
AN ATTEMPT TO COMPUTERIZED DICTIONARY DATA BASES

M. Nagao, J. Tsujii, Y. Ueda, M. Takiyama

Department of Electrical Engineering
Kyoto University

Sakyo, Kyoto, 606, JAPAN

Summar X

Two dictionary data base systems developed at
Kyoto University are presented in this paper.
One is the system for a Japanese dictionary (
Shinmeikai Kokugojiten, published by Sansei-do)
and the other is for an English-Japanese diction-
ary (New Concise English-Japanese Dictionary,
also published by Sansei-do). Both are medium
size dictionaries which contain about 60,000 lex-
ical items. The topics discussed in this paper
are divided into two sub-topics. The first topic
is about data translation problem of large, un-
formatted linguistic data. Up to now, no serious
attempts have been made to this problem, though
several systems have been proposed to translate
data in a certain format into another. A univer-
sal data translator/verifier, called DTV, has
been developed and used for data translation of
the two dictionaries. The detailed construction
of DTV will be given. The other sub-topic is
about the problem of data organization which is
appropriate for dictionaries. It is emphasized
that the distinction between 'external structures'
and 'internal structures' is important in a dic-
tionary system. Though the external structures
can be easily managed by general DBMS's, the
internal (or linguistic) structures cannot be
well manipulated. Some additional, linguistic
oriented operations should be incorprated in dic-
tionary data base systems with universal DBMS
operations. Some examples of applications of the
dictionary systems will also be given.

i. Introduction

To computerize large ordinary dictionaries is
significant from various reasons:

i) Dictionaries are rich sources of reference
in linguistic processings of words, phrases and
text. Algorithms for natural language p~ocess-
ing should be verified by a large corpus of text
data, and therefore, dictionaries to be prepared
should be large enough to cover large vocabulary.

2) Dictionaries themselves are rich sources,
as linguistic corpora. A data base system, when
a dictionary data is stored in it, enables us to
examine the data by making cross references from
various view points. This will lead us to new
discoveries of linguistic facts which are almost
impossible by the printed version.

3) Computerized dictionaries have various
applications in such areas as language teaching
by computer, machine aided human translation,
automatic key word extraction etc.(3)

We have been engaged in the construction of dic-
tionary data base systems these three years,
and have almost completed two such systems. One

is the system for a Japanese dictionary (Shin-
meikai Kokugojiten, Published by Sansei-do) and
the other for an English-Japanese dictionary
(New Concise English-Japanese Dictionary, also
Published by Sansei-do). Both are medium size
dictionaries which contain about 60,000 items.
In Addition to these two dictionary systems,
we are now developing a system for an English
dictionary (Longman dictionary of Contemporary
English, Published by Longman Publishing Compa-
ny, England). (4)

Two topics will be discussed in this paper. The
first is about the problem of data translation,
that is, how to obtain formatted data which are
more suitable for computer processings than their
printed versions. The second is the problem of
data organization, that is, how to organize the
formatted data into data base systems. We will
also give some examples of applications of these
systems.

2. Data Translation from Printed Imag~
to Formatted Data

We decided to input the dectionary contents
almost as they are printed, and to translate
them into certain formatted structures by com-
puter programs rather than by hand.

Ordinary dictionaries usually contain varieties
of information. The description in English-
Japanese dictionary, for example, consists of

I. parts of speech 2. inflection forms
3. pronunciations 4. derivatives
5. compounds
6. translation equivalents in Japanese

(Usually several equivalents exist and
they correspond tO different aspects of
meaning of the entry word)

7. idioms and their translations
8. typical usages and their translations
9. antonyms and synonyms
etc.

An entry may have several different parts of
speech (homograms) and to each part of speech,
the other information 2-9 is described (even
pronunciation may change depending on the parts
of speech). 7, 8 and 9 are usually attached to
one of the translation equivalents (see Fig. i).

In such a way, the description for a dictionary
entry has a certain structure, and the several
parts of the dictionary descriptions are related
to each other. In the printed dictionaries,
these relationships are expressed implicitly in
linearized forms. Various ingenious conventions

--534~

Heac 7ord 1

I
Pronunciation I Japanese _ _ Grammatical

Translations Explanation
I

Fig. 1 Relationships among Lexical Descriptions

are used to distinguish the relationships , in-
cluding several kinds of parentheses, specially
designed symbols (~ , ~ , ~ etc.) and char-
acter types (italic, gothic etc.). However, in
order to utilize these relationships by programs,
we should recognize them in the printed versions,
and reorganize them appropriately so that the
programs can manage them effectively. Instead
of special symbols or character types, we should
use formatted records, links or pointers to ex-
press such relationships explicitly. We call
this sort of translation from the printed ver-
sions to computer oriented formats as data trans-
lation.

"~ The printed version of a dictionary highly relies
on human ability of intuitive understanding, and
consists of many uncertain conventions. Gothic
characters, for example, indicate that the phrases
printed by them are idioms, and italic characters
show that the entry words have foreign origins.
In the input texts for computer, these different
types of characters are indicated by a set of
shift codes. Shift codes, together with various
special symbols such as (,), [,], ~ etc,
give us useful clues for the data translation.
However, these codes should be interpreted
differently, when they are used in different
parts of descriptions. " (" shows the begin-
ning of the pronunciation when it appears just
after a head word, and, on the other hand, when
it is used in the midst of an idiomatic express-
ion, it shows the beginning of an alternative
expression of just the preceeding one. Such
conventions, however, have many exceptions.
Moreover, the fact that there may be errors in
the input texts makes the translation process
more difficult.

If we use an ordinary programming language like
PL/I, the program for this purpose becomes a
collection of tricky mechanisms and hard to
debug. Data translation of this kind is inevi-
table whenever we want to process unformatted
linguistic data by computer. It would be very
useful if we could develop a universal system
for data translation (in fact, our system
described below has been used not only for dic-
tionary data translations but also for the
translations of bibliographic data in ethnology
at the National Museum of Ethnology).

2-1. Data Translator/Verifier -- DTV

The data translation can be seen as atranslation
from linearized character strings to certain
organized structures. The relationships implic-
itly expressed in the linearized strings should
be recovered and explicitly represented in the
organized forms. It is basically a process of
parsing. It has many similarities with parsing
of sentences in artificial or natural languages.
It has more similarities with natural language
parsings in the sense that both are defined by
many uncertain rules. Therefore, it is reason-
able to expect that we can apply the same tech-
niques to this problem that have beenproven
useful in natural language parsings. Several
propos'als have been made to define data syntax
by using ordinary BNF notations (or CFG)(~'~)How -
ever, we adopted here the framework of ATN
(Augmented Transition Network) instead of CFG
by the following reasons:

(i) CFG is essentially a model of a recogniz-
er. Although it is possible to check the syn-
tactic correctness of input texts by CFG rules,
we need another component that transduces the
parsed trees into formatted records we want.
ATN gives us an adequate model of a data trans-
ducer. It has provisions for setting up inter-
mediate translation results in registers (regis-
ters in ATN are called 'buffers' in our system)
and building them up into a single structure
(called BUILDQ operation in ATN).

(2) CFG provides an adequate framework for
managing recursive structures such as embedded
sentences in natural languages. Though recur-
sive structures are also found in dictionary
data, they are not so conspicuous. The struc-
tures in dictionaries are rather flat. In this
sense, CFG is too powerful to define data syntax
of dictionaries.

(3) ATN provides a more procedural framework
than CFG. Because a CFG based system assumes a
general algorithm that applies the rules to the
input text, the user who defines the rules can-
not control the algorithm. This is a fatal
disadvantage of CFG, when the input text contains
many input errors. Whenever an input error is
encountered during the translation process, a
CFG system fails to produce a parsed tree. The
system or the human user should trace back the
whole process to find the input error which
causes the failure. It would be a formidable
task.

2-2. Definition of Rules ~ Codes~ Buffers and
Files

Based on ATN model, we modified it for data
translation. In this section, we will explain
the detailed syntax for the DTV (the formal
definition of the DVT syntax is given in (8).

(A) Definition of Codes
In the case of syntactic analyses of natural
language sentences, the basic units are parts

--535

of speech of individual words or individual
words themselves. Special checking functions
such as CAT and WORD are prepared in the origin-
al ATN model. On the other hand, in the case of
data translation, the basic units are individual
characters.

A restricted set of characters such as the char-
acter set defined by ISO or ASCII are used and
sufficient for ordinary computer applications.
However, when we want to process real documents
or linguistic data like dictionaries, we need
much richer set of characters. Though, in
principle, a single kind of parenthesis is suffi-
cient for expressing tree-like structures,
several different sorts of parentheses suqh as
(, [, ~ , { , ~ etc. are used to identify
different parts of descriptions in the published
dictionaries. We also found out that a certain
set of characters, for example, phonetic symbols,
appear only in a certain specific position (the
pronunciation in the case of phonetic symbols)
in the dictionary descriptions. If we could
recognize the scope of the pronunciatioL~ parts,
we would not need to have extra sets of char-
acter codes for phonetic symbols. We could
interpret ordinary ASCII codes in the pronun-
ciation part not as usual alpha-numeric char-
acters but as phonetic symbols, according to
certain pre-defined rules.

However, these redundancies of descriptions are
especially useful for detecting input errors.
Whenever we find out the codes for phonetic
symbols in the positions other than the pronun-
ciation fields, or inversely, when we encounter,
in the pronunciation fields, the codes for the
characters other than phonetic symbols, something
wron~ would be in the input texts.

Because we have about i0,000 or more different
Kanji-(Chinese) characters in Japanese, a stand-
ard code system such as ISO, ASCII etc. is no
more adequate, and therefore, a special code
system has been determined as JIS (Japanese
Industrial Standard). The code system assigns
a 2 byte code to each character. We have 752
extra codes which are not pre-defined by JIS
and to which the user can assign arbitrary char-
acters. Various types of parentheses, shift
code, phonetic symbols etc. have been defined
by using these extra codes. Because each char-
acter, including alpha-numeric, Kanji, specifi-
cally designed symbols, shift codes etc.,corre-
spond to a 2 byte code, we can assign a decimal

ALPHA-SMALL = 9057 - 9082
ALPHA-LARGE = 9025 - 9050
ALPHA = ALPHA-SMALL, ALPHA-LARGE
KANJI = 12321 - 20554
SHIFT-GOTHIC = 10273

Note : The lower case alphabet characters are defined as
the decimal numbers between 9057 and 9087. The al-
phabet characters are defined as the union of ALPHA-
SMALL and ALPHA-LARGE.

Fig. 2 Code Definition by Decimal Numbers

number to each character by interpreting the 2
byte code as an integer representation. By using
this decimal number notation, we can define
arbitrary subsets of characters as shown in Fig.
2. These subsets of characters play the same
role for the data translation as the syntactic
categories for sentence analysis. Notice that
a character is allowed to belong to more than
one character set.

(B) Definition of Rules
A rule of DTV is defined by a triplet as

(condition action next-state).

The condition-part is specified by using the code
sets defined in (A), Two forms of specifications
are possible.

i. < subset-l, ..., subset-n >
2. (subset-l, subset-n)

The first notation means that the characters in

the specified subsets should appear in this
order. The second is the notation for specifying
OR-conditions, that is, a character in one of the
specified subsets should appear. Arbitrary
combinations of these two bracketing notations are
allowed such as

<(< >) ()>.

The action parts, which will be carried out when
the condition parts are satisfied, are described
by using a set of built-in functions. These are
the functions for manipulating buffers and files.
Some examples of such built-in functions are
shown in Table i.

Function Argument Result

WRITE *[-number] the currently scanned char-
BUF(Buf-name) acter(or the 'number' pre-

ceding chracter) iswitten in
the buffer.

RECNO the ID number of the current
BUF(Buf-name) input record is written in

the buffer.

PTR the position of the scanned
BUF(Buf-name) character in the input record

is written in the buffer.

'arbitrary char- the specified character
acter string' string is written in the
BUF(Buf-name) buffer.

BUF(Buf-name) the content of the buffer is
FILE(File-name) written out to the external

file.

MERGE BUF(Buf-nam~l,.. the contents of the n buffers
., Btlf-namen) are merged into a single

BUF(Buf-name) buffer specified by the
second arguement.

CLEAR CTR(Counter- the counter is cleared to 0
name) or BUF(or the buffer is cleared hy
Buf-name) blank characters.

ADD CTR(Counter- the counter is counted up by
name) the number.
Number

Table 1 Built-in Functions in DTV

- - 5 3 6 -

Several actions can be specified and they will be
executed in sequence.

The next-state specifies the state to which the
control is to be transferred after the current
rule is applied. A typical state-diagram is
shown in Fig. 3.

I~--~ ANGLE

~__~ ~LPHABE r

Fig. 3 Tyipical State-Diagram

(C) Definition of Buffers and Files
We can define arbitrary numbers of buffers with
various sizes as follows.

BUF-NAME SIZE(BYTE) IF-OVERFLOW-STATE

SPELLING 40 SPELL-ERROR

IDIOM 30 IDIOM-EXPAND

One of the typical input errors is the omissions
of delimiters which cause serious problems in
data translation. Various characters play the
roles of delimiters. They are shift codes,
several sorts of parentheses, etc. and they are
used in pairs (right vs. left parentheses, shift-
in vs. shift-out etc.) to delimit scopes of
specific data fields. When one of the pair is
missing, two situations would occur: the buffers
corresponding to the fields may overflow or
illegal characters for the fields may be scanned.
The latter case can be easily detected because
no transition rules are defined for that char-
acter. DTV put a message to the error message
file which tells at which position the illegal
character is found. The former case is rather
troublesome. Checking overflow conditions by
rules makes the whole definition Very clumsy.
We can specify in the definition of a buffer, to
which state the control makes a transition if
the buffer overflows. In that state, some error
messages are printed out.

2-3. System Configuration

Fig. 4 shows the overall construction of DTV.
By the compiling component, the definitions of

Raw Data

Compiling
Component

Definition for
Rules, Codes, Buffers,
Input File, Output File
etc.

Output Files
Internal (formatted)
Tables

Executer V E ~

~ Message
File

Fig. 4 Overall Construction of DTV

codes, buffers, files, formats of input and Out-
put, and translation rules are compiled into
several internal tables. Based on these tables,
the executer scans the input characters one by
one from the input file and applies the rules.
During the execution, the system will report
various error messages such as 'buffer overflow',
'illegal characters' etc. into the error message
files. Because the detailed information, such
as the position of the error in the input text,
is associated with these messages, human proof-
readers can easily recognize the input errors.

A flexible editor has been developed for correct-
ing input errors. Because this editor has a
special command to call DTV, the reviser can
check the data syntax immediately after the
correction (see Pig. 5).

I Formatted
records

Note : Data Editor output an input record with the corre-
sponding error message. The human proofreader can
easily recognize the input error and revise it. After
the revision, he/she can check whether the input record
contain no more errors, by calling the DTV.

Fig. 5 Data Editor Accompanied by DTV

2-4. Experience with DTV

We used DTV for data translation of the English-
Japanese dictionary. About 500 rules and 150
states were necessary to manage exceptional
description format of the dictionary. Because
DTV should scan and check every input character

--537--

and because the dictionary consists of 6,500,000
characters, the whole process was very time
consuming (it took about 130 min. for translating
the whole dictionary by FACOM M200 at Kyoto
University Computing Center).

In order to show the effectiveness of DTV, Table
2 is prepared, which shows the input errors
detected in the initial input. Some of them can
be corrected automatically only by augmenting
DTV rules. Moreover, the data editor accompanied
by DTV was so effective that all of the detected
errors were completely removed by 3 man-month
efforts. However, DTV can check mainly the
consistency of delimiting characters. There
still remain a lot of input errors in the text
such as errors in spellings of words. The de-
tection of such input errors requires certain
semantic knowledge and is hardly done by DTV
rules. Human proofreader should do it. Human
proofreaders can easily recognize these errors,
but tend to overlock the errors such as omissions
of delimiting characters. Certain effective co-
operations between man and machine seem to be
inevitable in correcting errors in a large
amount of linguistic corpora like dictionaries.

Another point to discuss is the relations be-
tween DTV and data entry systems. Though our
attempt here is highly batch-oriented, some
considerations about intractive data entry
systems will be necessary in future to augment
the dictionary data in evolutional ways. An
ordinary data entry system usually guides the

Error Type
Mlssings of
shift codes

Confusions
of similar
characters
Fluctuations
in character
sequences

Exceptional
formats which
were not ex-
)ected
beforehand.
Misunder-
standings of
key punchers

Miscellaneous
errors
Total

Explanations Frequencies
Shift-out codes (the code for 792
normal characters) are often
missin$.
The phonetic symbol '~' is, 5434
for example, often confused
with the number character 3.
Certain functional character 1166
sequences can express a same
thing. It is impossible to
standardize them in the case
that several key punchers
work in parallel.
The description formats for 550
acronyms, for example, are
quite different from those of
ordinary words.

Though the key punchers con-
sented to several standard-
ization rules for input,
some of them misunderstood
them.

1298

1276

10516

Note i: ~ shows that the errors of that type can be au-
tomatically corrected only by augmenting DTV rules.
• ~ shows that some of them can be corrected auto-
matically by augmenting DTV rules.

Note 2: The exceptional format errors are not input errors
in a true sense.

Table 2 Error Frequencies in the Initial Data

user as to what he should input next, by print-
ing prompting messages such as 'input the next
word', 'input the part of speech of the word'
etc. However, in the case that the input data
have rich varieties in their description formats
like the dictionary here, such a system becomes
infeasible. Though some guidance by the entry
system would be necessary, it is natural for the
user to input data in arbitrary fashion. The
data entry system should have the abilities of
translating the texts into certain formatted
structure, and of checking the existence of in-
put errors. Our data editor accompanied by the
DTV is the first step toward developing such
data entry systems.

3. Data Base Systems for Dictionaries

A dictionary description has a certain hierar-
chical structure such as previously shown in
Fig. 1. Such a structure can be well represent-
ed by a framework provided by ordinary DBMS's,
because it is just a simple tree structure.
However, the primitive data (or records) from
which the whole structure is built have certain
internal structures of their own. For example,
idioms or typical usages in English-Japanese
dictionary are the primitive records which are
located at certain fixed positions in the whole
structure and related to the other records such
as translation equivalents, head words etc.
They ean be accessed as basic units through
usual DBMS operations. At the same time, they
are composite expressions which consist of
several component words. These component words
are related to each other inside the idioms. We
call such structures inside the primitive
records ' internal structures'. (See Fig. 6)
In other words, the primitive records in a dic-
tionary data base system are not primitive in a

EXTERNAL STRUCTURE

. ADw0 ;, \ NFL CT D
\ .'Took 'PP' oken'

I
~ ?PICAL-USAGES

W it.upon o~e:e~f to ;ay sfmethinglJap
Translation

INTERNAL (LINGUISTIC) STRUCTURE

;~ ~ -c ~ I~ Verbal complement
/which can be replaced

Japanese Translation of the VC with various expres-
is inserted here sions

fixed expression which can be varied such as
'took it upon myself to'
'takes it upon himself to'

Fig. 6 External Structure and
Internal Structure in a Dictionary Data

-~-538

usual sense of DBMS. Though the external struc-
tures among primitive records can be managed by
an ordinary DBMS, the internal linguistic struc-
ture,in some sense, cannot be well manipulated.
Moreover, what we want to do on the dictionary
data base systems is not only concerned with
external structures, but also, in many cases,
concerned with their internal, linguistic struc-
tures. Some additional operations should be
incorporated with the usual DBMS operations for
treating such intermixed structures.

3-1. Japanese Dicti0nary Data Base

The first thing we have to do is to incorporate
morpho/graphemic level of processings. Because
Japanese has a very peculiar writing method,
special techniques are required to utilize the
dictionary. The main difficulty we encountered
in developing the dictionary consultation system
is from the fact that dictionary entries of
Japanese usually have more than one spelling.
They have basically two different forms of spell-
ings, Kana-spellings(spellings by Japanese
phonetic symbols) and Kanji-spellings (spellings
by ideographs -- Chinese characters). Correspond-
ing to these two spellings, we have two types of
printed dictionaries, one for Kana and the other
for Kanji spellings. However, in actual sen-
tences, there often appear mixed forms of these
two spellings. (See Fig. 7) Though these mixed

Kanj i-Spellin~ Kana-Spc]] ing Mixed Spell ing Mean [ng

Fig. 7 Various Spellings of a Single Word

forms are not entered in the ordinary, printed
dictionaries of both types, human readers are
intelligent enough for converting them into one
of the two basic spellings. As for a computer-
ized dictionary system, a certain graphemic
level of processing is necessary for consulting
the system from these mixed forms.

In our system, the intermediate indexing struc-
tures are provided for both Kana and Kanji-

FCT

Kana-
character

Kanji-
character

I d Meaning

~ D e s c r i p t i o n

Fig. 8

FCT : First Character Table
FFCT : First Five Characters Table
SCT : Second Kanji Character Table

IT : Item Table

Intermediate Indexing Structure
for Japanese Dictionary

spellings (Fig. 8). The dotted line shows the
access path for Kana-spellings and the bold line
is for Kanji-spellings. The relationships among
FCT, FFCT, SCT and IT are illustrated in Fig. 9,
and the required memory spaces for these struc-
tures are given in Table 3.

FFCT~ /

I_ ~< ~ b

Note : Each record in IT(Item Table) contains a
pointer to the meaning description of the word.
IT, FFCT and SCT are blocked and stored in the
secondary memory (disc file). Each block con-
tains 50 records. A SCT record contains a set
of Kanji-characters which follow the same(first)
Kanji-charscter.

Fig. 9 Relationships anong FCT, FFCT, SCT and IT

Index Table Storage Requirement

FCT 24 KB

FFCT 18.6 KB

SCT 700 KB

I T 4.3 MB

Table 3 Required Memory Space

Mixed spellings are normalized into one of these
basic spellings. We can obtain Kana-spellings
from mixed ones, by systematically changing the
Kanji-characters in the mixed spellings into
corresponding Kana-strings. However, because
each Kanji-character corresponds to three or
four (or more) different Kana-strings (each
Kanji-character has several pronunciations), the
resultant Kana-strings are to be matched against
the Kana-spellings in the dictionary. Some ex-
amples of retrieval results are shown in Fig. i0.

Another problem is the incorporation of the
morphological analysis component. Because the
word inflection system for Japanese is much rich-
er than English, the morphological analysSs
component is indispensable for the Japanese
dictionary system. The morphological analysis
program developed for our another project, i.e.,
Machine Translation Project (7), has been
incorporated into the system. The retrieval
program has Japanese inflection rules in it and
can convert inflectional variants to their

--539

(i) Inpu£ spellln~ by KANA-charecter
K*.~.o~= ~ ~" b* 9-,~--------Input

~, t * 9 ~-Retrieved entry

~' Z * ~ ~'~--Retrieved entry

Note : Two entries are retriev~ because they have the
the same spelling.

(2) Input spelling by a Mixed-spelling
K A N J ,= ~} ~' ~ input

Fig. i0

* * O N K U N I BL u ~ [l l * *

~ v , b ~, ~ The _ j_ _ ~ NOT Foun~ ~N KOMOKU~BL Van~_characVe r ~ , is
~, b ~ ~--replaced systematically by its

NoTNOT~ V" L -~FOuNoFOUND< ININ K OMOK OT BL K OMOK UT BL]corresponding KANA-stringe.

K O M O K U S U : I : /An entry which has the
M A T C I ' I N G _ K O M O K U S O = |; ~the mixed-spelling is

~' ~' ~ ~ found.

R e t r i e v a l R e s u l t s o f J a p a n e s e D i c t i o n a r y

infinitive forms. The rules are almost perfect,
and more than 98% inflectional variants can be
converted correctly to their infinitive forms.

3-2. E_n.glish-Japanese Dictionary Data Base

The morpho/graphemic processings which are re-
quired for utilizing this dictionary are much
simpler than for the Japanese dictionary.
Because most of derivatives are generally adopt-
ed in the dictionary as head words, the process-
ings for derivational suffixes are not necessary.
We can retrieve the corresponding lexical entries
from their own spellings. When we want to see
the original word from which the derivative is
derived, it is required only to traverse the
external structure (that is, a record for a
derivative always contains a pointer to its
original word). Therefore, the current system
only recognizes the inflectional suffixes of
English to convert inflected forms to their
infinitive forms. As for the irregularyinflect-
ed words, all of their inflectional variants
are extracted from the dictionary, and are stored

in the inverted files (all of the head words are
also stored in the inverted files). Some results
of retrieval are shown in Fig. ii.

As we described at the beginning of this section,
some linguistic operations should be incorporat-
ed in a dictionary data base system besides
usual operations provided by ordinary DBMS's.
Morpho/graphemic processings are one of such
operations. Another example is the retrieval
of 'similar' expressions. English-Japanese

i) An Example of Regularly Inflected Words

EST.//~_ input word
F L A S H ,

f | a s h • y

~.~- ~'~ 1

2

1 ~--- importance

ff~ ~ P.O.S.
f i ~e S i ~ pronunciation

Japanese translations

2) An Example of Irregularly Inflected Words

Fo RE WE N~/input word

f o r e • g o ~ 1

~ ~ ~ P . O . S .

~ f a r g 6 u / f a : -

~ ~ - w e n t [- w ~ n t] ; ~ - ~

~ (~ ~ ~ , ~ b ~ = ~ < (]

~ - J a p a n e s e t r a n s l a t i o n

F i g . 1 1 R e t r i e v a l R e s u l t s o f I n f l e c t e d V a r i a n t s

d i c t i o n a r y c o n t a i n s E n g l i s h i d i o m s a n d t h e i r

t r a n s l a t i o n s , a n d t y p i c a l u s a g e s o f e a c h w o r d

a n d t h e i r t r a n s l a t i o n s . T h e e f f e c t i v e u t i l i z a -

t i o n o f t h e s e b y c o m p u t e r i s a v e r y i n t e r e s t i n g

t o p i c , b e c a u s e t h i s i s o n e o f t h e e s s e n t i a l
" r e a s o n - d ' e t r e s " o f t h e d i c t i o n a r y . We h a v e

b e e n d e v e l o p p i n g s o m e e l e m e n t a r y p r o g r a m s t o

u t i l i z e t h e i d i o m s i n t h e d i c t i o n a r y . T h e
system can retrieve idioms or usages which bear
certain similarities to the input phrases. For
example, when the user input a sentence such as
'He wore a long face', the system retrieves the
idiom 'pull [make, wear] a long face' which have
the highest similarity with the input. In this
process, all of the words in the input are re-
duced to their infinitive forms (in this case,
'wore' is reduced to 'wear'), and all of the
idioms and typical usages in the individual word
entries are retrieved for the comparison with
the input phrases. The comparison is currently
performed as follows:

i. Each word in the retrieved idioms and usages
are reduced to their infinitive forms.
2. Literal string matching is performed. In the
matching process, extra words in the input and
retrieved idioms or usages are ignored. Only
the oder of words is taken into consideration.
3. Similarity value is computed for each idioms
and usages.

The expressions with the highest value are print-
ed out. In the current system, the similarity
value is determined by a simple formula as

[the number of matched words] / [the number
of words in idioms or typical
usages].

Some results are shown in Fig. 12. We should
develop more sophisticated method of computing
the similarity value. Especially, information

~ 5 4 0 - -

F I L L I N THE FORM~ , input /
spell

f i 1 1 i n t h e f o r m

~'~ [~ ~ i : ~ . ~ - ~ ~ .

L Japanese translation

: ~input string
HE t 4 E A R E D A L O N G F AC E.J~

p u l l [w e a r] a 1 o n g f a c e

~-- Japanese translation

2 7 B M 8 E C US E D .

Fig. 12 Retrieval Results of Similar Expressions

about semantic relationships among words should

be taken into consideration. Computerized thesau-

ri will be useful. Certain words in idioms and

usages play the role of variables. 'Oneself' in
such a idiom as 'be a law unto oneself' is look-

ed as a variable and should be able to be match-

ed with 'myself', 'himself' etc. 'person' in
'take a person about a town' should be matched

with any person such as John, he, and so on. In

the latter case, 'a town' can also be replaced
by many other words that have certain semantic
features in common, for example, 'placehood'

We are now designing such semantically guided

pattern mat chings.

file HEADWORD

KEY HEADWORD IMPORT- pointer number POS-I -2 -3 -4 -5
spell TANCE to of

COMPOUND POS' s
WORD

11T2 I 21 2 I 2
POS p o i n t e r p o i n t e r p o i n t e r t o p o i n t e r p o i n t e r p o i n t e r

code to to JAPANESE to to t o
PRONUN- INFLEC- TRANSLATION USAGE]DIOM EXPLA-
CIATION TION NATION

NOTE: i) Numbers in boxes are numbers of CHARACTERs.
(1 CHARACTER = 2 bytes)

2) For example, 'pointer to JAPANESE TRANSLATION'
stands for the pair illustrated below.

file JAPANESE-TRANSLATION

KEY

p o i n t e r t o
the first number of
record of JAPANESE
JAPANESE TRANSLATIONs

TRANSLATION

Fig. 13

Japanese- other
Translation informations

text

Examples of Formatted Records

3-3. Data Structure for English-Japanese

Dictionary Data Base

The formats of records which are obtained as the

result of data translation are shown in Fig. 13.

The records in these formats contain a large

amount of extra spaces, because they are fixed

in length and, on the other hand, the length of
the descriptions in the dictionary varies very

much, depending on individual words. The neces-

sary memory size for these records amounts to

150 Mbyte. We have reorganized them for the
purpose of reducing the memory size. The actual

data organization is shown in Fig. 14, in which

the required memory size is 35 Mbyte. All kinds

of text data of variable length are maintained

in the same place (the Text Data File) in this
organization.

higher-level files (EX. HEADWORD, POS, etc.)

[
~o in t e r

/Tlolx: cot

4"
: pointers to
: higher-level

files

KEY @TEXT l#11 #2 ITAG I

Y/~//~ N @TEXT: pointer to the first rd
of text

: #1,#2: number of UNITs occupied to
represent the text

Text Data File NOTE: TAG indicates what type of
information (EX. idiom, usage.
pronunciation, etc.) is stored
in the corresponding text record.

Fig. 14 Data Structure of
English- Japanese Dictionary

The information which is necessary for managing
the records in the Text Data File is contained

in a TCR. A TCR consists of a pointer to the
corresponding text record, the number of occupied

text data records, a tag field etc. The tag
field indicates what kind of text data are stored
in the record. Arbitrary numbers of text data

can be linked together. The memory efficiency
of this data structure is obvious. And, the

average time for retrieving and displaying the
result on the screen is 320 msec. About half of

the time is spent on the display control (about

120 msec~vl60 msec, depending on the data size).

To access a head word record from its spelling

requires only 3 msec. The remainder is spent on

retrieving the other records such as pronuncia-
tion, P.O.S. idioms etc.

- - 5 4 1 - -

4. Concludin S Remarks

All the systems described in this paper have been
implemented on FACOM M-200 (Kyoto University
Computing Center) mostly by PL/I. Because the
computing center has introduced an MSS (Mass
Storage System) and will begin the service this
summer, these systems are to he maintained on it.
Several other groups in our university, especial-
ly a research group of the Faculty of Literature,
are very interested in utilizing the dictionary
systems for their own researches. Up to now, a
set of utility programs have been developed. We
hope that such a joint effort between computer
scientists and linguists will lead us to new,
fruitful research areas.

Acknowledsement

We would like to thank the other members of Prof.
Nagao's laboratory, and in particular, Mr. Yuki-
nori YAMAMOTO for his efforts of implementing
the first version of DTV and for his valuable
suggestions for the data organization of Japanese
dictionary data base.

References

(I) Fry,J.P., Frank, R.L. et.al. : A Developmen-
al Model for Data Translation, ACM SIGFIDET
Workshop on Data Description and Access,
1972

(2) Fry, J.P., Smith, D.P. et.al. : An Approach
to Stored Data Definition and Translation,
ACM SIGFIDET Workshop on Data Description
and Access, 1972

(3) Michiels, A., Moulin, A., Mullenders, J.,
Noel, J. : Exploiting the Longman Computer
Files for MT Lexicography and other Purposes,
Technical Report, University of Liege,
Belgium

(4) Michiels, A., Moulin, A., Noel, J. : Work-
ing with LDOCE, Technical Report, University
of Liege, Belgium

(5) Liu, S., Heller, J. : A Record Oriented,
Grammar Driven Data Translation Model, ACM
SIGFIDET Workshop on Data Description, Access
and Control, 1974

(6) Nagao, M., Tsujii, J.:Data Structure of a
Large Japanese Dictionary and Morphological
Analysis by Using It, Journal of Information
Processing Society of Japan, Vol. 19, No. 6,
in Japanese

(7) Nagao. M., Tsujii, J., et.al. : A Machine
Translation System from Japanese into Eng-
lish, to be included in Proc. of this
conference, 1980

(8) Ueda, Y. : A Study for English-Japanese Dic-
tionary Data Base, BS Thesis, Kyoto Univer-
sity, 1980, in Japanese

--542--

