACT  PART II 

In this part the argument is reversed: using 

logical rather than linguistic considerations a 

general model of syntactic structure is set up. 

In the model a subject-predicate distinction is 

developed, and different syntactic functions are 

defined and related, by being placed in a simple 

lattice. A classification of groups into endocentric 

and exocentric is constructed, and components of 

groups are qualified as governors or dependents. 

Algorithms arising out of the lattice model for 

finding the functions of compound groups from 

those of their components are given. 
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PART II.   THEORY OF THE GENERAL SYNTAX LATTICE 

The Primary Syntax Lattice 

In Part I it was shown that it is possible to construct an argument in 

which, starting from an asymmetrical relation of 'replaceability' (defined 

more or less as a structural linguist would define it), and deriving from 

it a symmetrical relation of 'equipollence' (similarly defined), a system 

of syntactic functions, with the mathematical properties of a lattice can 

be obtained (1). 

When, however, we ask "what lattice, as opposed to some lattice, does this 

system form?" we are faced with a difficulty. For to find this out we 

should have to carry out more replacement than is humanly, or even 

mechanically, possible. That is, for each language to which the general 

system of syntactic functions is to be applied, we should have to take an 

indefinitely large number of indefinitely long texts, list the words in 

each, and, for each word in each text in turn, consider whether it could be 

replaced by each member of the list. Of course we can always say that, if 

we assume that this has been done, the replacement patterns holding between 

the different words in the language, - any language, - would indicate a 

very simple pattern of complementarities, and that this system would in 

turn dictate the form of the general lattice of syntactic functions which 

is constant for different languages. The point is, that since the 

enterprise is infinite, we can never complete it. We must therefore derive 

our general syntax lattice another way. 

Two alternative procedures immediately suggest themselves : 

(a)  A closed model of what has been shown, in Part I, to be an open state 
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of affairs could be obtained if a single text was taken and its replace- 

ability examined; research along these lines, using Richards and Gibson's 

"English through Pictures" (2) as a text, will in due course be carried out. 

This approach has the disadvantage, however, that it is too small in scale 

to give more than a hint of the information required in order to decide 

what lattice, or at least what type of lattice, the general syntax lattice 

for all languages must be. 

(b)  Alternatively, we may try to utilise the intuition on which philoso- 

phical thinking has been based for 2500 years, namely that the fundamental 

sentence patterning is on the subject-predicate principle. * To proceed 

solely from Western European philosophical thinking and to look for the 

concrete exemplification of this principle in any language is, on the other 

hand, open to question: for other equally sophisticated logicians, whose 

thinking is based on Far-Eastern cultures, do not seem to feel any need for 

the principle (3). What we in fact want, therefore, is a schema of syn- 

tactic functions from which the subject-predicate sentence pattern can, 

though it need not, be derived. That is, to speak in terms of propositional 

logic, we want as the units of our system not x or y and P, but weaker units 

from which combinations of the subject-predicate form can be built up. 

This paper attempts to provide such a schema. 

Bearing in mind, as our starting point, both the generality of the subject- 

predicate principle and the formal argument mentioned above to the effect 

that a system based on replacement will lead to a lattice, we can now con- 

sider the elementary lattice generated by two elements given below. We will 

* The syntactic analysis for machine translation initiated by Ida Rhodes 
and developed at Harvard is explicitly built round the principle of 
finding the subject-predicate pattern in a sentence. 
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take this as the syntactic model of an Imaginary language; i.e. we will 

assume that all the substituents in the language, as 'substituent' is 

defined in Part I, can be handled by this classification. 

Fig. 1.  4-element Boolean lattice representing the simplest imaginable 
type of language 

 

All the points on this lattice are substituent functions: 

S = substantive function 
O = operative function 
I = indeterminate, i.e. can function either as a substantive or as an 

operative 
Z = what is in common between substantive and operative, i.e. the 

function of being a substituent in language. 

Even in this simple schema the following lattice properties are used: 

i) the 'side-to-side' symmetry of the lattice, i.e. its 
complementarity; 

ii) the 'top-to-bottom' asymetry of the lattice, i.e. its inclusion 
relation; 

iii) the 'join' relation '' and 
iv) the 'meet' relation '' , i.e. that in a lattice any pair of 

elements a,b, has a unique upper bound, their join, ab, and a 
unique lower bound, their meet, ab. 

1) In giving this mathematical system its syntactical interpretation 

the symmetrical complementarity represented by the sides of the lattice, 

S and O, will be taken, a priori, as indicating the substantive-operative 

dichotomy: for we can say, logically, that the substantive element 

S =  O, and the operative element O =  S. 

ii) The asymmetry determined by the inclusion relation will be interpreted, 

again a priori, in relation to what will be called the governor-dependent 
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relation. (As in this simple lattice this interpretation can only be 

trivial, the point will be discussed more fully below). 

iii) & iv) In the linguistic interpretation the join element ab is a 

unit of language which can, according to its positional collocation be 

either a or b', and the meet element ab is a (governor-dependent-wise 

qualified) group of the two units a and b which we will here call 

'a clause'. The fact that the lattice axioms give us these two relations 

is for our linguistic purposes important: for the former takes account of 

the indeterminate elements in language, that is, of units which can vary 

in syntactic function according to their position, and the latter gives us 

the possibility of grouping units of language together (logically speaking, 

the possibility of constructing propositions of the form SO). 

Thus the lattice just considered, with the two primary functions S and O, 

gives us our basic schema. But it is clear that it is far too primitive 

as it stands for its use to be extended from our imaginary language to any 

real one. In order to obtain a more elaborate system the basic schema is 

therefore enlarged by the addition of points representing new functions 

which are included by the initial polar elements S and O respectively. 

Fig. 2.  Extension of the 4-element lattice 

It is obvious that if we are to retain the substantive-operative 
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distinction represented by the complementarity of the two sides of the 

lattice we cannot extend the system in any other way: for the more 

refined classification that we require must represent a sophistication of 

this fundamental division. The two new side points SA and OA are there- 

fore interpreted as substantive and operative adjuncts, i.e., very 

roughly, as adjective and adverb; their join gives us the new indeter- 

minate adjunct IA which also includes the initial indeterminate element I. 

This extended lattice is, however, still judged inadequate, and two more 

functions representing 'secondary' adjuncts are therefore added. 

Fig. 3.  The 4-element lattice further extended:  the primary syntax 
   lattice 

 

Preliminary empirical investigation has shown that, to a surprising extent, 

this system contains the 'hard core' of the general syntactic classification 

that we require *, and we shall therefore call it the primary syntax 

lattice. We shall also say that the function defining a substituent is the 

lattice position indicator + of the substituent. 

*  A more pessimistic way of putting this fact is to say that this lattice, 
weak as it is, represents all that we find we can get when the notion of 
syntactic classification, which is essentially unilingual, is stretched 
so as to make it apply to all languages. 

+ This expression was originally used in a more elaborate sense; the use 
given above has, however, been found more satisfactory. 



 

These by themselves are inadequately structured: but by the rules of 

lattice theory we can automatically generate from them meet and join 

elements and obtain the more realistic and fruitful classification 

represented by the primary schema. In choosing this particular mathemati- 

cal model, therefore, we can start with an apparently simple schema and 

nevertheless derive from it, by purely 'mechanical' means, a much richer 

structure. 

The points IC (C) and ZA 

While the primary lattice as it stands has functions representing, very 

roughly, nouns and adjectives and verbs and adverbs, it has none for pre- 

positions or conjunctions, i.e. for the primary syntactic auxiliaries of 

language. By treating prepositions as post-verbs and giving them the funct- 

ion OB we can incorporate them in the schema in a not wholly arbitrary way. 

Conjunctions, or connectives as the logician understands them, are, however, 

still not accounted for. On the other hand there is a sense in which they 

are built into the system: for we have interpreted the join relation as an 

alternative, i.e. as the basic logical connective 'and-or'. Using this 

fact we can create a new point at the top of the lattice to define the 

conjunctive function. 

II. 6 

Fig. 4. 
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Fig. 5.  The point IC (C) 

 

There is a further distinction, however, which must be made. With the 

point IC alone we cannot distinguish conjunctions which, to put it crudely, 

connect words from those which connect clauses. We therefore introduce a 

new point to define the latter. 

Fig. 6.  The point ZA 

 

The introduction of these points completes the primary lattice. 

Sophistications of the primary lattice 

The meet algorithm 
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Having set up the classification represented by the primary lattice, we 

can now use it in determining the function of groups of substituents. 

Here we introduce the first algorithm derivable from the theory, which we 

will call the meet algorithm: 

the function of a group of substituents is the meet of the functions of 

its components. 

 

If we look at the nomenclature of the primary lattice, bearing in mind the 

fact that the meet of a pair of elements is 'what is in common' between 

them, we can see how the algorithm works. The meet of the points S and SA., 

for example, is S;  and indeed the notion of substantive is what is in 

common between the notions of substantive adjunct. Similarly, the meet of 

OA and O is O, the latter representing the common notion of operative. 

(The relation is transitive, so the meet of SB, SA and S is S). For either 

side of the lattice, therefore, the algorithm works in a straightforward 

way and gives linguistically satisfactory results: for it is from a 

linguistic point of view clear that if we group substituents with a common 

character, the resulting group should also have this character. 

The algorithm fails, harmlessly, where elements with indeterminate functions 

are concerned. Consider, for example, the meet of the two points IA and OB 

as shown in the following diagram: 
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The meet is OA which does not represent what is common to both OB and IA. 

The failure is, however, logically harmless, once it is remembered that 

the points in the middle of the lattice define substituents with alterna- 

tive functions: thus IA is 'can be either OA or SA'. When such a substi- 

tuent is to be grouped with one with an O-type function, therefore, the 

O-alternative is selected; and when such a substituent is to be grouped 

with one with an S-type function, the S-alternative is taken. The meet 

algorithm can in this case be amplified without destroying the consistency 

of interpretation of the system. 

The algorithm fails logically, however, and therefore vitally, when we 

consider the meet of any two points on opposite sides of the lattice, i.e. 

when the meet of any of the substituents concerned is Z.  (The meet Z of 

two substituents one of which already has the function Z is of course 

dealt with by the algorithm as described above). For here we are faced 

with the fact that this point in the lattice can be interpreted in differ- 

ent ways:  thus we have interpreted 'meet' as 'what is in common' between 

the two elements generating the meet, and Z should therefore represent what 

is in common between operative and substantive; and given the complement- 

arity of the two sides of the lattice we can only describe this, very 

weakly, as 'the property of being a substituent in language'. This is 

serious, since we also interpreted Z, much more strongly, as representing 

the syntactic function of 'clause'. 

Moreover, a further difficulty arises in this case: the meet of any pair 

of points on opposite sides of the lattice is Z; and while it is lingu- 

istically plausible to treat a substantive-operative group as a clause, we 

cannot plausibly treat a substantive-subadjunct-operative-subadjunct group 

as a full clause. We require, therefore, not only an explanation, within 
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the theory, of the groups where the meet algorithm as it stands breaks 

down, but also a way of handling these cases which takes account of the 

particular, and not merely the general, character of their components. 

Endocentric and exocentric groups 

In order to deal with the situation just described, we now introduce a 

distinction between endocentric and exocentric groups. This can be defined, 

very crudely, along lines familiar to linguists, as follows : 

an endocentric group of substituents is a group which has the same function 
as one of its components; 

an exocentric group is a group which has a function different from that of 
any of its components. 

It is clear, in terms of our previous discussion, that the meet algorithm 

holds for endocentric groups and fails for exocentric groups. We must now, 

therefore, develop our lattice schema to take account of exocentric groups; 

and we can only do this if we give a positive, and not merely a negative, 

definition of exocentric group. In fact, the strength or weakness of this 

syntactic theory as a whole is primarily determined by its success or fail- 

ure in giving an adequate and precise account of the notion of the 

character of an exocentric group in language. 

To develop the lattice structure we introduce the notion of convergences. 

This must be distinguished from that of complement which we discussed in 

connection with the initial 4-element 'diamond' lattice. It was there 

pointed out that the two sides of the lattice S and O were complements of 

each other, the definition of complement being that for any pair of 

elements, a,b in a lattice, ab = I and ab = O. We interpreted this 

complementarity as representing the substantive-operative dichotomy. In 

building up the system we retained the dichotomy, but if we examine the 
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primary lattice it is apparent that it is not fully complemented. We 

cannot, therefore, connect the notions of exocentric group and 

complement in any very obvious way. 

Moreover, as just described, the notion of complement applies to points 

in a lattice. In the meet algorithm, however, we make use of the 

relation between points in a lattice, i.e. the inclusion relation. As, 

in order to account for subject-predicate groups, we want a notion of 

contrast in some form, we must try to give this notion a meaning in terms 

of the inclusion relation. And in fact we can find in lattice algebra a 

notion of contrast with respect to the inclusion relation which is 

analogous to that of complementarity between points. This is the notion 

of converseness: 

the converse of a relation r is the relation r' such that a r' b if and 
only if b r a. 

This gives us, as required, a top-to-bottom contrast for a pair of points, 

as opposed to the side-to-side contrast of complementarity. We derive 

from it, moreover, the notion of dual lattice, which gives us, for any 

lattice, the contrasting system: 

the dual L' of a lattice L is the lattice defined by the converse relation 
on the same set of points. 

The secondary lattice 

In terms of our syntactic schema, the dual of the primary lattice, i.e. 

the lattice with the inclusion relation working in the opposite way, is 

the following system which we will call the secondary syntax lattice. 
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Fig. 8.  The secondary syntax lattice 

 

To bring out the 'mirror-image' character of the dual we give the 

two together. 

Fig. 9.  The primary and secondary syntax lattices 
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This figure brings out the fact that the dual lattice depends on the 

primary lattice by the point Z, i.e. by the point representing the clause. 

Two consequences should be noticed:  that Z, as the connecting point 

between the two lattices, is unique, and that all the points included by 

Z, i.e. all the points in the dual lattice, must represent groups. In a 

first attempt to deal with our problem, therefore, we can say that we have 

a system (for the two lattices together constitute a lattice) divided into 

two 'fields': an endocentric field represented by the primary lattice, 

and an exocentric field represented by its dual. 

This extension of our original schema would appear to give us what we need: 

for we have obtained a system in which the notion of exocentric group is 

properly represented, and further, in which we allow different kinds of 

exocentric group. Closer examination reveals, however, that we cannot use 

the new exocentric part of the system: for the meet of any pair of points 

in the primary lattice is still Z, and we never enter the dual lattice. 

Our new system as it stands is thus only a halfway measure: we have con- 

structed, in creating the dual, a system for dealing with exocentric 

groups; we must now make it possible to obtain an exocentric group as the 

meet of every pair of complementary points in the primary lattice, i.e. to 

enter the dual from every pair of points in the primary lattice. Put 

crudely, this means that we have to connect each point in the primary 

lattice with each point in the dual; in lattice terms it means that what 

we want is the cardinal product of the primary lattice and its dual. 

The full (product) lattice 

That this is so is best brought out if we consider a very simple product 
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lattice. We will therefore take as our 'primary' lattice the 4-element 

lattice which is the simplest form of our syntactic lattice. 

Fig. 10.  The simple 'primary' lattice 

 

Its dual we will represent thus: 

Fig. 11.  The dual of the simple 'primary' lattice 

 

In constructing the product lattice we start with the 'primary' lattice 

and its dual as follows. 

Fig. 12.  The simple 'primary' lattice and its dual 
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The next stage is to 'hang' the dual from the other points in the 

'primary' lattice: this connects each point in the 'primary' lattice 

with each point in the dual. 

Fig. 13.  Constructing the product lattice 

 

We now, turning the lattice upside down in our minds, 'hang' the 

'primary' lattice from each point in the dual, to connect each point 

in the latter with each point in the former. The resulting system, which 

is the full product lattice, is as follows: 

Fig. 14.  The product lattice 
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We must now show what we are doing in terms of our syntactic interpre- 

tation.    We start by labelling all the points in the product lattice. 

The convention for doing this is to give the letter representing the 

'primary' lattice point first, followed by the letter for the 'secondary' 

lattice.    Each point in the product lattice will therefore be labelled 

by a pair of letters representing the relevant functions in the 'primary' 

and dual lattices respectively. 

Fig. 15.      The product lattice labelled 

 

As the points in the  'primary' lattice define unit substituents, and as 

the points in the dual lattice define groups, we are giving, in our 

'double' labelling, firstly the specification of the function which a 

substituent itself has, and secondly the function of a group in which it 

can figure; in fact, for any particular substituent function defined by 

the  'primary' lattice we give, as groups in which it may in principle 

figure, all the groups defined by functions in the dual lattice.    This is 

best brought out if we 'abstract' the 'primary' lattice and two of its 

dependent dual lattices as follows. 



 

All the points in the dual lattice dependent from S represent substantive 

substituents which are distinguished by the kinds of group in which they 

figure. Similarly, all the elements in the dual lattice dependent from I 

represent substituents with an indeterminate function and the kinds of 

group of which they can be a member. In creating this extended system, 

therefore, we are introducing a more refined classification of substitu- 

ents: for we take into account not only the functions which they them- 

selves have, but also the functions of the groups in which they can appear. 

We must now see how the meet algorithm works in the extended lattice, But 

before we can do this we must discuss one feature of the lattice which we 

have not so far emphasised. 

Although the product lattice as a whole appears to be what we may describe 

as 'homogeneous', it is derived from the 'primary' lattice and its dual 

with Z as their connecting point. Within the product lattice there is thus 

a sub-system with a special character which we can define, in lattice terms, 

by introducing the notion of centrality. 

II. 17 

Fig. 16.  'Abstract' from the produot lattice



II. 18 

Conventionally, following Birkhoff, in a product lattice of the kind we 

are considering we find four central elements derived from the top and 

bottom elements of the two initial lattices; these are the two 'bounds' 

IZ and ZI, and the two 'centrals' II and ZZ. Both lattice-wise and from 

the syntactic point of view ZZ is the most important of the two centrals, 

and we shall therefore call it the positive central, and II the negative 

central. 

We can now distinguish areas of the lattice with respect to the centrals, 

and in particular, with respect to ZZ. To do this we introduce the notion 

of ideal; put crudely, the ideal of an element in a lattice is the set of 

elements which it includes. When we take ZZ as our starting point, there- 

fore, it is clear that its ideal is the initial, or primary exponent of, 

the dual lattice. More particularly, we shall say that the initial dual 

lattice is the principal ideal of ZZ, and that the initial 'primary' 

lattice is the dual principal ideal of ZZ. Thus by considering them as 

ideals of ZZ, we can separate the primary exponents of the 'primary' 

lattice and its dual from the system represented by the full product 

lattice. 

Bearing these points in mind we must now return to the genuine syntax 

lattice. It is clear that if we start with the genuine primary syntax 

lattice and its dual as shown in Fig. 9, we can obtain a product lattice 

in the way that the illustrative product lattice was obtained. We shall 

call this product lattice the full syntax lattice. It is too complicated 

for visual diagramming, but one point should be noticed. In contrast to 

our illustrative 'primary' lattice, it is not self-dual. As the product 

lattice obtained from a lattice which is not self-dual differs slightly in 
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general character from that obtained with a self-dual lattice, the product 

lattice derived from such a lattice is given below. This lattice of five 

elements is again a simplification of the primary lattice, being the small- 

est modular non-self-dual lattice. 

Fig. 17.  Product obtained with the 5-element non-self-dual lattice 

 

Given the full syntax lattice we can now see how the meet algorithm works 

in it. For endocentric groups this is quite straightforward: as the 

members of the group may not have functions represented by points in the 

same exponent of the primary lattice, their meet will obviously not be a 

point in a particular exponent; but it will clearly be a point in some 

exponent of the primary lattice. We have thus, in the full lattice, merely 

obtained a more refined version of the algorithm as it worked for the 

primary lattice alone. 
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For exocentric groups the situation is more complicated. In most cases 

the algorithm gives an appropriate answer: in particular, we can, through 

having a more elaborate classification, separate exocentric groups which 

have functions other than Z (more strictly, than ZZ) from those which are 

genuine full clauses. In some cases however, the meet is a point in the 

principal, or 'lower', ideal of ZZ. This in itself is not unsatisfactory: 

for the groups will indeed be clauses; the difficulty arises when any 

attempt is made to treat a group of this kind as a member of another group. 

For the meet of any point in the lower ideal with any other point whatever 

will itself be in the lower ideal. As we defined ZZ as full clause, or 

sentence, this means that we can never, once we have a substituent defined 

by a point in the lower ideal, reach the stop-point in grouping represented 

by the full sentence. This last is unsatisfactory in all respects, and in 

order to deal with the problem we make use of the converse relation intro- 

duced above. What we need, in lattice terms, is to be able to get to a 

point above, i.e. including, ZZ; but as the inclusion relation is asym- 

metrical, there will be no other points in the system having the same 

function as one obtained as a meet in the lower ideal. We can, however, 

find one which is mathematically closely related: for the dual lattice is 

defined as the reverse of the primary lattice, i.e. as representing the 

converse relation on the same set of points. There is a sense, therefore, 

in which ZN in the dual lattice corresponds to NZ in the primary lattice; 

and it has been found experimentally that if, whenever we have a meet in 

the dual, we replace it by its converse point, linguistically satisfactory 

results will be obtained. We have thus a refinement of the meet algorithm 

which we will call the polar algorithm: 

when the meet algorithm gives a point in the lower ideal of ZZ, replace 

this point by the corresponding point, or polar, in the upper ideal of ZZ. 
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We have thus divided exocentric groups into three classes:  these have 

the common property that they do not have the function of any of their 

components, and differ according to whether they have the function ZZ, 

a function defined by a point in the lower ideal of ZZ, or any other 

function. Linguistically these three classes represent different degrees 

of 'completeness': those defined by ZZ are complete clauses; those 

defined by points in the lower ideal of ZZ are clauses, and those defined 

by any other point represent groups which are too incomplete to be called 

clauses. 

The governor-dependent relation 

In the system as now elaborated we can at last interpret the inclusion 

relation in a linguistically non-trivial way. To do this we correlate it 

with what we shall call the governor-dependent relation; and, from the 

linguistic point of view, and following Hays (4) we shall call this M T 

model of syntactic description the governor dependent, or GD model. We 

find in language that in any grouping of substituents one 'colours', or 

'lends its tone to', the group as a whole, and that the rest 'are coloured', 

or 'have their tone lent to them'. We can say that the substituent which 

colours the group is the governor of the group, and that the other substitu- 

ents are dependents. In a group, therefore, we have an asymmetrical rela- 

tion which we will call the governor-dependent relation. The way in which 

the relation works in the lattice is best shown if we consider endocentric 

groups in the primary lattice. Suppose we have an endocentric group of 

two members with functions A and B respectively, and that in the lattice 

the point corresponding to A includes that corresponding to B. By the meet 

algorithm the group has the function B, and we can clearly say, therefore, 
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that substituent with function B is the governor of the group. In such 

groups the governor-dependent relation in reverse, i.e. the dependent- 

governor relation is thus identified with the inclusion relation. This 

interpretation will not, however, hold for exocentric groups where the 

points defining the functions cannot include one another. In these cases 

we adopt the convention that the substituent with the O-type function is 

the governor. 

In the primary lattice the situation is thus relatively straightforward. 

In the full lattice, however, we find exocentric groups which are not 

combinations of substituents with S and O-type functions, though they are 

diverse in their composition. For endocentric groups the existing inter- 

pretation of the governor-dependent relation is still satisfactory. Again, 

when the primary functions of two substituents represent S and O-type 

functions respectively, the substituent with the O-type primary function 

will be the governor. (This is clearly merely a refinement of the rule 

for exocentric groups in the primary lattice). The two new cases to be 

dealt with are as follows: firstly, when the primary functions are differ- 

ent, but one includes the other, i.e. when one of them has an I or Z 

function; and secondly, when the two primary functions are the same, but 

neither includes the other. In a sense these are strictly exocentric, but 

have endocentric features. In the first case we say that the substituent 

with the lower function, lower being defined by reference to the primary 

lattice, is the governor. In the second we say that the substituent with 

the O-type secondary function is the governor. We are thus treating groups 

of the first kind as if they were endocentric, and groups of the second 

kind as if they were exocentric. 
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The conjunction device 

According to the theory, the function IC, being at the top of the lattice, 

can never be a governor: for by the meet algorithm the meet, for example, 

of IC and S will be S, and so on throughout. This result in fact correctly 

represents what actually happens in language: for a conjunctive substan- 

tive group like "boys and girls" does function as a substantive group. 

However, as it is necessary for practical purposes to distinguish conjunc- 

tive groups, which essentially have three elements, from other groups, which 

have two, the following conjunction device has been adopted: 

when any point which is a join in the lattice is interpreted as the 

join-relation itself, it will be the governor of any substituent group in 

which it occurs. 

The system described above may be compared with that of Lambek (5), 
although the latter was designed principally for the analysis of formal 
rather than natural languages. If Lambek's calculus is applied to the 
words of a natural language we find that they have to be given a large 
variety of different 'types' to correspond to their different syntactic 
uses. Consider, for example, the two uses of the preposition "for" as 
exemplified in the two sentences "John works for Jane" and "John's work 
for Jane is tedious". In the first the prepositional phrase "for Jane" 
functions as an adverb, in the second as an adjective; in Lambek's 
system it has to be given separate types to allow for this ambiguity. 
In contrast the function O.IB which we would give it in our system 
covers both these cases and avoids the multiplication of alternatives. 
A more fundamental difference concerns the number of possible types: 
for Lambek this is infinite, but for us it is 144. Our meet and polar 
algorithms allow an indefinite complexity of sentence patterns, whereas 
Lambek's simple replacement algorithm demands ever more elaborate types. 
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Conclusion 

In linguistic terms we can now say that we have been building up 

different 'strengths' of exocentricity in groups of substituents, the 

strength of any group being gauged by the extent of the possibility of 

completing it. Those groups representing a meet outside the lower ideal 

of ZZ do not lead to the polar algorithm and are thus, exocentric-wise, 

not completeable. Those groups which represent a meet in the lower ideal 

of ZZ are completeable, in that by applying the polar algorithm and then 

the meet algorithm we can reach ZZ. (Linguistically interpreted such 

groups represent subordinate clauses). The last class contains those 

completed exocentric groups which, through the application of the polar 

and meet algorithms, have the function ZZ. (These, and these alone, are 

subject-predicate groups). 

Thus we see that this theory of syntax has, by interpreting its function 

point as the centre (the positive central) of the lattice, constructed the 

subject-predicate pattern in language. In the theory the functional 

property of being a subject-predicate group, as opposed to that of being a 

subordinate clause, is the result of applying a stop-rule: it is the 

function which occupies the central point in the relation-schema of 

functions, at which the syntactical relation-building enterprise comes to 

final rest. This interpretation does not seem, at first sight, to have 

much to do with the subject-predicate form, for we have not, so far, 

thought of the subject-predicate relation in these terms. It has been 

thought of either grammatically, as 'sentence with main verb', or, since 

Russell, as a formula of the type xP which can be extended either by 

extending the relational subscript to a sequence x,y,z...n forming monadic, 
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dyadic, tetradic ... polyadic relational predicates respectively, or by 

adding quantifying restrictions to the meaning of the x-sequence. (Note 

that P remains unchanged throughout). 

Now seen grammatically, the theory gives an explanation not so much of the 

nature of 'verb-ness' as of the nature of 'main-ness'; that is, of how to 

build up the logical difference between main verb and subordinate verbs 

(all verbs being characterised alike at the start as operatives). Seen 

logically the theory gives not a definition of the relation underlying 

predicative logic (though the differences between monadic and dyadic 

relations, and so on, could be built up in terms of the theory by counting 

and relating the subordinate groups in a sentence), but a definition of 

the fact that, however far predicative logic is developed, the essential 

symbol P remains unique and unchanged. P (i.e., ZZ) is the centre point 

of the lattice: you can 'hang' the whole lattice from it and still get a 

lattice; analogously, in predicate logic, P is the distinguishing mark of 

a sentence, no matter how far the x-sequence is extended or restricted or 

absent: P is the "point" in the predicate-logic system of relations from 

which the whole system of relations hangs. It is in this sense - which, 

in our view, though new, is a real sense, - that it is possible to say 

that, starting with, and defining more exactly, acknowledged linguistic 

notions, we end with the logically central subject-predicate form. 

The derivation of the subject-predicate construction completes the 

exposition of the theory in its primitive form. 

It is evident that, to provide further possibilities of linguistic dis- 

tinction, the theory can be developed, both theoretically and analytically. 

Theoretically, a third factor can be introduced, making a 3-factor 
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self-dual product lattice, which would permit the introduction into the 

theory of Tertiary syntactic functions; and so on, if required, up to 

N orders of function. Alternatively, it is possible to subdivide 

exocentric groups according as to whether the governor, or the dependent, 

or both, or neither, falls within the upper ideal on the positive central. 

Analytically, the theory could be further developed by investigating the 

possibility in interpreting linguistically the lattice-distinction between 

decomposable and non-decomposable factors, and the properties of the 

Boolean lattice composed of the centre of any product-lattice. 

The next part does not, however, undertake either of these developments; 

but explains the method being used in the Cambridge Language Research Unit 

of applying the theory in its primitive form so as to give an actual 

computer program. 
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