The Effects of Word Order and Segmentation on Translation
Retrieval Performance

Timothy Baldwin

amed Hozumi Tanaka

Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-la,

I'okyo 152-8552 JAPAN

{tim,tanaka}@cl.cs.titech.ac. jp

Abstract

This research looks at the coffects of word order
and scgmentation on translation retricval perfor-
meance for an experimental Japanese-Linglish trans-
lation memory system. We lnplement s onain-
ber of both bag-of-words and word order-sensitive
similarity moetrics, and test cach over character-
based and word-based indexing. The translation
refrieval performance of cach svsiem confignration
is evaluated cmpirically through the notion of word
odit distance hotween translation candidate oubputs
ane the model translation. Our results indicawe
that, character-hased imlvxing is consistently supe
rior $o word-based indexing, su ‘C;('h(lllk that seguen-
tation 1s a1t mnece 5541y lll}s.'lll') i the [;)]\(‘Il domain.
Word ordor-sensitive approaches are demonstated
to generally ontperform bag-of-words methods, with
source language segment-level edit distance proving,
the most effcetive similarily metric.

1 Iniroducition

Translation memories {Th’s) are o well-established
technology within the hunin and machine transla-
tion fraternitics, due to the high translation pre-
cision they allovd. Dssentially, TAWs are a list
of translation records (source language strings
paired with a unique targel language Lranslad ion),
which the TM system aceesses in suggesting a list
of target language translation candidates which
may be helpfal to the translator in translating a
given source language input.!

Naturally, TM systems have no way of accessing
the Larget langnage equivalent of the scource lan-
guage input, and hence the list of target language
translation candidates is determined hasod on souree
language similarity between the current input and
translation examples within the TM, with transla-
tion equivalent(s) of maximally similar source lan-
guage string(s) piven as the translation candidate(s).
‘This is based on the assumption that structural and
semantic similaritics between target language trans-
Iations will be reflected in the original souree lan-
guage equivalonts.

One reason for the popularity of TM’s is the low
operational burden they pose to the user, in that
translation pairs are largely acquired automatically

i8ee Planas (1998) for a thorough review of commercial
T'M systems.

from observation of the ineremental translation pro-
cess, and translation cadidates can be produced on
demaad almost instantancously. To support this low
overlicad, TM systemns must allow fast access into
the polentially Lauge-seale ‘T'M, but at the saance time
be able to predict translation similarity with high ac-
curacy. Iere, there is clearly o trade-ofl between ace-
cess/retrieval speed and predictive acearacy of
the retrieval moechanism, Traditionally, rescarch on
TM retrieval tnethods has focused on speed, with Lit-
tle eross-evaluation of the aceuracy of different meth-
ods. We prefer to focus on accuracy, and present
cpirical data evidencing the relative predictive po-
tential of different simil: 111(4 metrics over diflerent
paramneterisations.

In this paper, we {ocus o comparison of diflerent
retrioval algorithims for non-segmenting languages,
based around & TM system from Japaucese to En-
glish. Non-segnienting languages are those which do
nol involve delimiters (e spaces) between words,
and inchnde Japanese, Chinese and Thal. We are
particularly interested in the part the orthogonal pa-
rameters ol seginentation and word order play in the
spoed/facenracy trade-off. That s, by doing away
with segmentation in relying solely on chavactor-
level comparison (eharacter-based indexing), do
we sigiificantly degrade mateh performeance, as com-
pared Lo word-level comparison (word-based in-
dexing)? Similarly, by ignoring word order and
treating each source langnage string as a “bag of
words?) do we gemiinely lose out over word order-
sensitive approaches? The main objective of this
research is thus to determine whether the computa-
tional overhend associated with more stringent ap-
proaches {i.e. word-hased indexing and word order-
sensitive approaches) is commensurate with the per-
Tormance gains they oller.

To preempt what follows, the major contributions
of this rescarch are: (a) cmpivical evaluation of dif-
ferent comparison methods over actual Japanese-
Timglish TM data, focusing on four orthogonal re-
tricval paradigms; (b) the finding that, over the tar-
get data, character-based indexing is consistontly
superior to word-based indexing in identifying the
translation candidate most similar to the optimal
translation for a given input; and (¢) empirical ver-
ilication of the supremacy of word order-sensitive
exhaustive string comparison methads over boolean
match moethods.

In the following sections we discuss the cffects

35

of segmentation and word arder {§ 2) and present
a number of both bag-of-words and word order-
sensitive similarity metrics (§ 3), before going on to
evaluate the different methods with character-bascd
and word-based indexing (§ 4). We then conclude
the paper in Section 5.

2 Segmentation and word order

Using segmentation to divide strings into compo-
nent words or morphenes has the abvious advan-
tage of clustering characters into scmantic units,
which in the case of ideogram-based languages such
as Japanese (in the form of kanji characters) and
Chinese, generally disambiguates character mean-
ing. The kanji character ‘J[, for example, can be
usad to mean any of “to discern/diseriminate”, “vo
gpeak/argue” and “a valve”, hut word context easily
rosolvaes such ambignity. In this sense, our intuition
is that segmented strings should produce better re-
sults than non-segmented strings.

Looking to past research on similarity metrics for
TM systems, almost all systems involving Japanese
as the source language rely on segmentation (e.g.
(Nakamura, 1989; Sumita and Tsutsumi, 1991; Ki-
taimura and Yamamoto, 1996; Tanaka, 1997)), with
Sato (1992) and Sato and Kawase (1994) providing
rarc ingtances of character-based systems.

By avoiding the need to segment text, we: (a) al-
leviate computational overhead; (b} avoid the need
to commit ourselves to a particular analysis type in
the case of ambiguity; (¢} avoid the issue of how
to deal with unknown words; (d) avoid the need
for stemming/lemmatisation; and (¢) to a large ex-
tent get around problems related to the normalisa-
tion of lexical alternation {sce Baldwin and Tanaka
(1999) for a discussion of problems related to lexical
alternation in Japancsc). Additionally, we can use
the commonly ambiguons nature of individual kanji
characters to our advantage, in modelling seman-
tic similarity between related words with character
overlap, With word-based indexing, this would only
he possible with the aid of a thesaurus.

Similarly for word order, we would cxpect that
translation records that prescrve the word (seg-
ment) order observed in the input string would pro-
vide closer-matching translations than translation
records containing those same segments in a differ-
ent order. Naturally, enforcing preservation of word
order is going to place a significant burden on the
matiching mechanism, in that a number of different
substring match schemata arc incvitably pgoing to
be produced between any two strings, each ol which
must be considered on its own merits.

To the authors’ knowledge, there is no I'M sys-
tem operating from Japanese that docs not rely
on waord /segment /character order to some degice.
Tanaka (1997) uses pivotal content words identificd
by the user to scarch through the TM and lacate
translation records which contain those same con-
tent words in the same order and preferably the same
segment distance apart. Nakamura (1989) similarly
givos preference to translation records in which the
content words contained in the original input oceur
in the same lincar order, althoupgh there is the scope

36

to back off to translalion records which do not pre-
serve the original word order. Sumita and Tsutsnmi
{1981) take the opposite tack in iteratively filter-
ing out NPs and adverbs to leave only functional
words and matrix-level predicates, and find transia-
tion records which contain those same key words in
the same ordering, preferably with the same segment
types between them in the same numbers. Niren-
burg et al. (1993) proposc a word order-sensitive
metrie based on “siring composition diserepancy”,
and incrementally relax the resiriction on the qual-
ity of match required to include word lemmata, word
synonyms and then word hypernyms, increasing the
match penalty as thoy go. Sato and Kawase (1994)
employ a more local model of character order in
madelling similarity according to N-grams fashioned
from the original string.

The greatest advantage in ignoring word /segment
order is computational, in that we significantly re-
duce the search space and require only a single over-
all comparison per string pair. Below, we analysc
whether this gain in speed outweighs any losses in
retricval performance.

3 Similarity metrics

Due to our interest in the effects of both word order
and segmentation, we must have a selection of sim-
flarity metrics compatible with the various permu-
tations of these two parameter types. We choose to
look at a number of bag-of-words and word order-
sensitive methodg which are compatible with both
charactor-based and word-hased indexing, and vary
the input to model the effects of the two indexing
paradigms. The particular bag-ol-word approaches
we target are the vector space model (Manning and
Schiitze, 1999, p300) and “loken inlersection”; a
sitnple ratio-based similarity metric. For word order-
sensitive approaches, we test edit distance (Wagner
and Tisher, 1974; Planas and luruse, 1999), “se-
quential correspondence” and “weighted scequential
correspondence” .

Iach ot the similarity etrics empirically de-
scribes the similarity between two input strings ting
and in,* where we define tm; as a source language
string taken from the TM and in as the input string
which we are secking to match within the TM.

Oune feature of all similarity metrics given here is
that they have finc-grained diseriminatory potential
and are able to narrow down the final set of trans-
lation candidates to a handful of, and in most cases
one, output. This was a deliberate design decision,
and aited at example-based machine transation ap-
plications, where human judgement cannot be relied
upon to single oul the mosu appropriate translation
from multiple system outputs. In this, we set our-
sclves apart from the research of Swinita and Tsut-
suni (1991), for example, who judge the system to
have been suceessful if there are a total of 100 or less
outputs, and a uselul translation is contained within
them. Note that it would be a relatively simple pro-

2Note that the ordering here is arbitrary, and that all the
similarity metries described herein are commutative for the
given implementations.

cedure to fan out the munbaer of outputs to n in our
case, by taking the top n ranking outputs.

For all similarity metrics, we weight different
Japanese segment types according to their expected
impact on translation, in the form of the sweight
function:

Segment type | sweight
punctuation 0
other segments 1

We experimentally trialled intermediate sweight set-
tings for different character types (in the case of
character-based indexing) or segment types (in the
casc of word-based indexing), none of which was
found to appreciably improve performance.®

3.1 Similarity metrics used in this rescarch
Vector space model

Within our implementation of the vector space
model (VSM), the segment content of each string
is described as a vector, made up of a single dimen-
sion for cach scginent token occurring within fin; or
in. The value of cach vector component is given as
the weighted frequency of that token according to
its sweight value, such that any number of a given
punctuation mark will produce a frequency of 0. The
string similarity of fin; and 4n is then defined as the
cosine of the angle hetween vectors #h; and in, re-
spoctively, caleulated as:

i, - in
e &
[0 ||ime|

where dot product and vector length coincide with
the standard definitions.

The strings fm; of maximal similarity are those
which produce the maximum value for the vector
cosinc.

Note that VSM considers only segment frequency
and is ingensitive to word order.

cos(timg, in) =

Token interscction
The token intersection of tm; and in is delined as
the cumulative intersecting frequency of tokens ap-
pearing in cach of the strings, normalised according
to the combined segment lengths of tm; and in. Tor-
mally, this cquates to:

B QXZ’ min (frcqt,”i([,),f'rcq,-n(f.))
- len{tm;)+len(in)

tint(tn;, in) (2)
where cach £ is a token occurring in cither fm; or
in, freg (t) is defined as the sweight-based frequency
of token ¢ occwrring in string s, and len(s) is the

31f anything, weighting down lLiragana characters, for ox-
ample, due to their common occurrence as inflectional suflices
or particles (as per I'ujii and Croft (1993)) led to a significant
drop in performance. Similarly, weighting down stop word-
like functional parts-of-speech in Japancese had little elfect,
unlike weighting down stop words in the case of 1inglish (see
below).

37

segment length of string s, that is the sweight-hased
count of segments contained in s.

As for VSM, the string(s) tm; most similar to in
arc thosc which generate the maximum value for
tint (tmy, in).

Note that word order docs not take any part in
calculation.

Edit distance

The first of the word orvder-sensitive methods is edit
distance (Wagner and Fisher, 1974; Planas and Tu-
ruse, 1999). Essentially, the segment-based edit dis-
tance between strings fmy; and in is the minimum
number of primitive cdit operations on single seg-
ments required to transform tin; into in (and vice
versa), based upon the operations of segment cqual-
ity (segments 1 g, and in, ave identical), segment
deletion (delete segment a from a given position in
string) and segment insertion (insert segment o
into a given position in string s). The cost asso-
ciated with cach operation on segment a is defined

£

as:

Operation Cost
scgment cquality 0
segment deletion | sweight (a)
segment insertion | sweight(a)

Unlike other similarity metrics, smaller values in-
dicate greater similarity for edit distance, and iden-
tical strings have edit distance 0.

The word order sensitivity of edit distance is per-
haps best exemplified by way of the following exam-
ple, where segment delimiters are given as <

(1)
(2a)
(2h)

E_- SN- 1+ “winter rain”
2F- $N- 1+ “summer rain”
1+ SN- 2F “a rainy summer”

Here, the edit distance from (1) to (2a) is 141 = 2,
as one deletion operation is required to remove E_
[fugyu] “winter” and one insertion operation required
to add 2F [nefu] “sammer”. The edit distance {rom
(1) to (2b), on the other hand, is 1 +14+1+1=4
despite (2b) being identical in segment content to
(2a). In terms of edit distance, therefore, (2a) is
adjudged ore similar to (1) than (2b).

Sequential correspondence

Scequential correspondence is a measure of the max-
imum substring similarity between tmn; and in, nor-
malised according to the combined segment lengths
len(tng) and len(in). Essentially, this method re-
quires that all substring matches submatch(tm;, in)
between f1; and in be calculated, and the maximuin
seqeorr ratio returned, where seqeorr is defined as:

(3)

1Note that the costs for deletion and insertion must be
equal to maintain commutativity.

2xmax |submatch(tmi,in)|
len(tm;)+len(in)

seqcorr(tmg,in)=

Here, the cardinality operator applied to
submatch(tm;,in) returns the combined seg-
ment length of matching substrings, weighted

according to sweight. That is:
(4)

for cach segment ss;; of cach matching substring
ss; € submatch(lmg,in).
Returning to our example from above, the simi-

[submatch(tm;,in) !:Zssj Ek sweight(ss;,e)

larity for (1) and (2a) is %j:—? = 2, whereas that for
(1) and (2b) is —% =1

Weighted sequential correspondence

Weighted sequential correspondence—the last of the
word order-sensitive methods—is an extension of se-
quential correspondence. It attempts to supplement
the deficiency of sequential correspondence that the
contiguity of substring matches is not taken into
consideration. Given input string «;aegagay, for
example, sequential correspondence would suggest
equal similarity (of %) with strings a;sbagcagday
and a; ag as ay cfy, despite the second of these being
more likely to produce a translation at least partially
resembling that of the input string.

We get around this by associating an incremen-
tal weight with cach matching segment assessing
the contiguity of left-neighbouring segments, in the
manner described by Sato (1992) for character-
based matching. Namely, the kth scgment of a
matched substring is given the multiplicative weight
min(k, Maz), where Maz was set to 4 in cvaluation
after Sato. |submatch(tm;,in)| from equation (3)
thus becomes:

Zssi > min (k x sweight (ss;51), M(I,.’L') (5)

for cach substring ss; € submatch(tm;,in). We sim-
ilarly modify the definition of the len function for a
string s to:

len(s) = 32, min (j x sweight (s;), Ma.?:) (6)

for each segment s; of s.

3.2 Retrieval speed optimisation

While this paper is mainly concerned with accuracy,
we take a moment out here to discuss the potential
to accelerate the proposed methods, to get a feel for
their relative speeds in actual retrieval.

One immediate and cffective way in which we can
limit the search space for all methods is to use the
current top-ranking score in establishing upper and
lower bounds on the length of strings which have
the potential to better that score. For token inter-
section, for example, from the fixed length len(in)
of input string in and current top score a, we can
calculate the following bounds based on the greatest
possible degree of match between in and tm;:

(2—a) len(in) J
o

len(tm;) < |
len(tm;) > [M]

2—a

(7)
(8)

Upper bound:

Lower bound:

38

In a similar fashion, we can stipulate a corridor of al-
lowable scgment lengths for fmy, for sequential corre-
spondence and weighted sequential correspondence.

Tror edit distance, we make the observation that for
a current minimum edit distance of «, the following
inequality over len(tm;) must be satisfied for tm; to
have a chance of bettering a:

len(in) — oo < len(tm;) < len(in) + « (9)

We can also limit the number of string compar-
isons required to reach the optimal match with in,
by indexing cach tm; by its component segiments and
working through the component segments of in in as-
cending order of global frequency. At cach iteration,
we consider cach previously unmatched translation
record containing the current segment token, adjust-
ing the upper and lower bounds as we go, given that
translation records for a given iteration cannot have
contained scgment tokens already processed. The
maximum possible segment correspondence between
the strings is therefore decreasing on cach iteration.
We are also able to completely discount strings with
no segment component common with én in this way.

Through these two methods, we were able to
greatly reduce the number of string comparisons in
word-bascd indexing cvaluation for VSM, token in-
tersection, sequential correspondence and weighted
scquential correspondence methods in particular,
and edit distance to a lessor degree. The degree of
reduction for character-based indexing was not as
marked, due to the massive increase in numbers of
translation records sharing some character content
with in.

There is also considerable scope to accelerate
the matching mechanisms used by the word order-
sensitive approaches. Currently, all approaches are
implemented in Perl 5, and the word order-sensitive
approaches usce a naive, highly recursive method to
exhaustively generate all substring matches and de-
termine the similarity for cach. One obvious way in
which we could enhance this implementation would
be to use an N-gram index as proposed by Nagao
and Mori (1994). Dynamic Programiming (DP) tech-
niques would undoubtedly lead to greater cfficiency,
as suggested by Cramnias et al. (1995, 1997) and also
Planas and Furuse (this volume).

4 Evaluation

4.1 Evaluation specifications

Evaluation was partitioned off into character-based
and word-based indexing for the various similarity
methods. TFor word-based indexing, segmentation
was carried out with ChaSen v2.0b (Matsumoto ct
al., 1999). No attempt was made to post-edit the
segmented output, in interests of maintaining con-
sistency in the data. Segmented and non-segmented
strings were tested using a single program, with
segment length set to a single character for non-
segmented strings.

As test data, we used 2336 unique translation
records deriving from technical field reports on con-
struction machinery translated from Japancse into
English. Translation records varied in size from

Simalarity metric Accuracy .Ed’&t Ave. A.ve'

discrep. oulputs time

Vector space model (0.5) 44.0 1.86 1.04 (0.97) | 2.14

CHARACTER- | Token intersection (0.4) 44.3 3.25 1.01 (0.99) | 2.24
BASED Edit. distance (len(in)) 50.2 1.82 1.39 (0.80) | 4.75
INDEXING Sequential corr. (0.4) 46.6 2.92 1.02 (0.98) | 3.20
Weighted seq. corr. (0.2) 45.6 2.89 1.04 (0.97) | 4.10

Vector space model (0.5) 43.7 (-0.8 %) 5.21 1.17 (0.91) | 0.76

Wonnb- Token intersection (0.4) 43.0 (-2.9%) 3.12 1.01 (0.99) | 0.88
BASED Iidit distance (len(in)) 47.3 (-5.9%) 2.03 1.90 (0.69) | 1.00
INDEXING Sequential corr. (0.4) 43.1 (-7.4%) 3.06 1.01 (0. 99) 1.10
Weighted seq. corr. (0.2) 40.7 (-10.7%) 3.30 1.14 (0.92) | 1.24

Table 1: Results for the different similarity metrics under character-based and word-based indexing

single-word technical terms taken from a technical
glossary, to multiple-sentence strings, at an average
segment length of 13.4 and average character length
of 26.1. All Japancse strings of length 6 characters
or more (a total of 1802 strings) were extracted {rom
the test data, leaving a residuc glossary of technical
terms (533 strings) as we would not expect to find
useful matches in the TM. The retrieval accuracy
over the 1802 longer strings was then verified by 10-
fold cross validation, including the glossary in the
test TM on cach iteration.

Note that the test data was pre-partitioned into
single technical terms, single sentences or sen-
tence clusters, cach constituting a single translation
record. Partitions were taken as given in evaluation,
whereas for yeal-world TM systewmns, the automation
of this process comprises an important component
of the overall system, preceding translation retrieval.
While acknowledging the importance of this step and
its interaction with retrieval performance, we choose
to sidestep it for the purposes of this paper, and
leave it for future rescarch.

In an cffort to make cvaluation as objective and
empirical as possible, appropriatencss ol transla-
tion candidate(s) proposed by the different metrics
was cvaluated according to the minimwn cdit dis-
tance between the translation candidate(s) and the
unique model translation. In this, we transferred the
edit distance method described above directly across
to the target language (Bnglish), with segments as
words and the following sweight schema:

Segment type | sweight
punctuation 0
stop words 0.2
other words 1

Stop words are defined as those contained within the
SMART (Salton, 1971) stop word list.> The system
output was judged to be correct if it contained a
translation optimally close to the model translation;
the average optimal edit distance from the model
translation was 4.73.

Slip:/ /fip.cornelles.edu/pub/smart /english.stop

We set the additional eriterion that the different
metrics should be able to determine whether the top-
ranking translation candidate is likely to bhe useful to
the translator, and that no output should be given if
the closest matching translation record was outside
a certain range of “translation usefulness”. In prac-
tice, this was set to the edit distance between the
wodel translation and the cmpty string (i.c. the edit
cost of creating the model translation from seratch).
This cutofl point was realised for the different siin-
ilarity metrics by thresholding over the similarity
scores. The different thresholds settled upon experi-
mentally for all similarity metrics are given in brack-
ets in the second column of Table 1, with the thresh-
old for edit distance dynamically sct to the edit dis-
tance between the input and the empty string.

We set ourselves apart from conventional rescarch
o TM retrieval performance in adopting this ob-

jective numerical evaluation method. Traditionally,

retrieval performance has been gauged by the sub-

jective usclulness of the closest matching clement of

39

the system output (as judged by a human), and de-
scribed by way of a discrete set of translation quality
descriptors (c.g. (Nakamura, 1989; Sumita and Tsut-
sumi, 1991; S«L((), 1992)). P(nh&pﬁ the closest evalua~
tion attempts to what we propose are those of Planas
and Furuse (1999) in setting a mechanical cutoll for
“translation usability” as the ability to generate the
model translation from a given translation candidate
by cditing less than hall the component words, and
Nirenburg et al. (1993) in calculating the weighted
number of key strokes required to convert the system
output into an appropriate translation for the orig-
inal input. The method of Nirenburg et al. (1993)
is certainly more indicative of true target language
usefulness, but is dependent on the competence of
the translator cditing the TM system output, and
not automated to the degree our method is.

4.2 Results

The results for the different similarity metrics with
character-based and word-based indexing are given
in Table 1, with the two bag-of-words approaches
partitioned off from the three word order-sensitive
approaches for cach indexing paradigm. “Accuracy”
is an indication of the proportion of inputs for which

an optimal translation was produced; character-
basod indexing accuracics in bold indicate a signifi-
cant® advantage over the corresponding wprd-based
indexing accuracy, and figures in brackets for word-
based indexing indicate the relative performance
gain over the corresponding character-based index-
ing configuration. “Edit discrep.” refers to the mean
minimum edit distance discrepancy between trans-
lation candidate(s) and optimal translation(s) in the
case of the translation candidate set containing no
optimal translations. “Ave. outputs” describes the
average number of translation candidates output by
the system, with the figure in brackets being the
proportion of inputs for which a unique translation
candidate was produced. “Ave. time” describes the
average time taken to determine the translation can-
didate(s) for a single output, relative to the time
taken for word-based edit distance retrieval.

Perhaps the most striking result is that character-
based indexing produces a supcerior match accuracy
to word-based indexing for all similarity metrics, at
a significant margin for all three word order-based
methods. This is the complete opposite of what we
had expected, although it does {it in with the find-
ings of Fujii and Croft (1993) that character-based
mdomng performs comparably with word-based in-
dexing in Japanese information retrieval.

Looking to word order, we see that edit distance
outperforms all other methods for both character-
and word-based indexing, peaking at just over 50%
for character-based indexing. The relative perfor-
mance of the remaining methods is variable, with
the two bag-of-words methods being superior to or
roughly cquivalent to sequential correspondence and
weighted sequential correspondence for word-based
indexing, but the word order-based methods having
a clear advantage over the bag-of-words methods for
character-based indexing. It is thus diflicult to draw
any hard and fast conclusion as to the relative merits
of word order-based versus bag-of-words methods,
other than to say that cdist distance would appear
to have a clear advantage over other methods.

The figures for edit discrepancy in the case of non-
optimal translation candidate(s) are cqually inter-
esting, and suggest that on the whole, the various
methods crr more conservatively for character-based
than word-based indexing. The most robust method
is (source language) edit distance, at an edit dis-
crepancy of 1.82 and 2.03 for character-based and
word-based indexing, respectively.

All methods were able to produce just over one
translation candidate on average, with all other than
edit distance returning a unique translation candi-
date over 90% of the time. The greater number of
outputs for the edit distance method can certainly
be viewed as one reason for its inflated performance,
although the lower level of ambiguity for character-
based indexing but higher accuracy, would tend to
suggest otherwisc.

Lastly, word-based indexing was found to be faster
than character-based indexing across the board, for
the simple reason that the number of character seg-

5As determined by the paired { test (p < 0.05).

40

ments is always going to be greater than or cqual
to the number of word segments. The average seg-
ment lengths quoted above (26.1 characters vs. 13.4
words) indicate that we generally have twice as many
characters as words in a given string. Additionally,
the acceleration technique described in § 3.2 of se-
quentially working through the segment component
of the input string in increasing order of global fre-
quency, has a preater effect for word-based index-
ing than character-based indexing, accentuating any
speed disparity.

4.3 Reflections on the results

An immediate explanation for character-based in-
dexing’s empirical edge over word-based indexing is
the semantic smoothing effects of indivi(lual kanji
characters, alluded to above (§ 2). To take an exam-
ple, the smglc—segment nouns A‘:n[sésa] and :nF0
[sada] both mean “operation”, but would not match
under word-based indexing. Character-based index-
ing, on the other hand, would recognise the overlap
in character content, and in the process pick up on
the semantic correspondence between the two words.

To take the opposite tack, one reason why word-
bascd indexing may have been disadvantaged is the
we did not stem or lemmatise words in word-based
indexing. Having said this, the output from ChaSen
is such that stems of inflecting words arc given as
a single segment, with inflectional morphemes cach
presented as separate segments. In this sense, stemn-
ming would only act to delete the inflectional mor-
phemes, and not add anything new.

Another way in which the output of ChaSen
could conceivably have affected retrieval perfor-
mance is that technical terms tended to be over-
segmented. Experimentally combining recognised
technical terms into a single segment (p(utlcul(ulv
in the casc of contiguous katakana segments in the
manner of Fujii and Croft (1993)), however, de-
graded rather than improved retrieval performance
for both character-based and word-based indexing.
As such, this side-effect of ChaSen would not appear
to have impinged on retricval accuracy.

One other plausible reason for the unexpected re-
sults is that the test data could have been in some
way inherently better suited to character-based in-
dexing than word-based indexing, although the fact
that the results were cross-validated would tend to
rule out this possibility.

A surprising result was the lacklustre performance
of the weighted sequential correspondence method as
comparcd to simple sequential correspondence. We
have no explanation for the drop in accuracy, other
than to speculate that either the proposed formu-
lation is in some way flawed or contiguity of match
docs not impinge on translation similarity to the de-
grec we had expected.

To rcturn to the original question posed above of
retrieval speed vs. accuracy, the word order-sensitive
edit distance approach would scem to hold a gen-
uine edge over the other methods, to an order that
would suggest the extra computational overhead is
warranted, in both accuracy and translation discrep-
ancy. It must be said that the TM used in evalua-

tion was too small to get a genuine feel for the com-
putational overhead that would be experienced in
a real-world T'M system context of potentially mil-
lions rather than thousands of trauslation records.
At the same time, however, coding up the edit dis-
tance procedure in a language faster than Perl using
character rather than string comparison procedures
and applying dynamic programming techniques or
stmilar, may well offset the large increase in number
of comparisons demanded of the system.

5 Concluding remarks

This rescarch is concerned with the relative iimport
of word order and segmentation on translation re-
trieval performance for a TM system. We modelled
the effects of word order sensitivity vs. bag-of-words
word order inscusitivity by implementing a total of
five similarity metrics: two bag-of-words approaches
(the vector space model and “token interscction™)
and three word order-sensitive approaches (edit dis-
tance, “scquential correspondence” and “weighted
sequential correspondence”). Iiach of these metrics
was then tested under character-based and word-
based indexing, to determine what effect segmenta-
tion would have on retrieval performance. 1npiri-
cal evaluation based around the target language edit
distance of proposed translation candidates revealed
that character-based indexing consistently produced
greater accuracy than word-based indexing, and that
the word order-sensitive edit distance metric clearly
outperformed all other methods under both indexing
paradigms.

The main arca in which we feel this rescarch could
be enhanced is to validate the findings of this pa-
per in expanding evaluation to other domains and
test sets, which we leave as an item for futwe re-
scarchi. We also skirted around the issue of trans-
lation record partitioning, and wish o investigale
how different partitioning methods perform against
cach other. One important arca in which we hope
to expand our rescarch is to look at the cflects of
character type on character-based indexing. Kanji
would appear to be helping the case of character-
based indexing at present, and it would be highly
revealing (o look at whether comparable results to
those presented here would he produced for full
kana-based (alphabetic) Japanese input, or other
alphabet-based now-segmenting languages such as

Thai.

Acknowledgenlchts

Vital input into this rescarch was received from
Francis Bond (NTT), Emmanuel Planas (N'I'T), and
three anonymous reviewers,

References

T. Baldwin and H. Tanaka. 1999. The applications of
unsupervised learning to Japanese grapheme-phoneme
alignment. In Proc. of the ACL Workshop on Un-
supervised Learning in Natural Languege Processing,
pages 9-16.

L. Cranias, H. Papageorgion, and S. Piperidis. 1995,

41

A Matching Technique in Ilzample-Based Moaochine
Translation. cmp-1g/9508005.

L. Cranias, H. Papageorgiou, and S. Piperidis. 1997, 15x-
ample retrieval from a translation memory. Natural
Language Iingineering, 3(4):255 77.

. 1Mgjii and W.B. Croft. 1993. A comparison of index-
ing techmiques {or Japanese text retrieval. In Proc.
of 16th International ACM-SIGIR Conference on Re-
scarch and Development in Information Retricval (SI-
GIR’93), pages 237--46.

B, Kitamura and I Yamamoto. 1996. ‘Translation
retrieval system using alignment data from parallel
texts. In Proc. of the §3rd Annual Meeting of the
1PS.J, volume 2, pages 385 6. (In Japanese).

C. Manning and I1. Schiitze. 1999. Foundations of Sta-
tistical Natural Language Processing. MIT DPress.

Y. Matsumoto, A. Kitauchi, T. Yamashita, and Y. 1li-
rano. 1999, Japancse Morphological Analysis Sys-
tem ChaSen Version 2.0 Manual. Technical Report
NAIST-IS-TR99009, NAIST.

M. Nagao and S. Mori. 1994. A new method of N-gram
statistics for large number of N and automatic ex-
traction ol words and phrases {rom large text data
of Japancse., In Proc. of the 15th Infernational Con-
ference on Computational Linguistics (COLING "94),
pages 611--5,

<

N. Nakamura. 1989. Translation support by retrieving
bilingual texts. In Proc. of the 38th Annual Mceting
of the IPSJ, volume 1, pages 357-8. (In Japanese).

. Nircuburg, C. Domashunev, and D.J. Grannes. 1993.
Two approaches to matching in example-based ma-
chine translation. In Proc. of the Sth International
Conference on Theorclical and Mecthodological Tssucs
wn Machine Translotion (T'MI1-93), pages A7-57.

2. Planas and O. Furuse. 1999, Formalizing translation
memories. In Proc. of Machine Translation Surninit
VII, pages 331 9.

I8, Planas. 1998, A Cuse Study on Memory Based Ma-
chine Translation Tools. PhD Fellow Working Paper,
United Nations University.

v Salton. 1971, The SMART Retricval System: Faper-
wments i Autornatic Document Processing. Prentice-
Hall.

. Sato and T Kawase. 1994, A High-Speed Best Mateh
Retricval Method for Japanese Teat. Technical Report,
IS-RIR-94-91, JAIST.

. Sato. 1992, CTM: An example-hased translation aid
system. In Proc. of the 14th International Conference
on Computational Linguistics (COLING 92), pages
1259 63.

. Suwita and Y. Tsutsumi. 1991, A practical method
of retrieving similar examples for translation aid.
Transactions of the IBICE, J74-D-11(10):1437-47. (In
Japanesc).

1. Tanaka. 1997. An cfficient way of gauging similar-
ity between long Japanese expressions. In Informa-
lion Processing Society of Japan SIG Notes, volume
97, no. 85, pages 69 74. (In Japanese).

A, Wagner and M. Fisher. 1974. The string-to-string

correction problem. Jowrnal of the ACM, 21(1):168

73.

n

[9p1

wn

—
(&)

i

