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Abstract

Prior work on training the IBM-3 transla-
tion model is based on suboptimal meth-
ods for computing Viterbi alignments. In
this paper, we present the first method
guaranteed to produce globally optimal
alignments. This not only results in im-
proved alignments, it also gives us the op-
portunity to evaluate the quality of stan-
dard hillclimbing methods. Indeed, hill-
climbing works reasonably well in prac-
tice but still fails to find the global opti-
mum for between 2% and 12% of all sen-
tence pairs and the probabilities can be
several tens of orders of magnitude away
from the Viterbi alignment.

By reformulating the alignment problem
as an Integer Linear Program, we can
use standard machinery from global opti-
mization theory to compute the solutions.
We use the well-known branch-and-cut
method, but also show how it can be cus-
tomized to the specific problem discussed
in this paper. In fact, a large number of
alignments can be excluded from the start
without losing global optimality.

1 Introduction

Brown et al. (1993) proposed to approach the
problem of automatic natural language translation
from a statistical viewpoint and introduced five
probability models, known as IBM 1-5. Their
models weresingle word based, where each
source word could produce at most one target
word.

State-of-the-art statistical translation systems
follow the phrase basedapproach, e.g. (Och and
Ney, 2000; Marcu and Wong, 2002; Koehn, 2004;
Chiang, 2007; Hoang et al., 2007), and hence al-
low more general alignments. Yet, single word

based models (Brown et al., 1993; Brown et al.,
1995; Vogel et al., 1996) are still highly relevant:
many phrase based systems extract phrases from
the alignments found by training the single word
based models, and those that train phrases directly
usually underperform these systems (DeNero et
al., 2006).

Single word based models can be divided into
two classes. On the one hand, models like IBM-1,
IBM-2 and the HMM are computationally easy to
handle: both marginals and Viterbi alignments can
be computed by dynamic programming or even
simpler techniques.

On the other hand there are fertility based mod-
els, including IBM 3-5 and Model 6. These mod-
els have been shown to be of higher practical rel-
evance than the members of the first class (Och
and Ney, 2003) since they usually produce better
alignments. At the same time, computing Viterbi
alignments for these methods has been shown to
be NP-hard (Udupa and Maji, 2006), and comput-
ing marginals is no easier.

The standard way to handle these models – as
implemented in GIZA++ (Al-Onaizan et al., 1999;
Och and Ney, 2003) – is to use a hillclimbing al-
gorithm. Recently Udupa and Maji (2005) pro-
posed an interesting approximation based on solv-
ing sequences of exponentially large subproblems
by means of dynamic programming and also ad-
dressed the decoding problem. In both cases there
is no way to tell how far away the result is from
the Viterbi alignment.

In this paper we solve the problem of find-
ing IBM-3 Viterbi alignments by means of Inte-
ger Linear Programming (Schrijver, 1986). While
there is no polynomial run-time guarantee, in prac-
tice the applied branch-and-cut framework is fast
enough to find optimal solutions even for the large
Canadian Hansards task (restricted to sentences
with at most75 words), with a training time of6
hours on a2.4 GHz Core 2 Duo (single threaded).
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Integer Linear Programming in the context of
machine translation first appeared in the work of
Germann et al. (2004), who addressed thetrans-
lation problem (often calleddecoding) in terms of
a travelings-salesman like formulation. Recently,
DeNero and Klein (2008) addressed the training
problem for phrase-based models by means of
integer linear programming, and proved that the
problem is NP-hard. The main difference to our
work is that they allow only consecutive words in
the phrases. In their formulation, allowing arbi-
trary phrases would require an exponential number
of variables. In contrast, our approach handles the
classical single word based model where any kind
of “phrases” in the source sentence are aligned to
one-word phrases in the target sentence.

Lacoste-Julien et al. (2006) propose an inte-
ger linear program for a symmetrized word-level
alignment model. Their approach also allows to
take the alignments of neighboring words into ac-
count. In contrast to our work, they only have a
very crude fertility model and they are consider-
ing a substantially different model. It should be
noted, however, that a subclass of their problems
can be solved in polynomial time - the problem is
closely related to bipartite graph matching. Less
general approaches based on matching have been
proposed in (Matusov et al., 2004) and (Taskar et
al., 2005).

Recently Bodrumlu et al. (2009) proposed a
very innovative cost function for jointly optimiz-
ing dictionary entries and alignments, which they
minimize using integer linear programming. They
also include a mechanism to derive N-best lists.
However, they mention rather long computation
times for rather small corpora. It is not clear if the
large Hansards tasks could be addressed by their
method.

An overview of integer linear programming ap-
proaches for natural language processing can be
found onhttp://ilpnlp.wikidot.com/.
To facilitate further research in this area, the
source code will be made publicly available.

Contribution The key contribution of our work
is a method to handle exact fertility models as aris-
ing in the IBM-3 model in a global optimization
framework. This is done by a linear number of
linear consistency constraints. Unlike all previ-
ous works on integer linear programming for ma-
chine translation, we do not solely use binary co-
efficients in the constraint matrix, hence showing

that the full potential of the method has so far not
been explored.

At the same time, our method allows us to give a
detailed analysis of the quality of hillclimbing ap-
proaches. Moreover, we give a more detailed de-
scription of how to obtain a fast problem-tailored
integer solver than in previous publications, and
include a mechanism to a priori exclude some vari-
ables without losing optimality.

2 The IBM-3 Translation Model

Given a source sentencefJ
1

, the statistical ap-
proach to machine translation is to assign each
possible target sentenceeI

1 a probability to be an
accurate translation. For convenience in the trans-
lation process, this probability is usually rewritten
as

P (eI
1|f

J
1 ) =

1

p(fJ
1
)
· p(eI

1) · p(fJ
1 |e

I
1) ,

and the training problem is to derive suitable pa-
rameters for the latter term from a bilingual cor-
pus. Here, the probability is expressed by sum-
ming over hidden variables calledalignments. The
common assumption in single word based models
is that each source positionj produces a single tar-
get positionaj ∈ {0, . . . , I}, where an artificial 0-
position has been introduced to mark words with-
out a correspondence in the target sentence. The
alignment of a source sentence is then a vectoraJ

1 ,
and the probability can now be written as

p(fJ
1 |e

I
1) =

∑

aJ
1

p(fJ
1 , aJ

1 |e
I
1) .

We will focus on training the IBM-3 model which
is based on the concept offertilities: given an
alignmentaJ

1 , the fertility Φi(a
J
1 ) =

∑

j:aj=i 1
of target wordi expresses the number of source
words aligned to it. Omitting the dependence on
aJ

1 (and definingp(j|0) = 1), the probability is
expressed as

p(fJ
1 , aJ

1 |e
I
1) = p(Φ0|J) ·

I
∏

i=1

[

Φi! p(Φi|ei)
]

·
∏

j

[

p(fj|eaj
) · p(j|aj)

]

. (1)

For the probabilityp(Φ0|J) of the fertility of the
empty word, we use the modification introduced in
(Och and Ney, 2003), see there for details. In sum-
mary, the model comprises a single word based
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translation model, an inverted zero-order align-
ment model and a fertility model. We now discuss
how to find the optimal alignment for given prob-
abilities, i.e. to solve the problem

arg max
aJ
1

p(fJ
1 , aJ

1 |e
I
1) (2)

for each bilingual sentence pair in the training
set. This is a desirable step in the approximate
EM-algorithm that is commonly used to train the
model.

3 Finding IBM-3 Viterbi Alignments via
Integer Linear Programming

Instead of solving (2) directly we consider the
equivalent task of minimizing the negative loga-
rithm of the probability function. A significant
part of the arising cost function is already linear
in terms of the alignment variables, a first step for
the integer linear program (ILP) we will derive.

To model the problem as an ILP, we introduce
two sets of variables. Firstly, for any source po-
sition j ∈ {1, . . . , J} and any target position
i ∈ {0, . . . , I} we introduce an integer variable
xij ∈ {0, 1} which we want to be1 exactly if
aj = i and0 otherwise. Since each source posi-
tion must be aligned to exactly one target position,
we arrive at the set of linear constraints

∑

i

xij = 1 , j = 1, . . . , J . (3)

The negative logarithm of the bottom row of (1) is
now easily written as a linear function in terms of
the variablesxij :

∑

i,j

cx
ij · xij ,

cx
ij = − log

[

p(fj|ei) · p(j|i)
]

.

For the part of the cost depending on the fertilities,
we introduce another set of integer variablesyif ∈
{0, 1}. Herei ∈ {0, . . . , I} andf ranges from0 to
some pre-specified limit on the maximal fertility,
which we set tomax(15, J/2) in our experiments
(fertilities > J need not be considered). We want
yif to be1 if the fertility of i is f , 0 otherwise.
Hence, again these variables must sum to1:

∑

f

yif = 1 , i = 0, . . . , I . (4)

The associated part of the cost function is written
as

∑

i,f

cy
if · yif ,

cy
if = − log

[

f ! p(f |ei)
]

, i = 1, . . . , I

cy
0f = − log

[

p(Φ0 = f |J)
]

.

It remains to ensure that the variablesyif express-
ing the fertilities are consistent with the fertilities
induced by the alignment variablesxij. This is
done via the following set of linear constraints:

∑

j

xij =
∑

f

f · yif , i = 0, . . . , I . (5)

Problem (2) is now reduced to solving the integer
linear program

arg min
{xij},{yif}

∑

i,j

cx
ij xij +

∑

i,f

cy
if yif

subject to(3), (4), (5)

xij ∈ {0, 1}, yif ∈ {0, 1} , (6)

with roughly 2 I J variables and roughlyJ + 2I
constraints.

4 Solving the Integer Linear Program

To solve the arising integer linear programming
problem, we first relax the integrality constraints
on the variables to continuous ones:

xij ∈ [0, 1], yif ∈ [0, 1] ,

and obtain a lower bound on the problems by solv-
ing the arising linear programming relaxation via
the dual simplex method.

While in practice this can be done in a matter of
milli-seconds even for sentences withI, J > 50,
the result is frequently a fractional solution. Here
the alignment variables are usually integral but the
fertility variables are not.

In case the LP-relaxation does not produce an
integer solution, the found solution is used as the
initialization of a branch-and-cut framework. Here
one first tries to strengthen the LP-relaxation by
deriving additional inequalities that must be valid
for all integral solutions see e.g. (Schrijver, 1986;
Wolter, 2006) andwww.coin-or.org. These
inequalities are commonly calledcuts. Then one
applies a branch-and-bound scheme on the inte-
ger variables. In each step of this scheme, addi-
tional inequalities are derived. The process is fur-
ther sped-up by introducing a heuristic to derive an
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upper bound on the cost function. Such bounds are
generally given by feasible integral solutions. We
use our own heuristic as a plug-in to the solver.
It generates solutions by thresholding the align-
ment variables (winner-take-all) and deriving the
induced fertility variables. An initial upper bound
is furthermore given by the alignment found by
hillclimbing.

We suspect that further speed-ups are possible
by using so-called follow-up nodes: e.g. if in the
branch-and-bound an alignment variablexij is set
to 1, one can conclude that the fertility variable
yi0 must be0. Also, sets of binary variables that
must sum to1 as in (3) and (4) are known asspe-
cial ordered sets of type Iand there are variants
of branch-and-cut that can exploit these proper-
ties. However, in our context they did not result
in speed-ups.

Our code is currently based on the open source
COIN-OR project1 and involves the linear pro-
gramming solver CLP, the integer programming
solver CBC, and the cut generator library CGL.
We have also tested two commercial solvers. For
the problem described in this paper, CBC per-
formed best. Tests on other integer programming
tasks showed however that the Gurobi solver out-
performs CBC on quite a number of problems.

5 Speed-ups by Deriving Bounds

It turns out that, depending on the cost function,
some variables may a priori be excluded from the
optimization problem without losing global opti-
mality. That is, they can be excluded evenbefore
the first LP-relaxation is solved.

The affected variables have relatively high cost
coefficients and they are identified by considering
lower bounds and an upper bound on the cost func-
tion. Starting from the lower bounds, one can then
identify variables that when included in a solution
would raise the cost beyond the upper bound.

An upper boundu on the problem is given by
any alignment. We use the one found by hillclimb-
ing. If during the branch-and-cut process tighter
upper bounds become available, the process could
be reapplied (as a so-calledcolumn cut generator).

For the lower bounds we use different ones to
exclude alignment variables and to exclude fertil-
ity variables.

1www.coin-or.org

5.1 Excluding Alignment Variables

To derive a lower bound for the alignment vari-
ables, we first observe that the costcx

ij for the
alignment variables are all positive, whereas the
costcy

if for the fertilities are frequently negative,
due to the factorial off . A rather tight lower
bound on the fertility cost can be derived by solv-
ing the problem

lF,1 = min
{Φi}

I
∑

i=0

cy
iΦi

s.t.
∑

i Φi = J , (7)

which is easily solved by dynamic programming
proceeding alongi. A lower bound on the align-
ment cost is given by

lA =
∑

j lA,j ,

where lA,j = min
i=0,...,I

cx
ij .

The lower bound is then given byl1 = lF,1 + lA,
and we can be certain that source wordj will not
be aligned to target wordi if

cx
ij > lA,j + (u− l1) .

5.2 Excluding Fertility Variables

Excluding fertility variables is more difficult as
cost can be negative and we have used a constraint
to derivelF,1 above.

At present we are using a two ways to gener-
ate a lower bound and apply the exclusion process
with each of them sequentially. Both bounds are
looser thanl1, but they immensely help to get the
computation times to an acceptable level.

The first bound builds uponl1 as derived above,
but using a looser boundlF,2 for the fertility cost:

lF,2 =
∑

i

min
Φi

cy
iΦi

.

This results in a boundl2 = lF,2 + lA, and fertility
variables can now be excluded in a similar manner
as above.

Our second bound is usually much tighter and
purely based on the fertility variables:

l3 =
∑

i

min
Φi

[

cy
iΦi

+ min
J⊆{1,...,J} : |J=Φi|

cx
i (J )

]

,

with cx
i (J ) =

∑

j∈J

cx
ij ,
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and where the cost of the empty set is defined as0.
Although this expression looks rather involved, it
is actually quite easy to compute by simply sorting
the respective cost entries. A fertility variableyif

can now be excluded if the difference betweency
if

and the contribution ofi to l3 exceedsu− l3.
We consider it likely that more variables can be

excluded by deriving bounds in the spirit of (7),
but with the additional constraint thatΦi = f for
somei andf . We leave this for future work.

6 Experiments

We have tested our method on three different tasks
involving a total of three different languages and
each in both directions. The first task is the well-
known Canadian Hansards2 task (senate debates)
for French and English. Because of the large
dataset we are currently only considering sentence
pairs where both sentences have at most75 words.
Longer sentences are usually not useful to derive
model parameters.

The other two datasets are released by the Eu-
ropean Corpus Initiative3. We choose the Union
Bank of Switzerland (UBS) corpus for English and
German and the Avalanche Bulletins, originally
released by SFISAR, for French and German. For
the latter task we have annotated alignments for
150 of the training sentences, where one annota-
tor specified sure and possible alignments. For de-
tails, also on the alignment error rate, see (Och and
Ney, 2003).

All corpora have been preprocessed with
language-specific rules; their statistics are given in
Table 1. We have integrated our method into the
standard toolkit GIZA++4 and are using the train-
ing scheme15H53545 for all tasks. While we fo-
cus on the IBM-3 stage, we also discuss the quality
of the resulting IBM-4 parameters and alignments.

Experiments were run on a2.4 GHz Core 2
Duo with4 GB memory. For most sentence pairs,
the memory consumption of our method is only
marginally more than in standard GIZA++ (600
MB). In the first iteration on the large Hansards
task, however, there are a few very difficult sen-
tence pairs where the solver needs up to90 min-
utes and1.5 GB . We observed this in both trans-
lation directions.

2www.isi.edu/natural-language/
download/hansard/

3The entire CD with many more corpora is available for
currently50 Euros.

4available atcode.google.com/p/giza-pp/ .

Avalanche Bulletin
French German

# sentences 2989
max. sentence length 88 57
total words 64825 45629
vocabulary size 1707 2113

UBS
English German

# sentences 2689
max. sentence length 92 91
total words 62617 53417
vocabulary size 5785 9127

Canadian Hansards (max. 75)
French English

# sentences 180706
max. sentence length 75 75
total words 3730570 3329022
vocabulary size 48065 37633

Table 1:Corpus statistics for all employed (train-
ing) corpora, after preprocessing.

6.1 Evaluating Hillclimbing

In our first set of experiments, we compute Viterbi
alignments merely to evaluate the quality of the
standard training process. That is, the model
parameters are updated based on the alignments
found by hillclimbing. Table 2 reveals that, as
expected, hillclimbing does not always find the
global optimum: depending on the task and it-
eration number, between2 and12 percent of all
hillclimbing alignments are suboptimal. For short
sentences (i.e.I, J ≤ 20) hillclimbing usually
finds the global optimum.

Somewhat more surprisingly, even when a good
and hence quite focused initialization of the IBM-
3 model parameters is given (by training HMMs
first), the probability of the Viterbi alignment can
be up to a factor of1037 away from the optimum.
This factor occurred on the Hansards task for a
sentence pair with46 source and46 target words
and the fertility of the empty word changed from
9 (for hillclimbing) to 5.

6.2 Hillclimbing vs. Viterbi Alignments

We now turn to a training scheme where the
Viterbi alignments are used to actually update the
model parameters, and compare it to the standard
training scheme (based on hillclimbing).
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Candian Hansards (max 75)

French→ English
Iteration # 1 2 3 4 5

# suboptimal alignments in hillclimbing 10.7% 10.7% 10.8% 11.1% 11.4%

Maximal factor to Viterbi alignment 1.9 · 1037 9.1 · 1017 7.3 · 1014 3.3 · 1012 8.1 · 1014

English→ French
Iteration # 1 2 3 4 5

# suboptimal alignments in hillclimbing 7.3% 7.5% 7.4% 7.4% 7.5%

Maximal factor to Viterbi alignment 5.6 · 1038 6.6 · 1020 7.6 · 1011 4.3 · 1010 8.3 · 1011

Avalanche Bulletins

French→ German
Iteration # 1 2 3 4 5

# suboptimal alignments in hillclimbing 7.5% 5.6% 4.9% 4.9% 4.4%

Maximal factor to Viterbi alignment 6.1 · 105 877 368 2.5 · 104 429

German→ French
Iteration # 1 2 3 4 5

# suboptimal alignments in hillclimbing 4.2% 2.7% 2.5% 2.3% 2.1%

Maximal factor to Viterbi alignment 40 302 44 3.3 · 104 9.2 · 104

Union Bank of Switzerland (UBS)

English→ German
Iteration # 1 2 3 4 5

# suboptimal alignments in hillclimbing 5.0% 4.0% 3.5% 3.3% 3.2%

Maximal factor to Viterbi alignment 677 22 53 40 32

German→ English
Iteration # 1 2 3 4 5

# suboptimal alignments in hillclimbing 5.5% 3.3% 2.5% 2.2% 2.3%

Maximal factor to Viterbi alignment 1.4 · 107 808 33 33 1.8 · 104

Table 2:Analysis of Hillclimbing on all considered tasks. All numbers are for the IBM-3 translation
model. Iteration 1 is the first iteration after the transfer from HMM, the final iteration is the transfer to
IBM4. The factors are w.r.t. the original formulation, not the negative logarithm of it and are defined as
the maximal ratio between the Viterbi probability and the hillclimbing probability.
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une baisse de la température a en général stabilisé la couverture neigeuse .

ein Temperaturrückgang hat die Schneedecke im allgemeinen stabilisiert .

Standard training (hillclimbing).

une baisse de la température a en général stabilisé la couverture neigeuse .

ein Temperaturrückgang hat die Schneedecke im allgemeinen stabilisiert .

Proposed training (Viterbi alignments).

Figure 1:Comparison of training schemes. Shown are the alignments of the final IBM-3 iteration.

Indeed Table 3 demonstrates that with the new
training scheme, the perplexities of the final IBM-
3 iteration are consistently lower. Yet, this effect
does not carry over to IBM-4 training, where the
perplexities are consistently higher. Either this is
due to overfitting or it is better to use the same
method for alignment computation for both IBM-
3 and IBM-4. After all, both start from the HMM
Viterbi alignments.

Interestingly, the maximal factor between the
hillclimbing alignment and the Viterbi alignment
is now consistently higher on all tasks and in all
iterations. The extreme cases are a factor of1076

for the Canadian Hansards English→ French task
and1030 for the Bulletin French→ German task.

Table 4 demonstrates that the alignment error
rates of both schemes are comparable. Indeed, a
manual evaluation of the alignments showed that
most of the changes affect words like articles or
prepositions that are generally hard to translate.
In many cases neither the heuristic nor the Viterbi
alignment could be considered correct. An inter-
esting case where the proposed scheme produced
the better alignment is shown in Figure 1.

In summary, our results give a thorough justi-
fication for the commonly used heuristics. A test
with the original non-deficient empty word model
of the IBM-3 furthermore confirmed the impres-
sion of (Och and Ney, 2003) that overly many
words are aligned to the empty word: the tendency
is even stronger in the Viterbi alignments.

6.3 Optimizing Running Time

The possibilities to influence the run-times of the
branch-and-cut framework are vast: there are nu-

Union Bank (UBS) E → G
Final IBM-3 Final IBM-4

Standard train. 49.21 35.73

Proposed train. 49.00 35.76

Union Bank (UBS) G → E
Final IBM-3 Final IBM-4

Standard train. 62.38 47.39

Proposed train. 62.08 47.43

Avalanche F → G
Final IBM-3 Final IBM-4

Standard train. 35.44 21.99

Proposed train. 35.23 22.04

Avalanche G → F
Final IBM-3 Final IBM-4

Standard train. 34.60 22.78

Proposed train. 34.48 22.76

Canadian Hansards F → E
Final IBM-3 Final IBM-4

Standard train. 105.28 55.22

Proposed train. 92.09 55.35

Canadian Hansards E → F
Final IBM-3 Final IBM-4

Standard train. 70.58 37.64

Proposed train. 70.03 37.73

Table 3:Analysis of the perplexities in training.
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French → German
Final IBM-3 Final IBM-4

Standard train. 24.31% 23.01%

Proposed train. 24.31% 23.24%

German → French
Final IBM-3 Final IBM-4

Standard train. 33.03% 33.44%

Proposed train. 33.00% 33.27%

Table 4:Alignment error rates on the Avalanche
bulletin task.

merous ways to generate cuts and several of them
can be used simultaneously. The CBC-package
also allows to specify how many rounds of cuts
to derive at each node. Then there is the question
of whether to use the bounds derived in Section
5 to a priori exclude variables. Finally, branch-
and-cut need not be done on all variables: since
solving LP-relaxations typically results in integral
alignments, it suffices to do branch-and-cut on the
fertility variables and only add the alignment vari-
ables in case non-integral values arise (this never
happened in our experiments5).

We could not possibly test all combinations
of the listed possibilities, and our primary focus
was to achieve acceptable run-times for the large
Hansards task. Still, in the end we have a quite
uniform picture: the lowest run-times are achieved
by using Gomory Cuts only. Moreover, including
all variables for branching was between1.5 and2
times faster than only including fertility variables.
Only by exploiting the bounds derived in Section
5 the run-times for the Hansards task in direction
from English to French became acceptable. We
believe that further speed-ups are possible by de-
riving tighter bounds, and are planning to investi-
gate this in the future.

We end up with roughly6 hours for the
Hansards task, roughly3 minutes for the UBS
task, and about2.5 minutes for the Avalanche task.
In all cases the run-times are much higher than
in the standard GIZA++ training. However, we
are now getting optimality guarantees where pre-
viously one could not even tell how far away one is
from the optimum. And the Viterbi alignments of
several sentence pairs can of course be computed
in parallel.

Lastly, we mention the possibility of setting a

5In fact, when fixing the fertility variables, the problem
reduces to the polynomial time solvable assignment problem.

limit on the branch-and-cut process, either on the
running time or on the number of nodes. There is
then no longer a guarantee for global optimality,
but at least one is getting a bound on the gap to the
optimum and one can be certain that the training
time will be sufficiently low.

7 Conclusion

We present the first method to compute IBM-3
Viterbi alignments with a guarantee of optimal-
ity. In contrast to other works on integer linear
programming for machine translation, our formu-
lation is able to include a precise and very gen-
eral fertility model. The resulting integer linear
program can be solved sufficiently fast in prac-
tice, and we have given many comments on how
problem-specific knowledge can be incorporated
into standard solvers.

The proposed method allows for the first time
to analyze the quality of hillclimbing approaches
for IBM-3 training. It was shown that they can be
very far from the optimum. At the same time, this
seems to happen mostly for difficult sentences that
are not suitable to derive good model parameters.

In future work we want to derive tighter bounds
to a priori exclude variables, combine the method
with the N-best list generation of (Bodrumlu et
al., 2009) and evaluate on a larger set of corpora.
Finally we are planning to test other integer pro-
gramming solvers.
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