
IV

T H E C A M B R I D G E L A N G U A G E

R E S E A R C H U N I T C O M P U T E R

P R O G R A M F O R S Y N T A C T I C

A N A L Y S I S

A. F. P A R K E R - R H O D E S

R. M c K I N N O N W O O D

M . K A Y

P. B R A T L E Y

See

The Cambridge Language Research Unit
Computer Program for Syntactic Analysis
A.F. Parker-Rhodes et al
Cambridge Language Research Unit, M.L. 136

CAMBRIDGE LANGUAGE RESEARCH UNIT
20 MILLINGTON ROAD
CAMBRIDGE, ENGLAND (C) 1961

ABSTRACT

The program developed for the Cambridge Computer EDSAC II is outlined.

The program is divided into an interlingual part, given by the model,

applicable in principle to any language (apart from details of strategy

dependent, for instance, on the amount of information taken as a single

computer 'word'), and a unilingual part containing procedures for

dealing with the particular problems of one language, (in this case

English).

IV. 1

PART IV. THE CAMBRIDGE LANGUAGE RESEARCH UNIT COMPUTER PROGRAM
FOR SYNTACTIC ANALYSIS

The program is at present being tested on EDSAC II, the Cambridge

University Mathematical Laboratory computer, by permission of the

Director, Dr. Wilkes. Results obtained so far have been satisfactory,

and a report will be issued shortly on the tests so far carried out for

English.

For practical convenience in design and testing the program is divided into

five sections co-ordinated by a master program.

Sections 1 and 2 are unilingual routines designed to remove some

characteristic ambiguities of English, such as the omission of the relative

pronoun in phrases such as "the man the woman saw". They also sort out,

for example, the verbal and participial uses of words like "believed".

They cannot, however, resolve genuine ambiguities: thus, for instance,

there will always be a doubt as to whether "the old man and woman" means

"the old man and the woman" or "the old man and the old woman". As the

second interpretation is more usual these cases are always treated in this

way. (It should be noticed that this does not really remove the ambiguity,

but merely provides a reasonable basis for bracketting). In Section 3 the

information required for bracketting is worked out from the entries in the

word and bracket group dictionaries, after the first stage this is carried

out on the basis of the bracketting already obtained in Section 5. The

section includes a device for picking up alternative interpretations of

particular substituents. Section 4 deals with conjunctions. Section 5

carries out the bracketting on the basis of the information provided by

IV. 2

Sections 3 and 4, and after each stage in the bracketting gives the

'united reading' for those parts of the sentence which have been bracketted:

that is, a record of the brackets made. The last united reading is the

completely bracketted sentence. All the sections except for Section 4 have

been tested.

The input and output routines are of no linguistic interest, so there is no

need to discuss them here. It should merely be noted that at present the

initial dictionary look-up is not carried out mechanically: the input to

the program therefore consists of the alphabetic list numbers of the text

words, with their corresponding dictionary entries, in text order. (The

bracket group dictionary is contained in the machine).

In the detailed description of the program given below the master program

and each of the five sections are treated separately. Each description has

three parts: first an outline of the logical character of the section of

the program concerned; secondly a flow chart illustrating the program;

and thirdly, the appropriate sequence of EDSAC orders, with annotations.

The flow charts act as a link between the discursive outline and the actual

orders, and the connections between the three are further emphasised by a

system of cross-references. These are numbers defining series of orders in

the program itself, and may not appear consecutively elsewhere. For

convenience they are printed in bold-face type throughout.

Note on the special features of EDSAC II which have affected the construction

of the program.

IV. 3

a) EDSAC II has a word-length of 40 bits; the syntactic information for

each English text word can be accommodated in this space as follows: 10

bits are needed to identify the word, each word being represented by an

alphabetic list number; 24 bits record its occurrence in the 12 kinds of

bracket group used in English; and the remaining 6 bits carry habitat and

concord information.

One of the 10 bits used to identify a text word is the sign-digit of the

computer word; this distinguishes ordinary text words from the composite

items constructed in the course of the program. A sign-digit will usually

be required in a bracketting program and is a feature of most computers.

With the 9 remaining bits only 512 text words can be differentiated, and to

accommodate a more realistic dictionary economies would have to be made

elsewhere; but it is also true that more than 40 bits (that is, more than

one computer word) would certainly be required for all the information

needed in a full translation program. For test purposes, however, the

advantages of dealing with only one word are so great that every attempt is

being made to use abbreviated coding and retain this advantage as long as

possible.

b) EDSAC II has a quick-access store which will hold 1024 40-bit words,

and an auxiliary magnetic-tape store. At present, when allowance has been

made in the former for the program and working space, only sentences of up

to about 40 words can be processed. A program using double-length computer

words, and therefore requiring more orders, would thus be very evidently

less convenient for this machine.

IV. 4

c) EDSAC II is a single-address machine; machine orders occupy 20 bits

each, 11 being assigned to their address numbers. Facilities are avail-

able for performing various operations on the address numbers alone, and

as these are comparatively quick considerable time-saving is possible. At

several points in the program this device is used to accommodate information

about kinds of bracket group in a convenient form.

d) The computer has only one control unit, and input, output, and machine

orders can only be carried out one at a time. This simplifies the pro-

gramming, but impedes certain limitations on the logical design of the

program, and there is no reason why these limitations should be carried

over to other machines.

It may be of interest to note that the predominantly non-arithmetical

operations characteristic of this kind of program can be carried out at

speeds ranging from 20 to 50 microseconds. Input and output are on five

channel tape read at 1000 characters per second and punched at 300

characters per second.

IV. 5

SECTION 0

This section contains the master program which controls the five

sections of the program. In these sections it will be noticed that

an order is often annotated "return to master program".

0.0. The parameters of the program run are printed out: these refer

to the addresses of orders in the machine which are required

for test purposes.

0.0.1 The first sentence is read.

0.1 This calls Sections 1 and 2, the unilingual routines, into

operation. (OA)

When these have been carried out control is returned to

the master program.

0.2 The initial conditions for Section 3 are set and it is (OB)

called into operation.

0.3.0 If a bracketting possibility for the words in the working (OC)

store is found in Section 3, Section 5 is entered and the (OD)

bracket is recorded in the united reading. Control is then (OE)

returned to the master program at 0.1 and the cycle is

repeated.

0.3.1 If no suitable bracketting possibility is found in Section 3 (OF)

the working store is enlarged to include more words for

consideration under 0.3.0. If the working store contains the

whole sentence, and this is represented by one bracket group,

bracketting has been successful and 0.4.0 is entered. If the

working store contains the whole sentence as more than one

bracket group the procedure is restarted in 0.4.1 from the

original text words with alternative interpretations of

IV. 6

bracket groups where possible.

0.3.2 If a conjunction is found in Section 3 Section 4 will be (OG)

entered.

0.4.0 If bracketting has been successful the contents of the (OH)

united reading (i.e. output) store are printed out according

to order set on manual register of the control panel. The

computer will then either stop or try the next sentence. It

can also restart the sentence just bracketted, trying alter-

natives, as if the last attempt had not been successful. This

is an extremely useful feature of the program.

0.4.1 If the bracketting has failed the choice tree level and

choice tree switch number last reached (see description (OJ)

of Section 3) can be printed out if called for by the

manual register. 1 is now added to the choice tree switch

number in the appropriate place. If this makes the choice

tree switch number so big that the computer indicates over-

flow, this shows that all possible ways of bracketting the

sentence have been tried, and the computer will either stop

or start the next sentence as ordered on the manual register

If the computer does not indicate overflow, another attempt

to bracket the sentence will be made using the new choice

tree switch number. The computer will also print out, if

required, the brackets formed before the failure.

IV. 7

IV. 8.

SECTION 1

This is the first of two routines designed to remove certain

kinds of ambiguity characteristic of the English language.

Operations are carried out in the following order:

1.1 The next substituent in the sentence store is examined. (1A)

1.2 If it is a 'wait' word the remainder of the sentence is (IB)

scanned for the corresponding 'awaited' word. The latter

is picked up and the sentence re-arranged so that the two

words are together. "Either", for example, is a wait word,

with "or" the corresponding awaited word. In a sentence

such as "Either the man or the woman...", therefore, when

"either" is encountered the following words are scanned for

"or"; this when found is removed and inserted after "either"

so that the sentence reads "The man either or the woman...".

1.3 When a verbal substituent is encountered the immediate context (IC)

is searched to discover whether a relative pronoun has been

omitted, and if so, the omitted pronoun is replaced. Thus

the sentence "The man the woman gave the apples to was.."

would become "The man to whom the woman gave the apples was...".

1.4 Similarly, the immediate context of a nominal or pronominal (ID)

substituent is searched so that a reversed subject and

predicate can be picked up. The final punctuation mark is

checked to see if the sentence is a question such as "Is he

here?", for example, would read "He is here?", in sentences

such as "Had he come I should have seen him" the word "if" is

IV. 9.

added to give "If he had come ".

1.5 If a word with an L habitat is encountered control is (1E)

transferred to Section 2.

1.6 As sentences containing more than 30 words cannot at present

be processed, when 30 words have been read without a full-stop

occurring the machine signals failure and stops. If a (1F)

full-stop is found it shows that the complete sentence has

been scanned under Section 1 and Section 3 may then be entered

or re-entered.

IV. 10.

IV. 11

SECTION 2

This is the second unilingual routine and is entered whenever a

word with an L habitat is discovered by Section 1.

2.1 Examine the word in question. (2A)

2.2 Suppose this is the word "to". This can be classified under (2B)

four heads:

i) as part of the infinitive form of a verb, as in "to err

is human";

ii) as a verbal proposition as in "he is he man to do the

 job", where "to do the job" qualifies "man";

iii) as a preposition, as in "come to me";

iv) as a pro-infinitive, as in "I don't want to". When the

relevant use has been selected the word is appropriately

marked so that its use is known in later sections of the

program.

2.3 If the word being examined is a past participle it is classi- (2C)

fied as participle or complete verb, as in "he was believed"

and "he believed" and "he believed it was true" respectively.

As in 2.2 the word is marked for future reference.

2.4 This section is very like 2.3 and is intended to remove (2D)

ambiguities in the use of the present participle. A present

participle is marked as belonging to one of the four

categories participle/gerund, participle, gerund or infinitive.

Examples are "It was running", "he is running", "running is

difficult" and "running a business is difficult".

IV. 12

2.5 In this section the uses of the word "that" are examined in (2E)

the same way as those of "to" under 2.2. "That" is classified

under five heads:

i) as an article, as in "that boy is good";

ii) as a relative pronoun, as in "the book that the dog is

chewing";

iii) as article/pronoun, as in "he said that man is mortal";

iv) as a noun clause marker, as in "he said that he would

murder the brute". The fifth class is called merely

THAT and deals with some special cases.

2.6 The final part of Section 2 resolves ambiguities arising from (2F)

the use of a preposition immediately after a verb. For

example, in "I am writing to my aunt" "to" occurs simply as a

preposition and would be marked as such. On the other hand,

in "I am writing up the report" "up" is not a simple

preposition; that is, the sentence does not mean "I am

starting at the bottom of the report and writing upwards".

"Up" here really forms part of the verb and is classified as

preposition post-verb.

2.7 Should Section 2 have been entered for a reason not already (2G)

dealt with, the computer will stop.

IV. 13.

IV. 14

IV. 15

IV. 16

IV. 17

IV. 18

SECTION 3

This section chooses the brackets to be made. Before discussing the

order in which the program actually performs the operations, we shall

consider the way in which it performs them, and also the notion of a

choice tree.

We shall first define a number called the "bracketting number" of a set

of substituents. We know that a substituent may occur in one of four

ways in any kind of bracket group; thus, it may not occur in that kind,

it may occur only as a dependent, only as a governor, or as either. To

every substituent, therefore, we attach a twelve digit number, in which

each digit represents one kind of bracket group. The first digit

represents the first kind, and so on. Each digit is either 0, 1, 2 or 3

according to the four ways in which it may occur as just described. Thus

for example, a word with the number 320 10000 0000 attached could either

occur as a dependent or a governor in kind 1, as a governor only in kind 2,

and as a dependent only in kind 4; it could not occur in any other kind of

bracket group.

Several substituents can be bracketted together in a particular kind of

group only if it is possible to choose from them an arrangement with

exactly one governor, all the other substituents being dependents in such

a group. For example, substituents with associated numbers

100 00000 0000, 200 00000 0000, and 122 22222 222 could be bracketted

together as a group of kind 1, but in no other way. Similarly, substituents

with numbers 020 10000 3000, 010 20000 2022, and 010 20000 1000

could form a group of kind 2 or 9, but not of kind 4, where two of the

IV. 19

substituents are governors. We can thus associate with any set of

substituents a number called the bracketting number of the set. This is

another twelve digit number, and again each digit corresponds to one kind

of bracket group. The digit in a position corresponding to a kind of group

in which the set can be bracketted is a 1, and the other digits are 0.

Considering again the examples given above, we find for instance that with

numbers

i) 100 00000 0000

 ii) 200 00000 0000

 iii) 122 22222 2222

the bracketting number is 100 00000 0000

Again, with numbers i) 020 10000 3000

ii) 010 20000 2022

iii) 010 20000 1000

the bracketting number is 010 00000 1000

As a final example, we may suppose that we had items with numbers

i) 000 00312 1100

ii) 310 00322 1100

iii) 200 13231 2000

For these the bracketting number is 000 00110 1000.

The digits representing kinds of bracket group are ordered from left to

right according to the priority list mentioned in the introduction; when

IV. 20

we have a choice of kinds of group for a set of substituents, we follow

the priority list by the simple device of taking the left-most 1 in the

bracketting number.

The machine procedure is as follows:

The set of substituents to be bracketted is read into the working store;

all possible sets of consecutive substituents are examined in turn and the

set with the highest bracketting number selected. If two sets sharing the

highest bracketting number are found, the longer is chosen. If they are

of the same length, the later one is selected. The set selected is

bracketted (by Section V) and the bracket replaces its members in the

sentence. The procedure is then repeated.

The way in which all possible consecutive sets in a sequence are tried is

extremely simple. The diagram below shows the order in which the sets

would be scanned in a sequence of six items:

IV. 21

It will be seen that the order of scanning is to try first all

consecutive sets beginning with the first word. Then all

consecutive sets beginning with the second word and so on.

Sometimes the kind of bracket group selected in accordance with the

priority list leads to an incorrect result. If this happens the

program restarts with instructions to try in turn lower priority

brackettings. The device used in these instructions is a

"choice tree". We represent the choice tree as follows:

IV. 22

In this diagram, each line represents an operation performed by the

program, and each of the points A, B, ...T, U a situation in which a

choice must be made. At each of these points the operation represented

by the left-hand line is in some sense to be preferred. With each point

of the tree is associated a switch which determines the line to be

followed. Initially, all switches are set to the most preferred choice.

If a route through the tree leads to failure, the last switch on the

route is changed to the next choice in the preference order. If there

is no next choice, the switch before that is similarly changed and so on.

The tree is then re-entered from the beginning, and should failure again

occur, the appropriate switches are changed in the same way as before.

Thus, let us suppose that in the tree above the points K, L, H, P, Q, & F

are failure points. The first route through the tree is ABDK, ending in

failure. Next time, the switch would have altered the initial conditions,

and the program would try the operations represented by ABDL. With the

conditions specified above, it would then try in turn ABEH, falling (since

in effect the point D now represents failure, as all ways through D fail

later), ABEIP, failing, ABEIQ, failing, ACF, failing (since now also B

represents failure), and finally ACGT, which succeeds. In this way the

switching mechanism, of whatever sort it may in fact be, ensures that

the program does not cycle, but tries every possibility in turn.

In our program there are four choices at each point which may be

performed. These are arranged in a preference order. The following

choice tree with failures at points F, G, H, I, C and D is of the sort

used in the program.

The program would try in turn the routes ABF, ABG, ABH, ABI, AC, AD,

all of which fail, and finally AEK, which succeeds.

In our program, the choice is based on the preference order of kinds of

bracket group. There are four choices which are tried in turn. When

the set with the highest bracketting number has been found as described

above, then the successive choices are:

i) to form a bracket of the highest ranking kind.

ii) to form a bracket of the second ranking kind.

iii) to form a bracket of the third ranking kind.

iv) not to bracket the sequence at all.

Should any of these choices lead to a failure to bracket the sentence

completely, then the remaining choices are tried. The operation of the

choice tree assures that, in the end, either the sentence will have been

bracketted successfully, or all possible ways will have been tried without

success. In the case of complete failure the machine will stop for

further orders.

It would perhaps be better (in the sense that less attempts would usually

be needed) for the second choice to be not the second highest use of the

IV. 23

IV. 24

best bracket, but the highest use of the second-best bracket. Unfortu-

nately there is not room in EDSAC to store more than the bracketting

number and address of the best bracket, so that no record of the second-

best bracket can be kept. However, unless one of the actual alternatives

chosen leads to success, in which case there is no problem, the second-

highest bracket will in fact eventually be chosen as the highest bracket

of a different sequence.

The state of the choice tree is represented by a number called the choice

tree switch number. This consists of quartal digits with values 0, 1, 2

or 3. The first digit refers to the first bracket made, the second to the

second bracket made, and so on. The value 0 indicates that the highest-

ranking kind of bracket is to be chosen, the value 1 that the second

highest is to be chosen, the value 2 that the third highest is to be

chosen, and value 3 that the sequence whose switch number this is is to

be left unbracketted at this stage. Every time the program fails in its

attempt to form a bracket, this switch number is increased by 1 in the

appropriate place: that is, if the program fails when trying to form

the sixth bracket, say, then 1 is added in the fifth place, i.e. at the

place representing the last successful bracketting. Since the number has

digits 0, 1, 2 and 3 only, the addition of 1 to a 3 is interpreted as

making the 3 into 0, and carrying one to the previous digit; thus

1212 + 0020 = 1222; 1213 + 0001 = 1220; 1233 + 0001 = 1300.

This operation is simple addition in the scale of 4. The effect of the

number is that the program on failing to bracket will not cycle, but will

try again choosing the next preferred route, through the choice tree, as

described above. For example, we may use this method to follow the

program through the choice tree shown above. Initially the switch number

IV. 25

is 0000, so the program tries route ABF. It fails at F, so the last

successful choice is the second. So we add 1 to the second place of

the switching number, making it 0100. This directs the machine to

follow path ABG. There is again failure after the second choice, so we

again add 0100. The switch number is now 0200, so next time the program

tries ABH. Further addition of 0100 makes the switch number 0300, and we

try ABI. When this again fails, adding 0100 makes the switch number 1000,

which means we try the second alternative at the first choice, that is, we

try AC. This fails after the first choice, so we add 1000 to the switching

number, making it 2000. This now means we try the path AD. Failure again

adds 1000 to the switch number, making it 3000. This directs us down the

path AEK, which succeeds.

It will be seen that the use of a switch number in this way will eventually

lead to failure only if the switch number becomes 3333 before any success

is met. This kind of technique has been called "backtrack" (S.W. Golomb,

'A Mathematical Theory of Discrete Classification', 4th London Symposium

on Information Theory, 1960).

Section 3 of the program does the major part of the bracketting of any

sentence. It is itself subdivided into four parts. The first of these

sorts the incoming words into types according to habitat, and does

preliminary work such as opening appropriate working stores in the

computer, and bracketting together such simple pairs as a prefix and the

word to which it is prefixed. The second parts deal with conjunctions.

The third is the part which does the actual bracketting (the united

reading is formed in Section 5) and includes the mechanism by which the

appropriate bracket is selected, and also the operations of the choice

IV. 26

tree and the choice tree switch number. The fourth part is a sub-

routine needed to calculate bracketting numbers for the third part.

3.1.0 The first substituent is examined. (3A)

3.1.1 If it has a zero habitat (see Section 5) then a mistake (3B)

has been made, and control returns to the master program.

3.1.2 If the substituent has an initial habitat, then the program (3C)

opens two working stores, one starting from the substituent

in question, the other starting from the following

substituent. Thus, if the substituent u in the sequence

u v w x y z i s a preposition, which has an initial habitat,

then on encountering it the program opens two working stores,

one starting u v w x... and the other v w x.. After this the

next word is picked up and examined in turn.

3.1.3 If the substituent has a multinitial habitat, then a working (3D)

store is needed which starts with this substituent. There

may be such a store already if the substituent follows one

with an initial habitat, but if there is not then the program

starts one. The next word is then examined.

3.1.4 If the word has a special initial habitat R, (i.e. it is an (3E)

article), then the previous substituent is also examined. If

this has a multinitial habitat, then the two substituents are

examined together to see if they can be bracketted. If this

is possible then the bracket is made, and the next substituent

has not a multinitial habitat, then the word is dealt with as

in 3.1.3.

3.1.5 If the substituent has a special initial habitat K, (i.e. (3F)

it is a relative pronoun), then again the previous

IV. 27

substituent is examined. If the previous substituent has

an initial or multinitial habitat, then again a bracket is

formed if possible as in 3.1.4. Otherwise the substituent is

dealt with as in 3.1.3.

3.1.6 If the substituent has a special initial habitat U, then (3G)

again, if the previous substituent has a special initial

habitat U also, bracketting is attempted as in 3.1.4., and

otherwise the substituent is dealt with as in 3.1.3.

3.1.7 If the substituent has a medial habitat, (i.e. it is a (3H)

conjunction), then its position in the sentence is noted in

a store, and the next substituent examined.

3.1.8 If a word with an L habitat is encountered, then the next (3I)

substituent is examined straight away. This situation

should not, however, arise as all such words should have

been replaced by Section 2.

3.1.9 If the substituent has a final habitat (for example, if it (3J)

is a full stop), then a return is made to the previous

substituent, and Section 3.2 entered.

3.1.10 If the word has a multifinal habitat, then Section 3.2 is (3K)

entered.

3.1.11 If the word has a prefix habitat, then an attempt is made (3L)

to bracket it to the following word. If this is possible

the bracket is formed and the next substituent examined;

if not, the program reports, i.e. stops with an error

indication.

3.1.12 If the word has a suffix habitat, then a similar attempt is (3M)

made to bracket it with the previous word.

3.1.13 If the substituent has an unmarked habitat, then the next (3N)

substituent is examined immediately.

IV. 28

Sub-Section 3.2

This sub-section looks through the current working store to see if

there is a substituent with a medial habitat (conjunction) present.

If not, then sub-section 3.3 is entered. If there is, then the address

of the last such substituent is put in the conjunction store, and the

master program re-entered.

Sub-Sections 3.5 and 3.4

Sub-section 3.3 selects the bracket to be made. Sub-section 3.4 is

entirely concerned with calculating bracketting numbers for use in

sub-section 3.3. Initially a sequence of substituents is read into the

working store. It is checked to ensure that in fact more than one

substituent is present. (3W)

3.3.1 The next set is selected from the sequence. As described (3X)

above the first set will consist of the first two

substituents.

3.3.2 The bracketting number of the set is calculated. (3Y)

3.3.3 If this bracketting number is higher than any previous (3O)

bracketting number in the sequence, then it is stored as a

new highest, and the corresponding set noted. If all the

sets have not been tried, begin at 3.3.1 with the next.

3.3.4 If this bracketting number is less than some previous (3P)

bracketting number then, if all the sets have not been

tried, begin again at 3.3.1 with the next.

3.3.5 If this bracketting number is equal to the old maximum, then (3R)

we compare the lengths of the corresponding sets. If the

new one is longer we proceed as at 3.3.3, if shorter, as at

3.3.4. If they are the same length, proceed as at 3.3.3.

IV. 29

3.3.6 When all the sets have been tried, in the order described (3S)

above, the best bracket is noted. (This may mean that no

bracket is made). It is taken to be of the kind determined

by its bracketting number and the choice tree switch number.

The bracket is replaced in the sentence by a single entity

with the appropriate participation class.

3.3.7 We now begin bracketting again on the modified sentence. (3T)

This process is repeated until eventually the sentence is

reduced to one bracket followed by a full stop.

3.3.8 Should a wrong choice of bracket be made at some stage, then (3U)

the program will be unable to continue bracketting until the

situation of one bracket and a full stop is reached. In

this case 1 is added to the choice tree switch number at the

stage representing the last successful bracket. An entirely

new attempt is then made to bracket the sentence, exactly as (3V)

before, but using the new choice tree switch number*

Eventually, either the sentence will be successfully

bracketted, or all the possibilities will be tried without

success.

IV. 30

IV. 31

IV. 32

IV. 33

SECTION 4

This section processes conjunctions picked up in Section 3. Conjunctions

may be qualified by adverbs, as in "men and occasionally women enjoy

cricket". Apart from these qualifiers, however, conjunctions lie

between bracket groups of the same kind. Two substituents are said to be

'parallel' if they can both occur in one of the English word classes

listed in Part III a). A substituent which can only be a governor in a

particular kind of group cannot be parallel with a substituent which can

only be a dependent in that kind of group. 'Parallel sequences' occur

when corresponding substituents from two ordered sets of substituents are

parallel.

In the program it is assumed that a conjunction, or a conjunction with

its qualifying adverbial group, occurs between two parallel sequences.

A pair of parallel substituents is treated as if the substituents were

sequences. It may be the case that words are omitted from one of the

sequences. Thus, for example, "apples were given to the boys and pears

were given to the girls" is usually shortened as "apples were given to

the boys and pears to the girls". In such cases the program will replace

the latter by the former. Sentences such as "boys and girls went to the

dance", on the other hand, do not require expansion.

This section has not been mechanically tested, but it is apparent from

rule of thumb experiments that it has not sufficient scope to deal with a

large variety of conjunctive sentences. It may fail partly because in

attempting to find parallel sequences it may select the wrong ones from a

number of alternatives. The correct sequences must be bracketted by the

IV. 34

normal procedure. For example, "the kitchen sinks" could be a clause,

though it is more often a nominal group. If it is found as a parallel

to another clause, the normal usage may be overlooked, and the program

may form a wrong bracket. The program may also fail if the working store

does not contain all the substituents in the sequences: for the first

substituent in the store will be one with an initial habitat, and this

may not be the first substituent in the sequence preceding the

conjunction.

Another procedure which is designed to overcome these difficulties is at

present being tested by rule of thumb. If satisfactory results are

obtained the program described below will be modified.

The program representing the first version of the procedure is as follows:

4.1.0 The substituents in the working store on either side of the

conjunction found in Section 5 are scanned, a pair at a time, to

find a parallel pair. The scanning order used is illustrated

below on a seven member sequence:

When a parallel pair is found Section 4.2.0 is entered.

IV. 35

4.1.1 If no pair of parallel substituents is found a new working store

starting with the word following the conjunction is opened and

Section 3 re-entered.

4.2.0 If two parallel substituents, say x and y, are found, the

substituents in the working store are examined to see if x and y

are the last members of two parallel sequences: x - 1 and y - 1

are examined to see if they are parallel, x - 2 and y - 2 and so

on backwards until one of the following points is reached: either

the first word in the store as x - n, or the conjunction as y - n,

or a non-parallel pair. The sequences found are recorded.

4.2.1 If the first member of the sequence dependent on y does not immedi-

ately follow the conjunction the items between it and the conjunct-

ion are examined to see whether they can form an adverbial group.

If so, they are bracketted with the conjunction. If not, the

bracketting has failed and Section 3 is re-entered.

4.2.2 It may be the case that there are parallel sequences but words

have been omitted from the second sequence. These cases are dealt

with as follows: when a non-parallel pair is reached in 4.2.0 x is

moved back until a substituent corresponding to the y - n under

consideration, say x - n, is found. Copies of the items between

this x - n and the last paired substituent x - m are inserted

between y - n and the last prepared substituent.

In this way a sequence dependent on y is produced which is properly

parallel to the dependent on x.

4.3.0 The sequence dependent on x is examined to see if it can be

bracketted. If not, the attempt to bracket round the conjunction

IV. 36

is abandoned. A new working store is started from the

substituent following the conjunction and Section 3 is re-entered.

If the sequence can form a bracket group, the bracketting is

carried out.

4.3.1 If the sequence dependent on x can be bracketted, the correspond-

ing sequence dependent on y can also be bracketted. Finally the

bracket containing the sequence in front of the conjunction, the

conjunction itself, and the bracket containing the sequence after

the conjunction are all bracketted together. This bracket is

assigned the same participation class and habitat as the sequences.

4.4.0 When this has been done, Section 3 of the program is re-entered.

IV. 57

SECTION 5

This section of the program forms the united reading in the united reading

store. This consists of a computer 'word' representing each original text

word, and a computer word representing each bracket group that has been

formed. The bracket groups are subsequently treated as if they were text

words.

Suppose for example that the four words a b c d have been bracketted

together. The united reading will contain the computer words representing

a b c d and also (abcd5) representing the bracket group. The computer word

representing the bracket group also gives its habitat and participation

class and indicates the number of words in the group. This count includes

the bracket group itself.

Next suppose that in the sequence a b c d e d and e were first bracketted,

that this group and c were combined and finally that a and b were bracketted

with the previously found group. The united reading at each stage of the

bracketting would be as follows:

Sentence Store_ United Reading Store

(i) abcde ________

(ii) abc(de) d e (de3)

(iii) ab(c(de))) d e (de3) c (cbded5)

(iv) (ab(c(de))) de (de3) c (c(de)5) ab (ab(c(d e)8)

Again every bracket group contains a number indicating the total number

of substituents including itself. Thus (c(de)) is marked 5, since the

group contains the substituents, d, e, (de), c, and itself, (c(de)).

IV. 38

As a second example, suppose that in the sequence a b c d e, a and b

will bracket, so will d and e, and that the entire sequence will then

bracket. The final united reading will be

c d (cd3) a b (ab3) e ((cd) (ab)e8).

The count in the last bracket group is 8 since it includes c, d, (cd),

a, b, (ab), e and ((cd)(ab)e).

The habitat of a bracket group is obtained from the table given below.

The habitat of a two-word bracket, for example, is found in the row

containing the habitat of the first member and the column containing

the second.

"-" indicates an excluded pair of entities.

E* indicates that not only can we ascertain the habitat E but we can

IV. 39

also ascertain the function of a noun attached to it.

Thus, suppose for example we have a bracket group (ab), where a

has habitat M and b habitat U; as can be seen from the table

above, the group has habitat U. Similarly, if c has habitat U,

and d habitat Z, the bracket (cd) has habitat H.

In a three or more member bracket group the combined habitat of the

first two members is found. This is then taken to combine with the

habitat of the third member. For example, suppose that in the four

member bracket group (abcd) a has habitat U, b habitat Z, c habitat H

and d habitat S, a and b have combined habitat H; when this is

combined with the third member's habitat H a combined habitat E is

found and finally habitat E combines with the last member's habitat S

to give habitat E. The combined habitat for the bracket will thus be E.

Certain combinations of habitats are marked with a dash "-". This

indicates that the items cannot in fact be correctly bracketted

together. Section 3.1 1 is designed to discover and rectify such

errors.

According to its kind every bracket group formed is assigned a

participation class. This is obtained by look-up from the table below.

IV. 40

Kind of bracket group participation class

2 130 02000 0000

3 100 00200 2212

4 100 00200 2202

5 100 00200 2212

6 201 01031 0101

7 201 01031 0101

8 100 00200 2202

9 100 20010 1000

10 130 10010 1000

11 130 10000 0000

12 100 00000 0010

Thus, suppose for example that a and b form the kind of bracket group

marked Z; this group can occur as a governor in other groups of kind

5, as a dependent in kind 1, or as either a governor or dependent in

kind 2. As in Section 3 we give it the participation class 130020000000,

where each position represents a kind of bracket group, and the digits

0, 1, 2 and 3 indicate respectively whether it cannot occur in the group

or whether it occurs as a dependent, as a governor or as either. As a

further example suppose that c and d form the kind of bracket group

marked 12. This occurs as a dependent in kind 1 or kind 11 and nowhere

else. It has been found unnecessary to indicate a participation class

for bracket groups of kind 1 as these are special cases and are dealt

with elsewhere.

To sum up, the united reading consists of the original text words plus

each bracket group, treated as a word. The latter will have habitats

IV. 41

according to the habitats of the components, participation classes

according to their kinds and counts recording the number of their

substituents.

It will have been noted that the united reading tends to turn the

sentence back to front. The program has been deliberately designed to

do this, since it has been shown that in any language bracket groups are

more often formed from the back forwards. This is to say that in any

sentence a b c d e f g for example, it is more likely that the sentence

will bracket as (a(bc(d(d(fg))))) than as ((((((ab)c)d)e)f)g).

The design chosen, therefore, while no better logically than one which

does not change the order, is generally quicker in practice.

The operations are carried out in the following order:

5.1.1 The working space in the computer is cleared. This section is

entered from Section 3, where the items to be bracketted were

selected. A first check is made to verify that at least two (5A)

items are present. The kind of bracket group to be made is (5B)

ascertained from the bracketting number.

5.1.2 The length of the bracket is calculated from the number of (5C)

components.

5.2.1 Commas are ignored. (5D)

5.2.2 The habitats of the substituents are found and the habitat (5E)

of the bracket group found from the directory as described (5F)

above.

IV. 42

5.2.3 The participation class of the bracket is found from the (5G)

appropriate directory. If the bracket group is a verbal (5H)

group of a predicate, the habitat is set at H, whatever

the habitat calculated in 5.2.2.

5.3.1 Section 5.1 is now re-entered, and the united reading (5J)

recorded.

5.3.2 Return to the master program. (5K)

IV. 43

