
ECOLE: A Look-ahead Editor for a Controlled Language

Rolf Schwitter, Anna Ljungberg, David Hood
Centre for Language Technology

Macquarie University
Sydney, NSW 2109, Australia

{ schwi t t | anna| dhood} @i cs. mq. edu. au

Abstract

This paper presents ECOLE, a look-ahead
text editor that supports authors writing
seemingly informal specifications in
PENG, a computer-processable controlled
natural language. ECOLE communicates
via a socket interface with the controlled
language processor of the PENG system.
After each word form entered the look-
ahead editor displays appropriate look-
ahead categories. These syntactic hints
tell the author what kind of word or syn-
tactic structure can follow the current in-
put string and reduce thereby the cogni-
tive burden to learn and remember the
controlled language. While the author
types the text word by word and adds un-
known content words on the fly to the lex-
icon, a discourse representation structure
and a paraphrase is built up dynamically
for the text in a completely compositional
manner. The arising specification can be
checked automatically for consistency and
informativity with the help of third-party
reasoning services.

1 Introduction

Controlled natural languages are - more or less -
well-defined subsets of natural languages that have
been restricted with respect to their grammar and
lexicon. Grammatical restrictions result in less
complex and less ambiguous texts. Lexical restrict-
ions reduce the size of the vocabulary and the
meaning of the lexical entries for a particular ap-

plication domain. In general, these restrictions im-
prove the readability and the processability of a
document. However, different tasks need different
types of controlled languages. For example, con-
trolled languages for technical documentation re-
quire good readability (AECMA, 2001), while con-
trolled languages for machine translation focus on
processability and therefore have other restrictions
(Mitamura and Nyberg, 2001). Controlled natural
languages not only make life a lot easier with tech-
nical documents and machine translation, but they
can also improve the whole knowledge acquisition
process for any kind of intelligent system (Sowa,
2002).

It is well known that writing documents in a
controlled natural language can be a slow and pain-
ful process, since it is hard to write documents that
have to comply with the rules of a controlled lan-
guage (Goyvaerts, 1996; Huijsen, 1998). One of
the deciding factors for the acceptability of a con-
trolled language is the availability of tools that
check the compliance with the definition of a con-
trolled language and support the writing process
(Wojcik and Hoard, 1996). Without such tools that
help the author to stick to the defined vocabulary
and to the grammar rules, it is nearly impossible to
produce informative and consistent documents.

To guarantee the painless and efficient use of
our controlled natural language PENG (Process-
able ENGlish) (Schwitter, 2002), we have designed
and implemented ECOLE, a look-ahead text editor
that helps authors to write precise and seemingly
informal specifications in controlled natural lan-
guage. ECOLE guides the writing process and
guarantees well-formed syntactic structures that
can be translated deterministically into first-order
logic via discourse representation structures (Kamp

and Reyle, 1993). The semantic interpretation of a
specification is built up incrementally during pars-
ing and the systems’ interpretation is displayed as a
paraphrase in controlled language.

Authors can write specifications in PENG with-
out having to learn and remember the language
since ECOLE handles all the approved structures
and enforces the restrictions placed upon the lan-
guage as specified by the controlled grammar and
the lexicon.

Strictly speaking the arising specification is a
logical theory that can be checked for its consis-
tency and informativity with the help of third-party
reasoning services. Apart from checking a specifi-
cation for these acceptability constraints, an author
can also query a PENG specification in order to
find possible answers to questions in the text.

The remainder of this paper is organized as fol-
lows: In Section 2, we briefly introduce the con-
trolled natural language PENG and discuss the
most important lexical and grammatical restric-
tions of the language. In Section 3, we present
ECOLE, the look-ahead text editor from an au-
thor’s point of view and explain its functionality.
In Section 4, we take a look behind the curtain and
explain how ECOLE is integrated into the PENG
system and how the text editor interacts with the
controlled language processor and the reasoning
services (theorem prover and model builder). Fi-
nally, in Section 5, we summarize the advantages
of the presented approach.

2 PENG (Processable ENGlish)

Similiar to Attempto Controlled English (Schwit-
ter, 1998; Fuchs et al., 1999), PENG is a computer-
processable controlled natural language specifi-
cally designed to write precise specifications
(Schwitter, 2002). PENG consists of a strict subset
of standard English. The restrictions of the lan-
guage are defined with the help of a controlled
lexicon and a controlled grammar, and are en-
forced by ECOLE, the look-ahead editor. In the
following section we will illustrate the coverage of
the language with examples taken from the
Dreadsbury Mansion Mystery, a logical puzzle that
is usually used in the literature to test the capacity
of automatic theorem provers (Pelletier, 1986).

2.1 Controlled Lexicon

The lexicon of PENG consists of predefined func-
tion words, a set of illegal words (especially inten-
sional words), and user-defined content words.
Function words such as

• determiners: each, a, the, no, who, …
• prepositions: in, on, between, …
• copula: is, are
• negation: does not, is not, …
• relative pronouns: who, that, which, …
• coordinators: and, or
• subordinators: if, before, after, while, …
• constructors: there is/are, for every …

build the structural scaffolding of the controlled
language. User-defined content words such as

• nouns: person, Agatha, butler, …
• verbs: l ives, kills, is, …
• adjectives: rich …
• adverbs: slowly…

can be added or modified by the author during the
writing process with the help of a lexical editor
that is part of the text editor ECOLE. Thus, by add-
ing content words, the author creates his own ap-
plication specific lexicon. In addition, the author
can define synonyms for content words and acro-
nyms or abbreviations for nouns.

2.2 Controlled Grammar

The controlled grammar defines the structure of
simple PENG sentences and states how simple sen-
tences can be joined into complex sentences by a
set of coordinators and subordinators. Simple sen-
tences are:

• Agatha hates a person.
• A person lives in Dreadsbury Mansion.
• A person A hates a person B.
• Agatha is not the butler.
• No person hates every person.

Complex PENG sentences are composed of

simpler sentences with the help of coordinators and
subordinators:

• Agatha, the butler, and Charles each live in
Dreadsbury Mansion.

• If a person lives in Dreadsbury Mansion
then that person is Agatha or the butler or
Charles.

• If a person is not the butler then Agatha
hates that person.

The grammar of PENG also specifies that sim-

ple sentences have a linear temporal order by de-
fault and that sentences can be anaphorically inter-
related in a well-defined way to build coherent tex-
tual structures.

2.3 An Example Specification

The Dreadsbury Mansion Mystery is usually trans-
lated first by hand from unrestricted English into a
formal language and the consequence of the puzzle
is then proven by a theorem prover. Using PENG,
the manual translation into a formal notation be-
comes unnecessary, since PENG specifications can
be unambiguously translated into first-order logic
via discourse representation structures. The follow-
ing paragraph is the Dreadsbury Mansion Mystery
in PENG. It becomes obvious that it would be hard
to write this text in PENG without intelligent writ-
ing assistance.

1. A person who lives in Dreadsbury Mansion

kills Agatha.
2. Agatha, the butler, and Charles each live in

Dreadsbury Mansion.
3. If a person lives in Dreadsbury Mansion

then that person is Agatha or the butler or
Charles.

4. If a person A kills a person B then the per-
son A hates the person B.

5. If a person A kills a person B then the per-
son A is not richer than the person B.

6. If Agatha hates a person then Charles does
not hate that person.

7. If a person is not the butler then Agatha
hates that person.

8. If a person is not richer than Agatha then
the butler hates that person.

9. If Agatha hates a person then the butler
hates that person.

10. No person hates every person.
11. Agatha is not the butler.
12. Who kills Agatha?

Sentence 1 is a complex sentence that consists
of a simple PENG sentence A person kills Agatha
and an embedded relative clause who lives in
Dreadsbury Mansion. Prepositional modifiers such
as in Dreadsbury Mansion always relate to the
closest preceding verb phrase in PENG. Sentence 2
contains a plural noun phrase Agatha, the butler,
and Charles together with the floated quantifier
each as a specific keyword. This keyword triggers
a distributive reading of the plural noun phrase in
PENG. Sentence 3 contains an anaphoric reference
that person a person and a verb phrase coordi-
nation is Agatha or the butler or Charles with a
copula that has been elided in two conjuncts. Sen-
tences 4 and 5 contain two so-called dynamic
names A and B that make the anaphoric reference
explicit on the surface level. Additionally, sentence
5 contains a negated verb phrase is not richer than
... that subordinates a comparative construction.
PENG distinguishes between verb phrase negation
such as in sentences 5, 6, 7 and 8 and noun phrase
negation such as in sentence 10. The scope of the
negation extends by default to the end of a simple
sentence. Sentence 10 consists of two quantifiers
no and every. The relative scope of a quantifier
corresponds to its surface position in PENG. Con-
structors such as for every and there is a allow
quantified noun phrases to move to the sentence
initial position to enforce an alternative reading - if
necessary. With questions such as in sentence 12,
authors can examine the content of a PENG spe-
cification and find the not so obvious answer auto-
matically that Agatha killed herself.

3 ECOLE: User Interface

ECOLE, the look-ahead editor for PENG consists
of two parts: a text field where the author develops
the specification and a response field where system
messages are displayed. Figure 1 gives an over-
view of the options from which the author can
choose.

The most important option of ECOLE is the
look-ahead functionality. If this option is selected,
then the author is given a list of choices of how to
continue the sentence after each word form en-
tered. These syntactic constraints ensure that the
document remains unambiguous and precise.

For example, when the author starts typing the
sentence A person lives in Dreadsbury Mansion,

ECOLE displays the following look-ahead catego-
ries as subscripts in angle brackets:

A [adjective | common noun]

A person [verb | negation | relative sentence]

A person lives ['.' | prepositional phrase | adverb]

As this example shows, the editor makes use of
graphical means to display these syntactic hints as
a help to the author. Note that the author needs
only minimal linguistic knowledge to choose from
these restrictions. Each look-ahead category is im-
plemented as a hyperlink. If something is unclear,
then the author can click on one of the displayed
categories to obtain more information.

Figure 1: Functionality of ECOLE

The editor also handles compound nouns such
as Dreadsbury Mansion. When the first noun
Dreadsbury has been entered, then the editor dis-
plays the second part of the compound noun Man-
sion and all other suitable look-ahead categories.

The look-ahead categories are generated while
the text is written using the information produced
by the chart parser of the controlled language proc-
essor.

ECOLE comes with an integrated spelling
checker and a lexical editor. If a content word is
unknown and not misspelled, then the lexical edi-
tor pops up and allows the author to add the word
to the lexicon. As soon as the word is available, the
processing is resumed. If the author selects the cor-
responding options beforehand, then the system
checks the text for its consistency and informativ-

ity after each new sentence. Whenever a new sen-
tence violates these acceptability constraints, then
the author gets immediate feedback.

Another option of ECOLE is the paraphrase
that informs the author how the system interpreted
the input. Below follows an example of an input
sentence with a paraphrase generated by the con-
trolled language processor:

Input:

Agatha is not the butler.

Paraphrase:

Agatha is not [identical to] the butler.

The paraphrase thus makes it clear to the author

that the copula (is) followed by a definite noun
phrase (the butler) is interpreted as identity. If the
copula had been followed by an indefinite noun
phrase such as (a lady), then the system would in-
terpret this as a property and introduce a state in
the semantic representation instead of an identity.

PENG allows only well-defined forms of ana-
phoric references (definite descriptions and names,
but no personal pronouns). The paraphrase informs
the author how anaphoric references are resolved
during parsing:

Input:

If a rich person lives in Dreadsbury Mansion
then that person is Agatha.

Paraphrase:

If a rich person lives in Dreadsbury Mansion
then {that rich person} is [identical to] Agatha.

An anaphoric expression is always replaced by

the complete antecedent and the string is put within
curly brackets. In PENG an anaphoric expression
refers to the most recent accessible noun phrase
that is suitable in terms of agreement, gender, and
type, with respect to the nominal head and the pre-
and postmodifiers.

As another option of ECOLE the discourse rep-
resentation structure (DRS) can be displayed,
which may be of interest to anyone wishing to see
how the semantics of the processed information is

represented. Normally the author does not have to
worry about the underlying semantic representa-
tion since he can simply rely on the paraphrase
produced by the controlled language processor.
However, the underlying representation may be
used, for example, to teach students logic and com-
putational semantics.

In general, a DRS captures the information in a
multi-sentence discourse and forms a logical the-
ory that shows the relations between the entities,
the states, and the events in the application domain.
A DRS is represented as a term of the form
drs(U,CON), where U is a list of discourse refer-
ents and CON is a list of conditions for these dis-
course referents. The discourse referents are quant-
ified variables that stand for entities in the spe-
cified application domain, while the conditions
constitute constraints that these discourse referents
must fulfil to make the DRS true. For the following
input the controlled language processor generates a
DRS and sends it to ECOLE (see also Figure 2 for
another example).

Input:

A person who lives in Dreadsbury Mansion kills
Agatha.

DRS:

[A, B, C, D, E, F]
per son(A)
event (B, l i ve(A))
l ocat i on(C, i n(B, D))
named(D, dr eadsbur y_mansi on)
event (E, ki l l (A, F))
named(F, agat ha)

The first part of the DRS consists of six dis-

course referents in square brackets. The discourse
referents A, D, and F stand for individuals and have
been derived from the noun phrases. The discourse
referent B and D stand for events and have been
derived from the verbs. The discourse referent C
reifies a location and has been derived from the
prepositional phrase. These discourse referents are
used in the second part of the DRS, which consists
of conditions for the discourse referents.

When a noun phrase is found to be anaphoric
during parsing (such as the noun phrase the person
in the example below), then the anaphoric refer-

ence is directly resolved and not represented in the
DRS.

Input:

A person who lives in Dreadsbury Mansion kills
Agatha. The person has a knife.

DRS:

[A, B, C, D, E, F, G,H]
per son(A)
event (B, l i ve(A))
l ocat i on(C, i n(B, D))
named(D, dr eadsbur y_mansi on)
event (E, k i l l (A, F))
named(F, agat ha)
state(G,have(F,H)
knife(H)

Paraphrase:

A person who lives in Dreadsbury Mansion kills
Agatha. {The person } has a knife.

As we will see in the next section, such dis-

course representation structures are first translated
into equivalent first-order formulas before they can
be processed by off-the-shelf reasoning services.

Figure 2: ECOLE in Action

The task of the reasoning services is to check

the consistency and informativity of a specification
as it is being built up.

4 How ECOLE Works

The top-level architecture of the PENG system
consists of five main components: ECOLE, the
look-ahead text editor, a controlled language (CL)
processor, a server, a theorem prover, and a model
builder (Figure 3).

Figure 3: Architecture of PENG

ECOLE communicates with the CL processor
via a socket interface. The CL processor is running
as a client and is connected via a server with a
theorem prover and a model builder. The theorem
prover and the model builder are both running
separate client processes. The server implements a
blackboard on which the CL processor writes a
(partial) specification for which the theorem prover
searches a proof and the model builder looks for a
countermodel. These two reasoning services are
used to check whether a specification is consistent
and informative, and to answer questions.

4.1 The CL Processor

When the author types a word form into ECOLE,
then the current (partial) sentence is sent to the
chart parser. The chart parser processes the input in
the context of the previous sentences using a unifi-
cation-based grammar. The grammar is written in a
format similar to a definite clause grammar but the
chart parser is implemented as a meta-interpreter
that reads the grammar as data. This approach al-
lows us to generate the look-ahead categories, re-
solve anaphoric references and produce the se-
mantic representation and the paraphrase during
parsing.

Here comes a simplified example of a grammar
rule that is used by the chart parser:

n2(Agr , I ndex, Quant , Dr s, Scope,
 Par aI n- Par aOut , [n2, T1, T2] ,
 Gap- Gap, Ana)
 - - - >
 det (Agr , I ndex, Quant , Dr s,

Rest , Scope, Par aI n-
Par a, T1) ,

 n1(cat : cn, Agr , I ndex, Quant ,
 Rest , Par a- Par aOut , T2,
 Gap- Gap, Ana) .

The chart parser processes such grammar rules

top-down and produces edges according to the
rules of chart parsing (Gazdar and Mellish, 1989).
The edges have the following general form:

edge(START,END,HEAD,BODY)

Such edges simply tell us, what categories of a
grammar rule (HEAD → BODY) can span the sub-
string of words found between the START point
and the END point. We can distinguish two types
of edges: active and inactive edges. An active edge
is a hypothesis about a structure and an inactive
edge is a result. For example, if the author types
the determiner the into the editor, then the chart
parser produces the following edges (simplified
here):

edge(0, 1, [det] , [])
edge(0, 0, [s] , [n2, v2])
edge(0, 0, [n2] , [det , a2, n1])
edge(0, 1, [n2] , [a2, n1])
edge(1, 1, [a2] , [a1])
edge(1, 1, [a1] , [a0])
edge(0, 0, [n2] , [det , n1])
edge(0, 1, [n2] , [n1])
edge(1, 1, [n1] , [n0])

The first edge at the beginning of the chart is an

inactive edge which contains an empty list []. It
represents a confirmed hypothesis and shows that a
determiner has been parsed successfully between
the nodes 0 and 1. All other edges are active. That
means that the chart is maintaining hypotheses
about other structures that might follow.

The look-ahead categories are generated in the
following way: during chart initialization the
length L of the input string is calculated and as
soon as active edges are added to the chart that end

at L then the leftmost category on the right hand
side of a rule is collected. This process results in
one or more look-ahead trees from which the lexi-
cal categories can be easily extracted as leafs. In
our case chart parsing is incremental. If another
word is added to the input string, chart parsing is
resumed and additional look-ahead categories are
collected for active edges at L+1.

The look-ahead categories are then sent back to
ECOLE together with a paraphrase, a (partial) syn-
tax tree, the updated discourse representation struc-
ture, and a first-order representation of the current
input. As we will see in the next section, the first-
order representation is not generated directly by
the chart parser but derived from the discourse rep-
resentation structure.

4.2 Reasoning Services

Standard reasoning services are not able to process
discourse representation structures directly. There-
fore, we translate the discourse representation
structure into a set of first-order formulas with the
help of an efficient compiler that behaves linearly
on the size of the input (Blackburn and Bos, 1999).
These first-order formulas build a logical theory
that can be investigated by a theorem prover and a
model builder. We are especially interested to
check whether a theory is consistent and informa-
tive after new information has been added to that
theory. For example, if the author writes:

Agatha is a woman who lives in Dreadsbury
Mansion.

and later accidentally adds the information

Agatha does not reside in Dreadsbury.

then the consistency of the theory is violated.
As we will see below, the PENG system can

detect such inconsistencies provided that live and
reside are stored as synonyms in the lexicon and
that Dreadsbury is known as an abbreviation of
Dreadsbury Mansion.

In a similar way, if the author writes

Agatha lives in Dreadsbury Mansion.

and later adds the information

Agatha resides in Dreadsbury.

then the informativity constraint is violated since
the second sentence does not add any new informa-
tion. Here we would end up with a theory that con-
tains redundant information.

To detect the inconsistency of a theory , we
can use a theorem prover and give it the negation
of the theory ¬ . If a proof is found for the ne-
gated theory, then the original theory is inconsis-
tent (or unsatisfiable). To detect the consistency of
a theory , we can use a model builder. A model
builder is a program that takes a theory and tries to
build a model

�
 for that theory. This is done with

an interpretation function � that systematically
maps predicates and constants of the language to
members of a domain D. A theory is consistent
(or satisfiable) if the model builder can find at least
one model

�
 that satisfies all the formulas in the

theory. In general, model builders are only able to
construct finite models and require a parameter
that constrains the domain size of the model.

Theorem prover and model builder can com-
plement each other (Bos, 2001a; Bos, 2001b;
Fuchs and Schwertel, 2002). If a theory is unsatis-
fiable, then the theorem prover will find a proof
while the model builder has to do an expensive
search that possibly does not terminate. If the the-
ory is satisfiable for a finite domain, then the
model builder will find a model while the theorem
prover has to do an expensive search that possibly
does not end. Finally, if the problem is satisfiable
for an infinite domain, then the theorem prover
will never be able to find a proof and the model
builder will never succeed to find a model. To deal
with this unpleasant case, the theorem prover and
the model builder have to stop searching for a solu-
tion after a specific runtime.

Apart from helping each other out and checking
for inconsistency and satisfiability, the theorem
prover and the model builder can also be used to
check a theory for its informativity and to construct
answers to questions.

Testing whether a piece of information is
new and informative with respect to its previous
context can be done by giving the theorem
prover . If it finds a proof, then is not
informative. The model builder can do a similar
test, provided that we give it ∧ and then ∧
¬ ; if the model builder finds a model

�
 in both

cases, then is informative.
A variation of the basic proof procedure can be

used to answer questions formulated in PENG.

During a proof variables are bound to values by
substitutions. These bindings can be interpreted as
a question answering process.

Interestingly, the structures generated by the
model builder can also be used for the question
answering process. Since the model builder con-
structs flat structures with no explicit quantifica-
tion or boolean operators, answers to questions can
be easily extracted from these structures (Black-
burn and Bos, 1999).

4.3 The Theorem Prover in Action

The PENG system uses OTTER (McCune, 1995),
a resolution style theorem prover for first-order
logic with equality. The theorem prover client of
PENG accepts a theory via ECOLE and the CL
processor and transforms the formulas into first-
order equivalent OTTER-syntax.

For example for the simple input

Agatha is a human.
Every human is a mortal.

we arrive at the OTTER input file below. The flag
name auto stands for OTTER's autonomous
mode, max_seconds for the maximal search
time, and prolog_style_variables for the
format of the variables that start here with A
through H.

set (aut o) .
assi gn(max_seconds, 3) .
set (pr ol og_st y l e_var i abl es) .
f or mul a_l i s t (usabl e) .

(exi s t s A (ex i st s B (ex i s t s C

(- (ex i st s G (ex i s t s H
 (s t at e(G) & be(G, C, H) &
 eq(C, H) & mor t al (H)))) &

 ((al l D (human(D) → (exi s t s E
 (ex i s t s F (s t at e(E) &
 be(E, D, F) & eq(D, F) &

 mor t al (F)))))) &
 (s t at e(A) & be(A, C, B) &
 eq(C, B) & human(B) &
 eq(C, agat ha))))))) .

 end_of _l i st .

This means that the client calls OTTER in the

autonomous mode placing a time limit on the
search. In the autonomous mode OTTER decides

on inference rules and strategies. OTTER operates
on clauses and therefore translates the first-order
input immediately into clauses. OTTER uses a
number of inference rules (binary resolution, hy-
perresolution, UR-resolution, and binary para-
modulation). These inference rules take a small set
of clauses and infer a clause. If the inferred clause
is new and useful, then it is stored and used by
OTTER for subsequent inferences. When OTTER
stops running, it returns with an exit code that
gives the reason for termination. For our simple
example above, OTTER confirms that it found a
proof.

In the case of a wh-question such as

Who is a human?

an answer literal of the form $ans(C) is auto-
matically added to the query:

(- (exi s t s G (ex i st s H

(st at e(G) & be(G, C, H) &
eq(C, H) & mor t al (H)))) &
$ans(C) & …

Answer literals make it possible to record in-

stantiations for variables in input clauses during a
search for refutation. For example, OTTER pro-
duces the following skolemized terms during a
proof:

eq($c1, $c2) .
human($c2) .
eq($c1, agat ha) .
…
$ans($c1)

This makes question answering possible and al-

lows us to display the answer as a string in con-
trolled natural language.

4.4 The Model Builder in Action

The PENG system uses MACE (McCune,
2001), a model builder for first-order logic with
equality to search for finite models. The model-
builder client of PENG accepts a theory from the
CL processor and transforms the formulas into
OTTER-syntax. OTTER and MACE accept nearly
the same input but since MACE attempts to find
minimal models and does not distinguish between
constants, we need to add extra constraints to the

theory to guarantee that constants in the input are
assigned unique elements of the domain. This is
not a big problem since these constraints can be
generated automatically and be specified in a spe-
cial list in the input file. The client then calls
MACE using that input file with a given finite do-
main size for the search. MACE transforms the
first-order input into an equivalent propositional
problem in conjunctive normal form. The proposi-
tional problem is then given to a propositional de-
cision procedure. If the decision procedure finds a
model that satisfies the set of propositional clauses,
then the model is transformed into a first-order
model of the original problem. MACE can print
models in an easily parsable form that can be read
by most Prolog systems. For the two example sen-
tences:

Agatha is a human.
Every human is a mortal.

MACE builds the following kind of model (pretty
printed):

f (1, human, [d2])
f (1, s t at e, [d1])
f (3, be, [(d2, d2)])
f (1, mor t al , [d2])
f (0, c3, d2)
f (0, c1, d2)
f (0, c2, d2)
f (0, agat ha, d2)

The answers to the questions

Is Agatha a mortal?
Who is a mortal?

can now be extracted from these flat structures and
an answer string can be generated in controlled
natural language.

5 Conclusions

In this paper we presented ECOLE, a sophisticated
look-ahead editor and discussed how this editor is
embedded and used in the PENG system. ECOLE
guides the author during the writing process. For
each word form entered, ECOLE displays look-
ahead categories and indicates what syntactic cate-
gory can follow next. Writing PENG puts no big
demands on the author when it comes to learning

and remembering the rules of the controlled lan-
guage as they are efficiently taken care of by the
look-ahead editor. The use of the look-ahead cate-
gories guarantees well-formed expressions and
provides the necessary structural basis for the se-
mantic interpretation of the controlled language in
a completely compositional manner. While the au-
thor is writing a sentence, a paraphrase is dynami-
cally generated in PENG that explains how the
system interprets the current input. PENG texts are
deterministically translated into first-order logic
via discourse representation structures and can be
automatically checked for consistency and infor-
mativity with the help of off-the-shelf reasoning
services.

Such a computer-processable controlled natural
language that is automatically translatable into a
formal language has an immense potential and can
lead to practical solutions in various application
domains:

• Software engineering is one of the first appli-

cation domains that can benefit from a con-
trolled natural language. Using a controlled
language will make it possible to write unam-
biguous and precise software specifications
and to develop taxonomies of domain concepts
in a familiar and intuitive notation. Beyond
that, it will become possible to check the re-
sulting specification automatically for its con-
sistency and to derive a formal specification
automatically.

• The Semantic Web is another application do-

main that might profit from a controlled natu-
ral language. For example, a controlled natural
language might be used to model human-
readable Web structures and to exploit the un-
derlying reasoning capabilities for the man-
agement of information. Instead of struggling
with RDF or Notation3, non-specialists could
work with a layer of a controlled language that
is equivalent to a version of description logic.

These are only two obvious examples of possi-

ble application domains. Other domains are busi-
ness process modeling, database modeling, and
legal reasoning.

Besides that we are planning to use the PENG
system for teaching students logic and concepts in
language technology.

6 Acknowledgments

This research was kindly supported by Mac-
quarie University’s New Staff Grant (MUNS 9601/
0078). We would like to thank Mitko Razboynkov
for developing the first version of the look-ahead
editor. We would also like to express our thanks to
Sabine Geldof, Marc Tilbrook, and the anonymous
reviewer for their useful and constructive com-
ments and suggestions on earlier versions of this
paper.

References

AECMA. 2001. The European Association of Aero-
space Industries. AECMA Simplified English,
AECMA Document PSC-85-16598. A Guide for the
Preparation of Aircraft Maintenance Documentation
in the International Aerospace Maintenance Lan-
guage. Issue 1, Revision 2, 15 January.

J. Blackburn and J. Bos. 1999. Representation and In-
ference for Natural Language. A First Course in
Computational Semantics. Volume II. Working with
Discourse Representation Structures. Draft at
http://www.comsem.org.

J. Bos. 2001a. DORIS 2001: Underspecification, Reso-
lution and Inference for Discourse Representation
Structures. In: Blackburn and Kohlhase (eds): ICoS-
3. Inference in Computational Semantics. Workshop
Proceedings, Siena, Italy, June.

J. Bos. 2001b. Model Building for Natural Language
Understanding. Draft at http://www.cogsci.ed.ac.uk/
~jbos/.

N. E. Fuchs, U. Schwertel, and R. Schwitter. 1999. At-
tempto Controlled English - Not Just Another Logic
Specification Language. Lecture Notes in Computer
Science 1559, Springer.

N. E. Fuchs and U. Schwertel. 2002. Reasoning in At-
tempto Controlled English. Technical Report. IFI,
University of Zurich, July.

Gerald Gazdar and Chris Mellish. 1989. Natural Lan-
guage Processing in PROLOG. An Introduction to
Computational Linguistics. Addison-Wesley, Wok-
ingham, England.

P. Goyvaerts. 1996. Controlled English, Curse or Bless-
ing? – A User’s Perspective. Proceedings of the First
International Workshop on Controlled Language
Applications, 26-27 March 1996, Leuven.

W. O. Huijsen. 1998. Controlled Language – An Intro-
duction, Proceedings of the Second International

Workshop on Controlled Language Applications. 21-
22 May 1998, Pittsburgh, Pennsylvania.

H. Kamp and U. Reyle. 1993. From Discourse to Logic.
Kluwer, Dordrecht.

T. Mitamura and E. Nyberg. 2001. Automatic Rewriting
for Controlled Language Translation. Proceedings of
the NLPRS 2001 Workshop on Automatic Paraphras-
ing: Theory and Application.

W. W. McCune. 1995. OTTER 3.0 Reference Manual
and Guide, Argonne National Laboratory, ANL-94/6,
Revision A, August.

W. W. McCune. 2001. Mace 2.0 Reference Manual and
Guide, Technical Memorandum ANL/MCS-TM-249,
Argonne National Laboratory.

F. J. Pelletier. 1986. Seventy-five Problems for Testing
Automatic Theorem Provers, Journal of Automated
Reasoning 2, pp. 191-216.

J. F. Sowa. 2002. Architectures for intelligent systems,
IBM Systems Journal, Vol. 41, No. 2, pp. 331-349.

R. Schwitter. 1998. Kontrolliertes Englisch für Anfor-
derungsspezifikationen. Dissertation, Institut für In-
formatik, Universität Zürich.

R. Schwitter. 2002. English as a Formal Specification
Language. Proceedings of the Thirteenth Interna-
tional Workshop on Database and Expert Systems
Applications (DEXA 2002), Aix-en-Provence,
France, pp. 228-232.

R. H. Wojcik and J. E. Hoard. 1996. Controlled Lan-
guages in Industry. In: R. A. Cole (ed). Controlled
Languages in Industry, Survey of the State of the Art
in Human Language Technology.

