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Abstract 

In this paper, we present a framework for 
multi-lingual dependency parsing. Our 
bottom-up deterministic parser adopts 
Nivre’s algorithm (Nivre, 2004) with a 
preprocessor. Support Vector Machines 
(SVMs) are utilized to determine the word 
dependency attachments. Then, a maxi-
mum entropy method (MaxEnt) is used 
for determining the label of the depend-
ency relation. To improve the perform-
ance of the parser, we construct a tagger 
based on SVMs to find neighboring at-
tachment as a preprocessor. Experimental 
evaluation shows that the proposed exten-
sion improves the parsing accuracy of our 
base parser in 9 languages. (Hajič et al., 
2004; Simov et al., 2005; Simov and 
Osenova, 2003; Chen   et al., 2003; Böh-
mová et al., 2003; Kromann, 2003;    van 
der Beek et al., 2002; Brants et al., 
2002;   Kawata and Bartels, 2000; Afonso 
et al., 2002;   Džeroski et al., 2006; Civit 
and Martí, 2002; Nilsson   et al., 2005; 
Oflazer et al., 2003; Atalay et al., 2003). 

1 Introduction 

The presented dependency parser is based on our 
preceding work (Cheng, 2005a) for Chinese. The 
parser is a bottom-up deterministic dependency 
parser based on the algorithm proposed by (Nivre, 
2004). A dependency attachment matrix is con-
structed, in which each element corresponds to a 
pair of tokens. Each dependency attachment is in-
crementally constructed, with no crossing con-
straint. In the parser, SVMs (Vapnik, 1998) 
deterministically estimate whether a pair of words 
has either of four relations: right, left, shift and 
reduce. While dependency attachment is estimated 
by SVMs, we use a MaxEnt (Ratnaparkhi, 1999) 
based tagger with the output of the parser to esti-

mate the label of dependency relations. This tagger 
uses the same features as for the word dependency 
analysis. 

In our preceding work (Cheng, 2005a), we not 
only adopted the Nivre algorithm with SVMs, but 
also tried some preprocessing methods. We inves-
tigated several preprocessing methods on a Chi-
nese Treebank. In this shared task (Buchholz et. al, 
2006), we also investigate which preprocessing 
method is effective on other languages. We found 
that only the method that uses a tagger to extract 
the word dependency attachment between two 
neighboring words works effectively in most of the 
languages. 

2 System Description 

The main part of our dependency parser is based 
on Nivre’s algorithm (Nivre, 2004), in which the 
dependency relations are constructed by a bottom-
up deterministic schema. While Nivre’s method 
uses memory-based learning to estimate the de-
pendency attachment and the label, we use SVMs 
to estimate the attachment and MaxEnt to estimate 

Fig. 1 The architecture of our parser 
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Fig. 2. The features for dependency analysis 
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the label. The architecture of the parser consists of 
four major procedures and as in Fig.1:  
(i) Decide the neighboring dependency at-

tachment between all adjacent words in the 
input sentence by SVM-based tagger (as a 
preprocessing) 

(ii) Extract the surrounding features for the 
focused pair of nodes. 

(iii) Estimate the dependency attachment op-
eration of the focused pair of nodes by 
SVMs. 

(iv) If there is a left or right attachment, esti-
mate the label of dependency relation by 
MaxEnt. 

We will explain the main procedures (steps (ii)-
(iv)) in sections 2.1 and 2.2, and the preprocessing 
in section 2.3. 

2.1   Word dependency analysis 

In the algorithm, the state of the parser is repre-
sented by a triple AIS ,, . S and I are stacks, S 
keeps the words being in consideration, and I 
keeps the words to be processed. A is a list of de-
pendency attachments decided in the algorithm. 
Given an input word sequence W, the parser is ini-
tialized by the triple φ,,Wnil . The parser esti-
mates the dependency attachment between two 
words (the top elements of stacks S and I). The 
algorithm iterates until the list I becomes empty. 
There are four possible operations (Right, Left, 
Shift and Reduce) for the configuration at hand.  
Right or Left: If there is a dependency relation 
that the word t or n attaches to word n or t, add the 
new dependency relation ( )nt →  or ( )tn → into A, 
remove t or n from S or I. 

If there is no dependency relation between n and 
t, check the following conditions. 
Reduce: If there is no word 'n  ( In ∈' ) which may 
depend on t, and t has a parent on its left side, the 
parser removes t from the stack S. 

Shift: If there is no dependency between n and t, 
and the triple does not satisfy the conditions for 
Reduce, then push n onto the stack S. 

In this work, we adopt SVMs for estimating the 
word dependency attachments. SVMs are binary 
classifiers based on the maximal margin strategy.  
We use the polynomial kernel: dK )1()( zxzx, ⋅+=  
with d =2. The performance of SVMs is better than 
that of the maximum entropy method in our pre-
ceding work for Chinese dependency analysis 
(Cheng, 2005b). This is because that SVMs can 
combine features automatically (using the polyno-
mial kernel), whereas the maximum entropy 
method cannot. To extend binary classifiers to 
multi-class classifiers, we use the pair-wise method, 
in which we make 2Cn

1  binary classifiers between 
all pairs of the classes (Kreβel, 1998). We use 
Libsvm (Lin et al., 2001) in our experiments. 

In our method, the parser considers the depend-
ency attachment of two nodes (n,t). The features of 
a node are the word itself, the POS-tag and the in-
formation of its child node(s). The context features 
are 2 preceding nodes of node t (and t itself), 2 suc-
ceeding nodes of node n (and n itself), and their 
child nodes. The distance between nodes n and t is 
also used as a feature. The features are shown in 
Fig.2. 

2.2   Label tagging 

We adopt MaxEnt to estimate the label of depend-
ency relations. We have tried to use linear-chain 
conditional random fields (CRFs) for estimating 
the labels after the dependency relation analysis. 
This means that the parser first analyzes the word 
dependency (head-modifier relation) of the input 
sentence, then the CRFs model analyzes the most 
suitable label set with the basic information of in-
put sentence (FORM, LEMMA, POSTAG……etc) 
and the head information (FORM and POSTAG) 
of each word. However, as the number of possible 
labels in some languages is large, training a CRF 
model with these corpora (we use CRF++ (Kudo, 
2005)) cost huge memory and time. 

Instead, we combine the maximum entropy 
method in the word dependency analysis to tag the 
label of dependency relation. As shown in Fig. 1, 
the parser first gets the contextual features to esti-
mate the word dependency. If the parsing operation 
                                                           
1  To estimate the current operation (Left, Right, Shift and 
Reduce) by SVMs, we need to build 6 classifiers(Left-Right, 
Left-Shift, Left-Reduce, Right-Shift, Right-Reduce and Shift-
Reduce).  
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is “Left” or “Right”, the parser then use MaxEnt 
with the same features to tag the label of relation. 
This strategy can tag the label according to the cur-
rent states of the focused word pair. We divide the 
training instances according to the CPOSTAG of 
the focused word n, so that a classifier is con-
structed for each of distinct POS-tag of the word n. 

2.3 Preprocessing 

2.3.1   Preceding work 
In our preceding work (Cheng, 2005a), we dis-
cussed three problems of our basic methods (adopt 
Nivre’s algorithm with SVMs) and proposed three 
preprocessing methods to resolve these problems. 
The methods include: (1) using global features and 
a two-steps process to resolve the ambiguity be-
tween the parsing operations “Shift” and “Reduce”. 
(2) using a root node finder and dividing the sen-
tence at the root node to make use of the top-down 
information. (3) extracting the prepositional phrase 
(PP) to resolve the problem of identifying the 
boundary of PP. 

We incorporated Nivre’s method with these 
preprocessing methods for Chinese dependency 
analysis with Penn Chinese Treebank and Sinica 
Treebank (Chen   et al., 2003). This was effective 
because of the properties of Chinese: First, there is 
no multi-root in Chinese Treebank. Second, the 
boundary of prepositional phrases is ambiguous. 
We found that these methods do not always im-
prove the accuracy of all the languages in the 
shared task.  

We have tried the method (1) in some lan-
guages to see if there is any improvement in the 
parser. We attempted to use global features and 
two-step analysis to resolve the ambiguity of the 
operations. In Chinese (Chen   et al., 2003) and 
Danish (Kromann, 2003), this method can improve 
the parser performance. However, in other lan-
guages, such as Arabic (Hajič et al., 2004), this 
method decreased the performance. The reason is 
that the sentence in some languages is too long to 
use global features. In our preceding work, the 
global features include the information of all the 
un-analyzed words. However, for analyzing long 
sentences, the global features usually include some 
useless information and will confuse the two-step 
process. Therefore, we do not use this method in 
this shared task. 

In the method (2), we construct an SVM-based 
root node finder to identify the root node and di-
vided the sentence at the root node in the Chinese 

Treebank. This method is based on the properties 
of dependency structures “One and only one ele-
ment is independent” and “An element cannot have 
modifiers lying on the other side of its own head”. 
However, there are some languages that include 
multi-root sentences, such as Arabic, Czech, and 
Spanish (Civit and Martí, 2002), and it is difficult 
to divide the sentence at the roots. In multi-root 
sentences, deciding the head of the words between 
roots is difficult. Therefore, we do not use the 
method (2) in the share task.  

The method (3) –namely PP chunker– can iden-
tify the boundary of PP in Chinese and resolve the 
ambiguity of PP boundary, but we cannot guaran-
tee that to identify the boundary of PP can improve 
the parser in other languages. Even we do not un-
derstand construction of PP in all languages. 
Therefore, for the robustness in analyzing different 
languages, we do not use this method. 

2.3.2   Neighboring dependency attachment 
tagger 
In the bottom-up dependency parsing approach, the 
features and the strategies for parsing in early stage 
(the dependency between adjacent2 words) is dif-
ferent from parsing in upper stage (the dependency 
between phrases). Parsing in upper stage needs the 
information at the phrases not at the words alone. 
The features and the strategies for parsing in early 
and upper stages should be separated into distinct. 
Therefore, we divide the neighboring dependency 
attachment (for early stage) and normal depend-
ency attachment (for upper stage), and set the 
neighboring dependency attachment tagger as a  
preprocessor. 

When the parser analyzes an input sentence, it 
extracts the neighboring dependency attachments 
first, then analyzes the sentence as described be-
fore. The results show that tagging the neighboring 
dependency word-pairs can improve 9 languages 
out of 12 scoring languages, although in some lan-
guages it degrades the performance a little. Poten-
tially, there may be a number of ways for 
decomposing the parsing process, and the current 
method is just the simplest decomposition of the 
process. The best method of decomposition or dy-
namic changing of parsing models should be inves-
tigated as the future research. 

                                                           
2 We extract all words that depend on the adjacent word (right 
or left). 
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3 Experiment 

3.1 Experimental setting 
Our system consists of three parts; first, the SVM-
based tagger extracts the neighboring attachment 
relations of the input sentence. Second, the parser 
analyzes further dependency attachments. If a new 
dependency attachment is generated, the MaxEnt 
based tagger estimates the label of the relation. The 
three parts of our parser are trained on the avail-
able data of the languages. 

In our experiment, we used the full information 
of each token (FORM, LEMMA, CPOSTAG, 
POSTAG, FEATS) when we train and test the 
model. Fig. 2 describes the features of each token. 
Some languages do not include all columns; such 
that the Chinese data does not include LEMMA 
and FEATURES, these empty columns are shown 
by the symbol “-” in Fig. 2. The features for the 
neighboring dependency tagging are the informa-
tion of the focused word, two preceding words and 
two succeeding words. Fig. 2 shows the window 
size of our features for estimating the word de-
pendency in the main procedures. These features 
include the focused words (n, t), two preceding 
words and two succeeding words and their children. 
The features for estimating the relation label are 
the same as the features used for word dependency 
analysis. For example, if the machine learner esti-
mates the operation of this situation as “Left” or 
“Right” by using the features in Fig. 2, the parser 
uses the same features in Fig. 2 and the depend-
ency relation to estimate the label of this relation.  

For training the models efficiently, we divided 
the training instances of all languages at the 
CPOSTAG of the focused word n in Fig .2. In our 
preceding work, we found this procedure can get 
better performance than training with all the in-
stances at once. However, only the instances in 
Czech are divided at the CPOSTAG of the focused 
word-pair t-n3. The performance of this procedure 
is worse than using the CPOSTAG of the focused 
word n, because the training instances of each 
CPOSTAG-pair will become scarce. However, the 
data size of Czech is much larger than other lan-
guages; we couldn’t finish the training of Czech 
using the CPOSTAG of the focused word n, before 
the deadline for submitting. Therefore we used this 
procedure only for the experiment of Czech. 
                                                           
3 For example, we have 15 SVM-models for Arabic according 
to the CPOSTAG of Arabic (A, C, D, F, G…etc.). However, 
we have 139 SVM-models for Czech according the 
CPOSTAG pair of focused words (A-A, A-C, A-D…etc.) 

All our experiments were run on a Linux ma-
chine with XEON 2.4GHz and 4.0GB memory. 
The program is implemented in JAVA. 

3.2   Results 

Table 1 shows the results of our parser. We do not 
take into consideration the problem of cross rela-
tion. Although these cross relations are few in 
training data, they would make our performance 
worse in some languages. We expect that this is 
one reason that the result of Dutch is not good. The 
average length of sentences and the size of training 
data may have affected the performance of our 
parser. Sentences of Arabic are longer and training 
data size of Arabic is smaller than other languages; 
therefore our parser is worse in Arabic. Similarly, 
our result in Turkish is also not good because the 
data size is small. 
     We compare the result of Chinese with our pre-
ceding work. The score of this shared task is better 
than our preceding work. It is expected that we 
selected the FORM and CPOSTAG of each nodes 
as features in the preceding work. However, the 
POSTAG is also a useful feature for Chinese, and 
we grouped the original POS tags of Sinica Tree-
bank from 303 to 54 in our preceding work. The 
number of CPOSTAG(54) in our preceding work 
is more than the number of CPOSTAG(22) in this 
shared task, the training data of each CPOSTAG in 
our preceding work is smaller than in this work.  
Therefore the performance of our preceding work 
in Sinica Treebank is worse than this task. 
     The last column of the Table 1 shows the unla-
beled scores of our parser without the preprocess-
ing. Because our parser estimates the label after the 
dependency relation is generated. We only con-
sider whether the preprocessing can improve the 
unlabeled scores. Although the preprocessing can 
not improve some languages (such as Chinese, 
Spanish and Swedish), the average score shows 
that using preprocessing is better than parsing 
without preprocessing. 
     Comparing the gold standard data and the sys-
tem output of Chinese, we find the CPOSTAG 
with lowest accuracy is “P (preposition)”, the accu-
racy that both dependency and head are correct is 
71%. As we described in our preceding work and 
Section 2.3, we found that boundaries of preposi-
tional phrases are ambiguous for Chinese. The bot-
tom-up algorithm usually wrongly parses the 
prepositional phrase short. The parser does not  
capture the correct information of the children of 
the preposition. According to the results, this prob-
lem does not cause the accuracy of head of  
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CPOSTAG “P” decrease. Actually, the head accu-
racy of “P” is better than the CPOSTAG “C” or 
“V”. However, the dep. accuracy of “P” is worse. 
We should consider the properties of prepositions 
in Chinese to resolve this question. In Chinese, 
prepositions are derived from verbs; therefore 
some prepositions can be used as a verb. Naturally, 
the dependency relation of a preposition is differ-
ent from that of a verb. Important information for 
distinguishing whether the preposition is a verb or 
a preposition is the information of the children of 
the preposition. The real POS tag of a preposition 
which includes few children is usually a verb; on 
the other hand, the real POS tag of a preposition is 
usually a preposition.  

If our parser considers the preposition which 
leads a short phrase, the parser will estimate the 
relation of the preposition as a verb. At the same 
time, if the boundary of prepositional phrase is 
analyzed incorrectly, other succeeding words will 
be wrongly analyzed, too.  

Error analysis of Japanese data (Kawata and  
Bartels, 2000) shows that CNJ (Conjunction) is a 
difficult POS tag. The parser does not have any 
module to detect coordinate structures. (Kurohashi, 
1995) proposed a method in which coordinate 
structure with punctuation is detected by a coeffi-

cient of similarity. Similar framework is necessary 
for solving the problem. 

 Another characteristic error in Japanese is seen 
at adnominal dependency attachment for a com-
pound noun. In such dependency relations, adjec-
tives and nouns with "no" (genitive marker) can be 
a dependent and compound nouns which consist of 
more than one consecutive nouns can be a head. 
The constituent of compound nouns have same 
POSTAG, CPOSTAG and FEATS. So, the ma-
chine learner has to disambiguate the dependency 
attachment with sparce feature LEMMA and 
FORM. Compound noun analysis by semantic fea-
ture is necessary for addressing the issue. 

4 Conclusion 
This paper reported on multi-lingual dependency 
parsing on combining SVMs and MaxEnt. The 
system uses SVMs for word dependency attach-
ment analysis and MaxEnt for the label tagging 
when the new dependency attachment is generated. 
We discussed some preprocessing methods that are 
useful in our preceding work for Chinese depend-
ency analysis, but these methods, except one, can-
not be used in multi-lingual dependency parsing. 
Only using the SVM-based tagger to extract the 
neighbor relation could improve many languages 
in our experiment, therefore we use the tagger in 
the parser as its preprocessing. 
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Language: LAS: UAS: LAcc. UAS with out 
preprocessing:

Arabic 65.19 77.74 79.02 76.74 
Chinese 84.27 89.46 86.42 90.03 
Czech 76.24 83.4 83.52 82.88 
Danish 81.72 88.64 86.11 88.45 
Dutch 71.77 75.49 75.83 74.97 

German 84.11 87.66 90.67 87.53 
Japanese 89.91 93.12 92.40 92.99 
Portugese 85.07 90.3 88.00 90.21 
Slovene 71.42 81.14 80.96 80.43 
Spanish 80.46 85.15 88.90 85.19 
Swedish 81.08 88.57 83.99 88.83 
Turkish 61.22 74.49 73.91 74.3 

AV: 77.7 84.6 84.1 84.38 
SD: 8.67 6.15 5.78 6.42 

Bulgarian 86.34 91.3 89.27 91.44 

Table 1: Results 
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