
Mind your Language!
Controlled Language for Inference Purposes

Jana Z. Sukkarieh
Computational Linguistics Group

The Clarendon Institute, University of Oxford
England, OX1 2HG

jana.sukkarieh@clg.ox.ac.uk

Abstract

The Knowledge Representation (KR)
community and the Natural Language
Processing community, in our opinion,
have common goals yet finding a lan-
guage that is expressive enough and
capable of efficient reasoning is yet a
challenge. We have claimed elsewhere
that having a Natural Language(NL)-
like KR may be a step towards solv-
ing that challenge. The NL-like KR we
looked at defines a controlled subset of
English that is not trivial and exhibits
powerful reasoning properties. Con-
trolled Language for Inference Pur-
poses (CLIP) is a dialect of English
that was considered while developing a
domain-independent knowledge-based
system. The system takes as input
’clippy’ utterances, Ui, and uses a NL-
like KR called McLogic to deduce plau-
sible inferences from Ui and give a jus-
tification for these deductions.

1 Introduction

1.1 A Broad Picture
A very good medium humans communicate with,
state their problems in and express how they solve
these problems is Natural Language (NL). Hence,
one wishes to use NL as a Knowledge Repre-
sentation(KR) in knowledge-based sytems. NL
is very expressive-a desiderata that the KR com-
munity seek- but NL is ambiguous- a charac-
teristic that is definitely not suitable for a KR.

Therefore, in our work we looked at a Quasi-NL
KR ((Sukkarieh and Pulman, 1999), (Sukkarieh,
2001b), (Sukkarieh, 2001a)). A KR language
that supports precise and rigorous formal reason-
ing yet with the same practical advantages, from
the user point of view, and friendly character that
NL has. In addition to this friendly character,
the KR that we have looked at is efficiently capa-
ble of deductive inferences that different semanti-
cists (see FraCas test suite1 (Cooper et al., 1996))
have agreed upon as the best test for any NL
understanding system. The work we have done
(Sukkarieh, 2001a) was motivated by the belief
that the best test for the semantic capacity of any
Natural Language Understanding (NLU) system
is its capability to reason.
The NL-like KR and the inference test suite
define the controlled language that we will look
at in this paper, namely, Controlled Language
for Inference Purposes(CLIP). CLIP is a com-
puter processable, semantically-driven sublan-
guage of English. Moreover, as the name sug-
gests, it is an inference-driven sublanguage.
Hence, it seems natural to describe the KR2

first then the inferences we are looking at sec-
ond and then CLIP. Before that, we “review” the
properties of controlled languages, in particular,
semantically-driven computer processable ones.

1.2 International Interchange of Ideas

The search for a common scientific language for
communication among different countries started
when Latin stopped serving that purpose. Uni-

1http://www.cogsci.ed.ac.uk/ fracas/
2acting at the same time as a semantic representation.



versal Languages were an attempt (Knowlson,
1975), (Slaughter, 1982) for, as the name sug-
gests, a universal use. In the twentieth cen-
tury, Esperanto and C. K. Ogden’s Basic English
(1929-1934) were viewed as candidate common
languages. British American Scientific Interna-
tional Commercial (Basic) is a simple form of the
English language with 850 words (650 nouns and
200 verbs) only. It was proposed as an interna-
tional use for day-to-day communication. It has
been used in courses for teaching foreigners (and
non-foreigners) as a basis of written and spoken
English. Restricted languages appeared later es-
pecially for technical writing on an international
level, like Caterpillar Fundamental English (CFE)
or Simplified English (SE). These languages can
be referred to as languages for practical business.
CFE was developed, in 1971, by the Caterpil-
lar Tractor company. It is a 900-word vocabu-
lary that is used for writing product documenta-
tion on agricultural vehicles for worldwide dis-
tribution. Similarly, SE was devised, in 1979,
by the Douglas Aircraft Company. It is a 2,000
word dictionary that is used for writing its tech-
nical manuals. Later, researchers addressed con-
straints on such languages and computer systems
were developed to check for conformance, for
example, (AEC, 1995),(R. Wojcik, 1990), (Wo-
jcik and Holmback, 1996). An international in-
terchange of ideas for technical or business pur-
poses meant devising writing systems that con-
tain limited choices of standard English words
and their senses and which restrict acceptable sen-
tence structure and/or general document structure
and presentation. Their main goal is to simplify
written communication and to decrease the occur-
rence of ambiguities or avoid them all together.

1.3 Computer Processable Controlled
Languages

Computer Processable Controlled Languages
(CPCLs) are dialects of English that have the
same properties of the writing systems mentioned
above and “... more: dialects that are restricted
as to be capable of being completely syntac-
tically and semantically analysed by a natural
language processing system...” (Pulman, 1996).
Pulman’s Computer Processable English (Pul-
man and Rayner, 1994), (Macias and Pulman,

1995), Attempto (Fuchs and Schwitter, 1995),
(Fuchs and Schwitter, 1996) and the semantically-
derived subset of English of (Holt and Klein,
1999) are all examples of such languages. CP-
CLs as opposed to Computer Processable full lan-
guages have specific purposes or applications like
knowledge representation purposes, specification
and verification or machine translation. Usually,
training is needed and some languages, obviously,
are more habitable than others but we will not
investigate this here. The idea of a semantic-
driven language, that is, defining a controlled lan-
guage via the well-formedness of its translations
into a logic originated in (Macias and Pulman,
1995) and (Holt and Klein, 1999) followed them.
With the semantically-derived sublanguage (Holt
and Klein, 1999), the logic seems to be the start
point. Attempto (Fuchs and Schwitter, 1996), on
the other hand, starts with the language and then
look at the logic. In our case CLIP and McLogic
go in tandem as we will see in section 3 where we
show that CLIP is not trivial. In the next section
we zoom in a bit to look briefly at the two main
ingredients that define CLIP, namely, a Quasi-NL
KR and a set of inferences.

2 Main Ingredients

2.1 NL-like KR: McLogic at a Glance
McLogic is an extension of a Knowledge Repre-
sentation defined by McAllester et al (McAllester
and Givan, 1992), (McAllester et al., 1991).
Other NL-like Knowledge representations are de-
scribed in (Hwang and Schubert, 1993), (Schu-
bert and Hwang, 2000) and (Iwanska, 1996),
(Iwanska, 2000) but McAllester et. al have a
tractable inference relation equipped with their
logic and was never, as far as we know, incorpo-
rated into a Natural Language Processing (NLP)
system before we started our work. The basic
form of McLogic, we call it McLogic0, and some
extensions built on top of it are presented next.

McLogic0

The basic notion of McLogic0 is a class ex-
pression, that is, an expression that denotes a set.
In general, any monadic predicate symbol of clas-
sical syntax can be used as a class expression.
Furthermore, for any class expression s and bi-
nary relation R one can construct the class ex-



presssions (R (some s)) and (R (every s)). For
example, if like is a binary relation symbol and
woman is a class symbol, then one can construct
the class expressions (like (some woman)) and
(like (every woman)). These denote the set of
all entities in the domain ’who like some woman’
and the set of all those ’who like all women’ re-
spectively. Examples of formulae in McLogic
could be: (every actor handsome),
(some researcher poor),
(some human exists),
and (some academic rich).

An important feature of McLogic0 is that it is
very much “English-like”. By that we mean it is
easy to read, natural-looking ’word’ order3.

Including Some Extensions: McLogici, where
i > 0

The NL-like property and the efficiency of
the inference are the main controlling factors to
the extension. In the extension, the two logical
notions are the same, namely, class expressions
and formulae. In addition to these two, we have
introduced the notion of a function symbol that
we incorporated into the syntax and so as not
to complicate the logic, we specified the result
of applying a function to a class expression
to be again a class expression. We won’t go
into details here. A grammar for the syntax of
McLogic class expressions and formulae is given
below, followed by examples. In the grammar,
R is a binary relation or the inverse of a binary
relation. R3 is 3-ary relation or the inverse of a
3-ary relation, TimeExpression is a time class
expression (denoting an interval of time), Qi

for i = 1, 2 is either some or every, Qi for
i = 3, 4 are cardinal class expressions (denoting
a cardinal), s and t are class expressions that are
neither time class expressions nor cardinal class
expressions. C-expr represents the set of class
expressions and F represents the set of formulae:

3with the exception of Lambda expressions which are not
very English! Consider (John λx.(x (like x))) that rep-
resents ’John likes himself’. However, the last issue could
be solved by defining a formal macro, himself , that would
serve as an intermediate representation. We won’t go into
this here. Please See details in (Sukkarieh, 2001a).

(10) (some C exists)
(some C C)

(11) (some C W )
(some C exists)

(12) (some C W )
(some W C)

(13) (every C W ),(every W Z)
(every C Z)

Table 1: Example Inference rules for McLogic0.
C , W and Z range over class expressions.

C-expr ::= F ::=
c a constant symbol | (some s t) |
s a predicate symbol | (every s t) |
(R(some s)) | (Q3 ∗ s t) |
(R(every s)) | negation of F |
x a variable symbol | Bool. combinations of F
λx.φ(x) |
s + t |
s#Mod |
s$t |
(R3(Q1 s) (Q2 t)) |
(R3(Q3 ∗ s) (Q4 ∗ t)) |
(R3(Q1 s) (Q4 ∗ t)) |
(R3(Q3 ∗ s) (Q2 t)) |
Q3 ∗ s |
T imeExpression

What we have done, basically, is allow a wider
range of class expressions that denote sets of enti-
ties and sets of sets of entities but at the same time
not complicate the formulae. Example:

(Pooh bear) and (Eeyore donkey)
and (Piglet pig) and (T igger tiger).
(Piglet (organise (some party)).
(every animal (bring(some present))).
(Eeyore (get (some small + present))).
(Eeyore (irritate(more −
than − one ∗ animal))) and
(two ∗ bee (gave (Eeyore) (some sting))).
((most ∗ animal laughed) after
(Eeyore(sting−1(by(some entity))))).
not(Eeyore laugh).

The proof theory of McLogic is a set of inference
rules of the form Premise1...P remisei

Conclusion
. See table

1 for examples. We extended the proof theory
by adding more rules motivated by the inferences
that we describe, briefly, next.

2.2 Structurally-Based Inferences
We are concerned with NL inferences but not
with implicatures nor suppositions. Moreover, we
do not deal with defeasible reasoning, abductive
or inductive reasoning and so on. In our work
(Sukkarieh, 2001a), we focus on deductive (valid)



inferences that depend on the properties of NL
constructs. Entailments from an utterance U, or
several utterances Ui that seem “natural”, in other
words, that people do entail when they hear U. For
example, in the following, D1 are deduced from
Scenario S1:

• S1:

(1) a. some cat sat on some mat.
b. The cat has whiskers.

⇓
D1: some cat exists,

some mat exists,
some cat sat on some mat,
some cat has whiskers (cat1 has whiskers),
some whiskers exist.
6⇓
whiskers sat on some mat

We define a structurally-based inference to
be one that depends on the specific semantic prop-
erties of the syntactic categories of sentences in
NL. For example,

• S2: most cats are feline animals.
⇓

D2: most cats are feline,
most cats are animals.

• S3: Smith and Jones signed the contract.
⇓

D3: Smith signed the contract.

D2 depend on the monotonicity properties of
generalised quantifiers and D3 on those of con-
joined Noun Phrases. Our aim is a general in-
ference component that is part of a Knowledge-
based system that uses McLogic as the internal
KR. Our reference, guide and the best benchmark
we could find is the Fracas Test Suite4 which is
a domain-independent collection of structurally-
based inferences. Having, briefly, described the
logic and the inferences, how do these fit into the
picture of defining CLIP.

3 Inferences, McLogic⇐⇒ CLIP

Definition 1 CLIP is a sublanguage of English
with the following properties:

• It is syntactically and semantically process-
able by a computer

• Each sentence in CLIP has a well-formed
translation in McLogic.

4http://www.cogsci.ed.ac.uk/ fracas/

• The ambiguities in a sentence are con-
trolled in a way that the interpretation of
that sentence allows inferences required in
FraCas D16 (Cooper et al., 1996)

• The vocabulary is controlled only as far as
the syntactic category.

The word CLIP implicitly ’clips’ a part of the
’whole’, that is, dialect or sublanguage not full
English. Here is an example:

Calvin: Susie understands some comic books. Many
comic books deal with serious issues. All superheroes
face tough social dilemmas. It is not true that a comic

book is an escapist fantasy. Every comic book is a
sophisticated social critique.

Hobbes: Most comic books are incredibly stupid.

Every character conveys a spoken or graphic ethical

message to the reader before some evil spirit wins and

rules.

McLogic0 is the basic building block for CLIP. To
start with, an English sentence belongs to CLIP
if, and only if, it has a well-formed translation
in McLogic0. Further, we extended McLogic0 to
account for more English constituents motivated
by the structurally-based inferences in the FraCas
test suite. Inferences with their corresponding
properties, premises and conclusion add to the ex-
pressivity of the dialect. To emphasize the above
idea, we consider some kind of recursive view:

Base Case: McLogic0

Recursive Step: McLogicn depends
on McLogicn−1

However, it is not an accumulative one-way
hierarchy of languages since the English lan-
guage motivates the extension. Besides, the view
that McLogic could be extended indefinitely is
not plausible. In other words, one can say that
McLogic may be viewed as a representation
language that can be extended as much as the
language needs and hence, it may not really
be seen as something that could control the
English input. One can add as much as one likes!
Though this may be true in theory, the extension
is “controlled” by several parameters like the
inference process, its efficiency and minimising
the addition of inference rules, the ease in the



extension itself, the ease in the translation to
McLogic which is to be kept as Quasi-NL as
possible. It is a back-and-forth process on
’What controls what’ with minimum extension
to McLogic. Consequently, McLogic and CLIP
go in tandem. To summarise, consider figure 1
below.

Inferences 

.

.

.

.

.

.

.

.

.

Tractability ?

Quasi-NL ?

Which interpretation
sanctions such inference?

Which interpretation
is allowed in McLogic
or can be easily built
on top of what McLogic
has already?

Constraints that show
the chosen interpretation
under McLogic and hence
the inference this interpretation
sanctions.

Full Fracas Test Suite

English DialectRepresentation Language

Further McLogics Further CLIPs

McLogic0

McLogic1 CLIP1

CLIP0

Subset1

Subset0

Figure 1: Reasoning ←→ Representation Lan-
guage←→ English Sublanguages

In the figure, the 3 components, namely, the
set of inferences, McLogic and the controlled
language acted as 3 parameters controlling the
augmentation or the extension. McLogic0 defines
both Subset0 and CLIP0. Subset0 consists of
all inferences in the Fracas Test suite whose
premises and conclusion are expressable as
well-formed formulae in McLogic0 and that the
proof theory sanctions. Subset1 is a bigger subset
of inferences that include Subset0 and defined
by McLogic1 and CLIP1. The aim eventually is
to have a logic that is capable of doing the full
FraCas test suite.

3.1 Specification of CLIP

Systems vary in describing the way they control
the written texts. It could vary from deciding
about punctuation, symbols, acronyms, listing the
words allowed and/or forbidden, limit the use of
tense and/or aspect of verbs, limit the meaning of
a word, the use of specific words to a designated
part of speech, ambiguous attachments, coordi-
nated or subordinated structures, complex sen-
tences, long-distance dependencies, agreement
errors, anaphora use and so on. In summary, it
is a set of rules concerning terminology or vocab-
ulary and grammar. In case of CLIP, the specifi-

cation is basically the well-formedness of transla-
tions in McLogic and some constraints due to the
inferences. The grammar is specified by the fact
that CLIP is processable by a machine. To spec-
ify CLIP, we are going to describe what McLogic
can express. For lack of space, the presentation
will be kept to a minimum and a lot of interest-
ing motivation are going to be missed (please see
(Sukkarieh, 2001a) for translation between CLIP
and McLogic and for a more detailed motiva-
tion on the extension of McLogic0 by certain En-
glish constituents). In the following, we describe
CLIP0, McLogici for some i > 0. Before that, we
“imagine” a simpler language than CLIP0 that is
capable of powerful reasoning while its English
is rudimentary. We could call it subCLIP0, as it
is a very restricted sublanguage of CLIP0 but we
will just refer to it by the reasoning task associ-
ated with it, as the following shows.

The Controlled Language of Categorical
Syllogisms

We state some definitions about syllogisms in
order to show what kind of controlled English
they define.

Definition 2 A syllogism is a deductive argu-
ment in which a conclusion is inferred from two
premises. The premises and conclusion are called
propositions.

Definition 3 A standard-form categorical syllo-
gism is one with all propositions having a stan-
dard form and they are arranged in a standard

order. For example,
No hero is a coward

Some soldier is a coward
Some soldier is not a hero

Definition 4 A standard-form categorical
proposition is any of the form “All S is P”,
“Some S is P”, “No S is P”, “Some is not P”.

There are 256 distinct forms that standard-
form syllogisms may assume. However, as
far as their representation in McLogic and
the inferences concerned, the 256 different
forms are treated similarly. In McLogic, the
standard-form propositions can be written as
(every S P ), (some S P ), not(some S P ) and
(some S not(P )) respectively, where S and P are
monadic class expressions (or intersection of two
monadic class expressions).



CLIP0

Let V denote the translation from English
to McLogic. V −1(McLogic0) will denote the
English categories and sentences that have a
corresponding translation. Note that NPs are
not defined ’on their own’. Let Mc0 be
V −1(McLogic0):

Mc0 =







































































































































Proper Names,
Countable Common Nouns
Adjectives,
Intransitive and Transitive verbs

PPs as :
complements for a predicative verb
VPs either:
transitive or intransitive or

predicative
Declarative sentences of the form:
’some N VP’,

’every N VP’ or
’Name VP’
Yes/No questions of the form:
’Is some N VP’,

’Is every N VP’ or
’Is Name VP’,
’does/did some N VPbase’,
’does/did every N VPbase’.
VPbase is a verb phrase
where the verb occurs in its base form.

The general inference component that we devel-
oped sanctioned the following benchmark tasks:

Bench. Reasoning Tasks =







the Grocer Puzzle (GP)
the Schubert’s Steamroller (SS)
the Rich Old Man Puzzle (ROLP)

Figures 2, 3 and 4 (see Appendix A) state (GP),
(SS), and (ROLP) respectively, in CLIP0 as well
as in McLogic0. SS was presented in 1978 by
Lenhart Schubert as a challenge to automated-
deduction systems (Stickel, 1986).

CLIP1
English Category Example with McLogic translation
Numerals, NL Determiners Cardinals: (ten ∗ bookold)
Generalised Quantifiers less than 10 , most, more than 5 books :

(most ∗ bookold)
Ditransitive verbs Mary gave a present to Betty

(mary (gave(some present)) betty)
Simple Plurals some books are old

(more than one ∗ book old)
Nominal modification by Adj a happy man : happy + man

Nominal modification by PPs some man with some red hat laugh
(some man + (with (some red + hat)) laugh)

Relative Clauses (Subject) every student who laughs succeeds
(every (student + laugh succeed)

Relative clauses (Object) John whom Mary likes is a musician
(john + λx.(mary (like (x))) musician)

Verb Phrase modification Sam drives fast : (Sam drive#fast)
Passives Some student was given a book by John

(some student (give−1((some book) (john))))
Comparatives every bird is smaller than every horse

(every bird (smaller than(every horse)))
Some man borrowed less than ten books
(some man (borrow(less than ten ∗ book)))
Smith owns a smaller computer than John
(Smith (own

(more than one ∗ computer+
(more − than (some computer+

λx.(Jones (own (some x)))))))).

The table above summarises the English
constituents that have well-formed translations
into McLogic. It is important to note that NPs,
as we said above, like ’some man’ and ’every
woman’ cannot be represented in McLogic0. The
reason is that there is no independent meaning
for (some S) and (every S). However, with the
introduction of other determiners, we can have a
uniform representation for quantifiers. One can
show that ’some’ and ’every’ can be treated as
the rest. See a proof in Appendix B.

It is also important to mention that the addi-
tional control factors mentioned before imposed
additional constraints on CLIP. We only give two
examples here:

+ Scope of quantifiers (a constraint imposed
by McLogic0):
Consider the following two examples,

(2) a. CLIP:every man likes a woman.
b. McLogic:

(every man (like(some woman))).

Hence, the interpretation of the above sen-
tence is where the universal quantifier has
wider scope, for each man there is a woman
whom the man likes. While in the following
example the existential quantifier has wider
scope, there exists a woman who likes all
men.

(3) a. CLIP: a woman likes every man.
b. McLogic:

(some woman (like(every man)).

The interpretation in McLogic0 basically re-
spects the order in which the quantifiers ap-
pear in a sentence. McLogic0 does not use
’every’ and ’some’ as quantifiers but only
like combinators. For example, if you say
cos sin−1 sin π

2 you can only consider them
in order. Hence, the earlier the quantifier
appears, the larger scope it has. When we
extended McLogic0, we kept the English
quantifiers as combinators like in McLogic0

rather than quantifiers and hence their scope
is determined as they appear:

(4) a. every student likes most teachers.



b. (every student (like(most ∗
teacher))).

The interpretation is such that every entity
who is a student likes most entities who are
teachers.

+ Collective and distributive reading (Con-
straint imposed by minimising the addition
of inference rules to the proof theory):
In McLogic, a sentence like ’Smith and
Jones sign five contracts’ is translated
into (smith (sign(five ∗ contract))) and
(Jones (sign(five∗ contract))) and hence
it is considered to have a distributive reading.
A distributive reading is favoured for the fact
that in this case the only rules of inference
required are those common for generalised
quantifiers. However, if a collective interpre-
tation is allowed, we need to consider addi-
tional inference rules, at least rules of arith-
metic.

4 Conclusion

4.1 Transition from Categorical Language to
CLIP

A standard form categorical syllogism may be
thought of as being free from all obscurities and
irrelevancies. Needless to say, of course, argu-
ments do not always occur thus refined in a “state
of nature” (Copi, 1990). In the following, we list
some cases in which the terms used in the propo-
sitions do not qualify it to be in standard-form,
as defined above. We then explore how logicians
deal with them and how we dealt with them.

• Propositions with unique entities. ’John is P’
and ’The man is P’ are two examples. The
logicians’ way is to write these as [all John
is P] and [all man is P], that is, considering
that John or the table denotes a singleton set
that is a subset of P. That is exactly what we
do and how the representation in McLogic
works. Similarly, sentences like ’John is not
P’ or ’The table is not antique’, that is [S is
not P], can be written as [no S is P] where S
denotes the unit class whose only member is
the object S.

• Propositions for which P is not a class term
but an attribute or a property. ’All flowers

are beautiful’ and ’All students are ready to
work hard’ are two examples. In the usual
method of standard-form syllogisms these
have to be translated into something like ’all
flowers are beauties’ and ’all students are
persons ready to work hard’. In our case,
they can be left as they are since CLIP is
not as controlled as standard-form proposi-
tions and since McLogic treats attributes and
properties as class expressions (or class term
in the syllogisms language).

• Sentences that have as a main verb other than
“to be”. For example, ’some people drink’
which logicians translate into ’some people
are drinkers’ to be in standard-form. Again,
as long as the verb is transitive or ditransitive
then it is represented in McLogic and can be
included without any change.

• Sentences in which the standard-form ingre-
dients are present but not put in the standard-
form, for example, there is no word that in-
dicate quantities as in ‘Computers are ma-
chines’. This can be translated into “All
computers are machines”. Bare plurals in
object position are tricky. In CLIP, it is
encouraged that the determiner should be
specified like logicians suggest. If not then
’some’ is assumed as a determiner (unless
otherwise stated or known from context).

• Categorical propositions that have their
quantifiers different than ’all’, ’some’ and
’no’. If the quantifier is ’every’ or ’any’
then it is easily taken care of as it can be re-
placed by ’all’ in logicians’ dictionary. In
our case, there is no need to replace ’ev-
ery’. Saying that ’John can borrow any
book from the library’ cannot be replaced by
’John can borrow every book/all books from
the library’. The quantifier ’any’ depends
on context and sometimes mean ’all’ and
sometimes ’some’. The quantifiers, ’a’, ’an’
were treated existentially and one should use
a universal quantifier explicitly when one
needs to. The definite description quantifier,
’the’, may designate a unique entity as in ’the



king is stupid’5 or all members of a class as
in ’the elephant has a trunk’. Negative state-
ments like ’Not any S is P’ is replaced by
’no S is P’ or ’It is not true that some S is P’;
’Not every S is P’ can be either left as it is or
replaced by ’some S is not P’.

• Using say 4 terms with two of them being
synonyms. To be able to transform into a
standard-form syllogism, synonyms must be
replaced by the same term.

Not all syllogisms can be transformed into
standard-form ones. Natural language well-
known intricacies prevent the application of this
simple reasoning task even if the task is not re-
quired through a machine. Examples of such
syllogisms can be seen in the arguments of
(Sukkarieh, 2001b).

4.2 Wrapping it all!
The aim was to build a KR system. Instead of
starting with real English and ask ourselves which
logic is suitable and how the translation is to be
done, we started with a logic, we asked ourselves
what can we do with it, which English sentences
are translated into it, and then back to the logic
again and asking how to extend it to cover such
and such English and so on. All this keeping
in mind that the main motivation is the inference
process and the kind of inferences. It is important
to mention also that the purpose a CPCL serves
and the kind of user that it addresses tailor the
specification of the CPCL. For example, if the
user (or application) is a translator then s/he will
be interested to know more about the restrictions
on the senses of the words say, while if the user
is a checker then more information about part-
of-speech and grammatical rules are needed. As
we aim for a general reasoning component, the
users of such system vary and the specification
of CLIP will be tailored depending on specific
users, possibly in forms of different user manuals
for different users. We have already used CLIP
and McLogic to describe a non-trivial specifica-
tion task written in the Z language (again you can
see that in Chapter 7 of (Sukkarieh, 2001a)). That
gave us more insight on how to tailor the language

5’the king’ being referential to an entity already in con-
text does not make any difference.

for specification purposes. Finally, even with this
quite restricted dialect, some problems that causes
ambiguity a user may still not be aware of. For
example, saying that ’John is an English student’
could mean that ’John is English’ (as nationality)
or that ’John is reading for an English degree (at
the university)’6 . Therefore, some problems may
not be obvious for someone writing a specifica-
tion for a controlled language.
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Appendix A

- Description of Schubert’s Steamroller
Given:
Every wolf is an animal.
(every wolf animal).
Every fox is an animal.
(every fox animal).
Every bird is an animal.
(every bird animal).
Every caterpillar is an animal.
(every caterpillar animal).
Every snail is an animal.
(every snail animal).
Some wolf exists.
(some wolf exists).
Some fox exists.
(some fox exists).
Some bird exists.
(some bird exists).
Some caterpillar exists.
(some caterpillar exists).
Some snail exists.
(some snail exists).
Every grain is a plant.
(every grain plant).
Some grain exists.
(some grain exists).
Every caterpillar is smaller than every bird (is).
(every caterpillar (smaller than(every bird))).
Every snail is smaller than every bird (is).
(every snail (smaller than(every bird))).
Every bird is smaller than every fox (is).
(every bird (smaller than(every fox))).
Every fox is smaller than every wolf (is).
(every fox (smaller than(every wolf))).
It is not true that some wolf eats some fox.
(not(some wolf (eat(some fox)))) .
It is not true that some wolf eats some grain.
(not(some wolf (eat(some grain)))).
Every bird eats every caterpillar.
(every bird (eat(every caterpillar))).
It is not true that some bird eats some snail.
(not(some bird (eat(some snail)))).
Every caterpillar eats some plant.
(every caterpillar (eat(some plant))).
Every snail eats some plant.
(every snail (eat(some plant))).
Every animal eats every plant or every animal
(every animal (eat(every plant)))$
that is smaller than itself and eats some plant.
lambda(X (every X (eat(every animal+
((smaller than(some X)) + (eat(some plant))))))).
Show that :
Some animal eats an animal that eats some grain
(some animal (eat(some animal + (eat(some grain))))).

- The Grocer Puzzle
Given:

every honest industrious man is healthy

(every honest + industrious + man healthy)

It is not true that some grocer is healthy



not(some grocer healthy)

every industrious grocer is honest

(every industrious + grocer honest)

every cyclist is industrious

(every cyclist industrious)

every unhealthy cyclist is dishonest

(every unhealthy + cyclist dishonest)

every grocer is a man

(every grocer man)

every cyclist is a man

(every cyclist man)

Show that: It is not true that some grocer is a cyclist

not(some grocer cyclist)

- Description of the Rich Old Man Puzzle
Given:
every person who is not active is rich.
(every person + not(active) rich).
every old poet is talented.
(every old + poet talented).
every studious man is a magistrate.
(every studious + man magistrate)
It is not the case that some active politician is a snufftaker
¬(some active + politician snufftaker).
every studious man who is not rich is a poet.
(every studious + man + not(rich) poet).
every fat person who is a politician is a snufftaker.
(every fat + person + politician snufftaker).
every man who is a poet is a person.
(every man + poet person).
every old magistrate is a politician.
(every old + magistrate politician).
every talented person is fat.
(every talented + person fat).
Show that: every studious old man is rich.
(every studious + old + man rich).

Appendix B: Uniform Treatment of
Generalised Quantifiers
NPs, like ’some man’ and ’every woman’ cannot be rep-
resented compositionally in McLogic0. The reason is
that there is no independent meaning for (some S) and
(every S). However, with the introduction of other deter-
miners, it seems that we can have a uniform representation
for quantifiers. One can show that ’some’ and ’every’ can
be treated as the rest. We review what we mean by cardinal
class expressions.

Definition 5 A cardinal class expression, N , represents
a positive integer N and denotes the set V(N) =
{X|Xis a set of N objects}.

Note that a cardinal class expression does not have a mean-
ing independently of entities (in some specified domain).
This is motivated by the way one introduces a (abstract)
number for a child, it is always associated with objects.
Having defined a cardinal class expression, the operator, ∗
can be defined:

Definition 6 Given a cardinal class expression N and a
class expression that is not a cardinal class expression s,
then N ∗ s is defined to be V(N)∩P (V(s)) where P (V(s))
is the power set of the denotation of s. In other words, N ∗ t
is interpreted as {X|X ⊆ t ∧ |X| = N}, where |X| is the
cardinality of the set X .

all English determiners followed by their nominals are rep-
resented as N ∗ t where N is a cardinal class expression and

t is a class expression representing the nominal. In the fol-
lowing, we prove that this holds for every and some.
First, the existential singular quantifier ‘some’ can be con-
sidered to denote

{X ∈ P (s) for any s that appear in D/card(X) > 0}.

In this case some ∗ s = s and

(some ∗ s t) is true iff (some s t) is true.

Proof To prove the last claim, assume that
(some ∗ s t) is true. This implies that ∃K ∈
some ∗ s such that K ⊂ t. Let x ∈ K then x ∈
s since K is a set of s’s and x ∈ t sinceK ⊂ t.
Hence, x ∈ s ∩ t and (some s t) is true. Con-
versely, assume s∩ t 6= ∅ and let x ∈ s∩ t then
∃K = {x} such that K ∈ some ∗ s andK ⊂ t.
Hence, (some ∗ s t) is true.

In the same way, ‘every’ could denote

{X ∈ P (s) for any s that appear in D/card(X) = card(s)} =

{s/s is a class expression}.

In this case, every ∗ s = s and

(every ∗ s t) is true iff (every s t) is true.

Again, the proof of the last claim is obvious.

Proof (every ∗ s t) is true implies that ∃K ∈
every ∗ s such that K ⊂ t. But K = s. Hence
(every s t) is true. Conversely, if s ⊂ t then
∃K = s such that k ∈ every ∗ s and K ⊂ t.

Hence, to simplify things and keep a uniform representa-
tion we could drop the operator, ∗, from the representation
of any generalised quantifier and be able to represent NPs.
However, we decided not to drop the, ∗, from the represen-
tation since the inference rules are well-behaved this way.
The above was an evidence that NPs have an independent
representation and hence are part of CLIP. Moreover, it is
important to note that we defined quantifiers in a way so
that they do not fall into what quantifiers of FOL do. In
∀x.raven(x)..., x spans any entity in the domain. This does
not happen in our case since quantifiers are defined in terms
of classes and not entities in the domain. Finally, ‘many’,
’several’ and so on are not equivalent to ‘some’. We have
used most, many that are not usually used in a KR. How-
ever, their interpretation is like the interpretation of cardinals
and cardinals are used in a KR. The reason we used sym-
bols like many, several, most, more than one, is be-
cause our aim is to stick to NL-like representation as much
as possible.


