
Parsing for Grammar and Style Checking

Gregor Thurmair
DI AP 323

Siemens AG
Internet: metal@ztivax.siemens.com

uucp: mcsun! unido!ztivax!metal

1. Abstract

The following paper describes some basic
problems which have to be tackled if a mor-
phosyntactic parser is to be configured in a
grammm" and style checking environment.
Whereas grammar checking has to deal with
ill-formed input which by definition is out-
side the scope of a grammar, style checking
has problems in grammar coverage and in-
tentionality of style.

To overcome these problems, a method is
presented based on the METAL grammar
formalism which allows for fallback rules,
levelling and scoring mechanisms, and other
features which can be used. It will be de~
scribed what kinds of information and pro-
cessing are needed to implement such
checkers.

Finally, some examples are given which il-
lustrate the mode of operation of the method
described.

2. Tile problem domain

There is a fundamental difference between
grammar and style checking: Grammar
checking tries to find ill-formedness which
by definition is considered to be a mistake
and MUST be corrected; style checking has
to do with well-formed but somehow marked
text. As a result, style checking has to be
much more "liberal" as it has to do with "de-

viations" which might have been intended by
the author, but CAN be corrected. This results
in two different sets of requirements for a pars~
el'.

Concerning a grammar checker, its task is out-
side the scope of a grammar by definition: A
grammar tries to describe (only and exactly)
the grammatical structures of a language. Ew
ery ungrammatical sentence should cause a
parse failure.

Moreover, to detect a grammar error, the pars-
er has to successfully pm'se a given sentence.
In order to parse it, however, information must
be used which could have been violated. E.g.
in (1) (example from German), agreement is
the only way to decide which NP is subject
(namely the second) and which is object; (2) is
ambiguous as both NPs are plural:

1. Die Tiger t6tet der Mann
(the tigers kills the man)

2. Die Tiger t6ten die M~inner
(the tigers kill the men)

If agreement is violated it is hard to find out
what the subject should be; and therefore it is
hard to detect that agreement is violated.

~Iqae "circulus vitiosus" is that the parser
should detect errors the correct interpretation
of which is needed to obtain an overall parse
on the basis of which the error can be detected.

There is an additional problem with grammar
checking: If the grammar becomes more corn-

365

plex, several competing parses for a given
sentence might be found. Diagnosis then de-
pends on what parse has been chosen. The
application (checking of larger texts) does
not allow for asking the user which interpre-
tation to pick; the parser has to find the "best
path" and interpret it. This might lead to the
result that sentences are flagged which are
correct (from the user's point of view) but
did not result in the "best path" parse. E.g. if
a PP can be argument of a noun as well as a
verb, different flags might be set depending
on which reading "wins".

Style checking has a different set of prob-
lems to solve. First it has to be found out,
what "style" is, i.e. what has to be checked.
The present paper will not contribute to this
debate; we take as input guidelines which are
used in the process of technical writing and
in the production of technical documents (of.
Schmitt 89).

These guidelines have to be "translated" into
a operational form; e.g. what should be
checked if the user is asked not to write "too
complex" sentences? In 4. below, some ex-
amples of phenomena are given which
should be marked.

As style is a kind of producing non-standard
structures (i.e. structures which are not cov-
ered by standard grammars), we need a pow-
erful parser and a grammar with large
coverage to interpret style phenomena; i.e.
the linguistic structures which have to be in-
terpreted for style phenomena can and will
be w;ry complex. Also, the risk of parse fail-
ure will increase, and we need a kind of
"post mortem" diagnosis for cases which
could not be handled. We need a parser
which allows for that.

As far as diagnosis is concerned, the checker
should be cautious and formulate questions
rather than correct things, as a stylistic vari-
ant could be intended by the text author. It
also should not mark too many things; e.g. if
the rule is "avoid passives" it should certain-
ly not flag every passive sentence. I.e. the di-

agnostics require practical tuning to be really
useful.

3. Properties of a parser for
style and grammar checking
purposes

3.1 G r a m m a r checking

A parser for grammar checking should have
the following features:

It should be able to allow for the analysis of
parse failures. Compared to an ATN (cf. Weis-
chedel 1982), where a failure ends with the
starting state, a chart keeps all the intermediate
results and is well suited for diagnostics°

However, diagnostics follow specific informa-
tion: The diagnosis must know "what to look
for" (e.g. wrong agreement, wrong punctua-
tion etc.). It therefore will cover only a part of
the potential grammar errors.

Such a "two step approach" has been imple-
mented in the CRITIQUE system (of. Ravin
1988), where a parse failure is more closely
looked at. However, one could think of special
"fallback rules" which implement these diag-
nostics already in the grammar. This means to
enlarge the coverage of the grammar for ex-
plicitly ungrammatical structures which during
parsing could be marked as ungramrrmtical.
This would be just a different kind of repre-
senting the diagnosis knowledge but it would
be computationally more effective as it: could
be integrated into the parse itself, leading to a
"one step approach".

In this approach, we do not want the fallback
rules to fire except if all other rules failed; i.e.
we have to avoid that rules which build gram-
matical structures are not selected, but rules
which are meant as fallback rules fire in "regu-
lar" parses. Therefore we must be able to build
SETs of rules which can be controlled by the
grammar writer. We then can fire the sets
which build grammatical structures first, and
the fallback rules later on. Then we only need
to mark the nodes built by the fallback rules

366

with a flag indicating that there was a fall-
back rule (and of what kind it was).

Moreover, as only the "best first" strategy
can be applied in this application area, we
must be able to tune the parser in such a way
that the most plausible reading comes out
first. This can be done by a proper scoring
mechanism which should be accessible to
the grammar writer. This cannot always
avoid that the "intended" parse differs from
the "best" one, but it at least makes the par-
sing process more stable and independent of
system-internal determinants (like rule order,
parsing strategy etc.)

Finally, we must be able to change the error
detected by local operations. These opera-
t:ions consist in changing, adding or deleting
feature-value pairs or nodes etc. The alterna-
t:ives here are: Overwrite the respective piece
of information by the correct one and re-gen-
erate the whole morphosyntactic surface
structure; or exchange just a partial structure.
This will depend on the kind of error detect-
ed.

3°2 S t y l e c h e c k i n g

Instead of discussing what style might be,
we concentrate on "bad style" phenomena
mentioned in texts on technical writing (cf.
Schmitt 89). Examples of bad style are:

• too long sentences

, too complex sentences
• too many prenominal modifiers

• inconsistent terminology
• unclear prepositional phrase relations

etc. (these are, of course, language
specific)

These criteria have to be reformulated in for-
real terms of linguistic descriptions, e.g.
complexity of sentences could be:

• number of rules fired to parse it
• number of nodes in a tree

• number of nodes of a certain property
(e.g. subclauses) etc.

These formal specifications then have to be
used in the diagnosis part.

Here again we have the choice between a "two
step" approach which first parses and then
does diagnostics, or a "one step" approach
which does everything during parsing. We
could do diagnosis on partial structures and
mark the nodes which have been built. If these
nodes are used by the parser to build higher
non-terminal nodes, the flags are valid; if the
nodes are rejected by the parser they are just
ignored.

As using bad style does not lead to ungram-
matical sentences, we should not need addi-
tional grammar rules for style checking. But
what we need is a set of flags which are at-
tached to the nodes in question as soon as
some diagnosis succeeds. This could be an ad-
ditional feature set which is set on top of the
features used in the regular grammar. It is used
to INTERPRET the rules which have fired ac-
cording to stylistic criteria.

These features have to be kept local to allow
for error localization: If the user is told "too
complex word" then the system should be able
to localize this word in the tree. On the other
hand, we need some global information as well
which is related either to a sentence as a whole
or even the whole text. (If we want we can
even compute overall stylistic scores out of
them as soon as we know what that means).

They also should be able to be easily added or
removed from the grammar, i.e. should be kept
as an independent module which simply is not
added if the grammar is used for other purpos-
es. Therefore, we need flexible feature mainte-
nance possibilities.

3 .3 T h e M E T A L g r a m m a r as b a s i c

tool

Although originally developed for machine
translation, the METAL system can fulfill all
the requirements mentioned above:

367

• it is language independent, i.e. it has a
common software kernel which inter-
prets the different language knowledge
sources. It also takes care of problems
like separation of text and layout infor-
mation in a given text, treatment of edi-
tor specific information, etc.

oil uses an active chart as control
structure and does some parse failure
diagnosis already (for MT purposes),
and it stores those tests which did not
succeed and prevented a rule from fi-
ring to enable later diagnosis

° it has large grammars and lexica for se-
veral languages; therefore considerable
coverage is available. Also, some fall-
back rules already exist. Moreover, the
rule structure is such that the analysis
parts can easily be separated from the
translation parts and enriched by other
purpose components (like grammar
~md style checking) (cf. Thurmair
1990)

° it has a special levelling and preferenc-
ing mechanism which allows to group
rules into levels and use these levels to-
gether with explicit scores for good or
bad partial parses to control the overall
behavior of the parser according to lin-
guistic needs

• it treats nodes as complex bundles of
teatures and values; and it allows for
easy feature manipulation (e.g. percol-
ating, unifying, adding etc.) using a set
of grammar operators

• it does not only allow for simple tests
(e.g. presence of a feature) but also for
complex tests, e.g. on structural de-
scriptions of tree structures

• it has to be modified, however, by ad-
Cling a component which at the end of a
parse collects the grammatical and sty-
listic flags and evaluates them if neces-
sary

4. Some examples

The following section gives some examples
and shows how they could be treated. They are
taken from German because the need for full
parsing is more obvious here than for English.
They try to implement some of the technical
writers' requirements.

4.1 Conditional clauses without
subordinative conjunction

They can be recognized by searching for a
subclause which has the finite verb in the first
position:

3. Kommt er, (so) gehen wir
(Comes he, (so) go we)

4. Lesen Sic die Daten ein, schreibt das
Programm eine Fehlermeldungen
(Read you the data in, writes the pro-
gram an error message)

Conditional clauses like (3) and (4) share the
property of having the verb in first position
with infinitives, however. Sometimes it is hard
to distinguish between both cases: (5) is condi-
tional, (6) is imperative:

5. Geben Sie "Ja" ein, beenden Sic; das
Programm
(Enter you "Yes" in, finish you the
program)

6. Geben Sie "Ja" ein, beenden Sic das
Programm und schalten Sie das Ger/it
aus
(Enter you "Yes" in, finish you the
program and switch you the device
off)

As the conditionals just mentioned are abso-
lutely grammatical in German, the grammar
must have a rule that covers this case (i.e. that
a subclause can consist of a clause without
subordinate conjunction if the verb is first).

The only thing to do for a style checking de-
vice is to mark the subclause node for having
been built by a rule which is bad from a stylis-
tic point of view. This could be done by put-
ting an appropriate feature onto this node. If

368

this node contributes to the overall parse (as
in (5)) this feature is evaluated; else (as in
(6)) it is not.

4.2 Cllains of preposit ional p h r a s e s

These problems are well known in linguis-
tics. Cases like (7) have unclear references,
and not just for the machine! Therefore,
chains of PPs should be avoided:

7. The data were input for processing
in machine internal format in binary
form

Here the parser will find a solution (e.g. at-
taching the first two PPs to the NP, the third
to clause level), but it will have trouble to do
so. "Trouble" might be indicated by many
PP-attaching rules being fired; and even if
not all of them are successful, some will be,
and attachment on different levels is still
possible.

In this case, the system cannot simply check
the input linear precedence order (as PPs are
nonterminal nodes), but we also cannot rely
on all PPs being attached as sisters of each
other like in (8); cases like (9) are much
more likely; and then there is no direct pre-
cedence between the PPs any more as prece-
dence holds between X 1 and PP, X2 and PP
and X3 and PP respectively.

.

.

... PP PP PP ...

..<b,
... X1 PP ...

X2 PP

. / N
X3 PP

We need some intermediate level here on
which a notion like PP is already known, and
precedence relations can be determined inde-
pendent of the actual attachment of these PPs.
This requires complex structural matching
processes on the trees.

Ambiguity of conjunction falls into the same
class of problems: Here again, the parser will
finally decide somehow, i.e. try to resolve the
ambiguity e.g. of (10).

10. The data were input and output com-
patible

Again, the question is, how difficult this will
be; and this can be expressed in terms of how
many rules a conjunctional terminal node can
feed (whether successfully or not). In order to
know this, we have to examine the chart (as
most of the rules tried will not have led to a
successful parse) and mark the conjunction ac-
cordingly.

4.3 Subject-Object inversion

This last example shows possible complex in-
teractions in the area of style checking. In Ger-
man, the direct object of a verb can be put
before the subject, e.g. in (11), (12), (i3):

11. Den Mann hat er gesehen
(the man has he seen)

12. Die Daten beschreibt das Programm
(the data describes the program)

13. Daten beschreiben die Program- Die
m e

(the data describe the programs)

All these sentences are grammatical and have
to be covered by the verb valency routines.
Sometimes, however, the subject-object-con-
version leads to unclear references (as in (13)
where both NPs can be both subject and ob-
ject). This is considered to complicate the pro-
cess of text understanding. A style checker
could flag these occurrences; but there is the
following interference:

If the grammar can recognize subject-object-
inversion easily (as in (11)), then the reader

369

can do so as well, and a style checker should
not flag anything. The cases which might be
ambiguous for the reader, however, are am-
biguous for the grammar as well; and as the
parser uses certain heuristics to decide on
subject and object in unclear cases, it might
pick the wrong distribution and not flag any-
thing, although it should do so in exactly this
case. The result is that the checker's flagging
is useless in the cases where the recognition
is good, and that there is no flagging in the
real important cases.

This example shows that much fine tuning is
necessary, to make a checking device a really
useful tool and improve its value to users.

- Weischedel, R.M., Sondheimer, N.K., 1993:
Meta-rules as a basis for processing ill-formed
input, in: ACL 9

- Weischedel, R.M., Ramshaw, L.A., 1987:
Reflections on the knowledge needed to pro-
cess ill-formed language. In: Nirenburg, S.,
ed.: Machine Translation, Theoretical and
methodological issues. Cambridge Univ.
Press, 155-167

5. References

- Chandler, B., 1989: Grammar problems?
in: Electric Word 15

- Fink, R, Biermann, A.W., 1986: The Cor-
rection of Ill-Formed Input using History-
Based Expectation with Applications to
Speech Understanding. in: Computational
Linguistics 12,1

- Gebruers, R., 1988: Valency and MT, re-
cent developments in the METAL system.
in: Proc. 2nd applied ACL, Austin, Tx

- Jensen, K., Binot, J.-L., 1987: Disambigu-
ating Prepositional Phrase Attachments by
Using On-Line Dictionary Definitions. in:
Computational Linguistics, 13,3/4

- MacDonald, H.H., Frase, L.T., Gingrich,
P., Keenan, S.A., 1982: The WRITER'S
WORKBENCH: Computer Aids for Text
Analysis. in: IEEE Transactions on Commu-
nication 30

- Ravin, Y., 1988: Grammar Errors and Style
Weaknesses in a text- Critiquing System. in:
IEEE Transactions on Communication 31,3

- Schmitt, H., 1989: Writing Understandable
Technical Texts. Esprit 2315 Report.

- Thurmair, G., 1990: Recent developments
in Machine Translation. (to appear in: Com-
puters and Humanities)

370

