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Abstract

The past decade has witnessed exciting work
in the field of Statistical Machine Translation
(SMT). However, accurate evaluation of its po-
tential in real-life contexts is still a questionable
issue.

In this study, we investigate the behavior of
an SMT engine faced with a corpus far differ-
ent from the one it has been trained on. We
show that terminological databases are obvious
resources that should be used to boost the per-
formance of a statistical engine. We propose
and evaluate a way of integrating terminology
into a SMT engine which yields a significant re-
duction in word error rate.

1 Introduction

SMT mainly became known to the linguistic
community as a result of the seminal work of
Brown et al. (1993b). Since then, many re-
searchers have invested effort into designing bet-
ter models than the ones proposed in the afore-
mentioned article and several new exciting ways
have been suggested to attack the problem.

For instance, Vogel et al. (1996) succeeded in
overcoming the independence assumption made
by IBM models by introducing order-1 Hidden
Markov alignment models. Och et al. (1999) de-
scribed an elegant way of integrating automat-
ically acquired probabilistic templates into the
translation process, and Nießen and Ney (2001)
did the same for morphological information.

Radically different statistical models have
also been proposed. (Foster, 2000) investigated
maximum entropy models as an alternative to
the so-called noisy-channel approach. Very re-
cently, Yamada and Knight (2001) described a
model in which the noisy-channel takes as input
a parsed sentence rather than simple words.

While many of these studies include intensive
evaluation sections, it is not always easy to de-
termine exactly how well statistical translation
can do on a given task. We know that on a spe-
cific task of spoken language translation, Wang
(1998) provided evidence that SMT compared
favorably to a symbolic translation system; but
as mentioned by the author, the comparison was
not totally fair.

We do not know of any studies that describe
extensive experiments evaluating the adequacy
of SMT in a real translation environment. We
prefer not to commit ourselves to defining what
a real translation task is; instead, we adopt the
conservative point of view that a viable transla-
tion engine (statistical or not) is one that copes
with texts that may be very different in nature
from those used to train it.

This fairly general definition suggests that
adaptativity is a cornerstone of a successful
SMT engine. Curiously enough, we are not
aware of much work on adaptative SMT, de-
spite the tremendous amount of work done on
adaptative statistical language modeling.

In this paper, we propose to evaluate how
a statistical engine behaves when translating a
very domain specific text which is far different
from the corpus used to trained both our trans-
lation and language models. We first describe
our translation engine. In section 3, we quantify
and analyse the performance deterioration of an
SMT engine trained on a broad-based corpus
(the Hansard) when used to translate a domain
specific text (in this study, a manual for military
snipers). In section 4, We then suggest a sim-
ple but natural way of improving a broad-based
SMT engine; that is, by opening the engine to
available terminological resources. In section 5,
we report on the improvement we observed by
implementing our proposed approach. Finally,



in section 6 we discuss other approaches we feel
can lead to more robust translation.

2 Our statistical engine

2.1 The statistical models

In this study, we built an SMT engine designed
to translate from French to English, following
the noisy-channel paradigm first described by
(Brown et al., 1993b). This engine is based on
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To train our statistical models, we assembled
a bitext composed of 1.6 million pairs of sen-
tences that were automatically aligned at the
sentence level. In this experiment, every token
was converted into lowercase before training.

The language model we used is an interpo-
lated trigram we trained on the English sen-
tences of our bitext. The perplexity of the re-
sulting model is fairly low – 65 –, which actually
reflects the fact that this corpus contains many
fixed expressions (e.g pursuant to standing

order).
The inverted translation model we used is

an IBM2-like model: 10 iterations of IBM1-
training were run (reducing the perplexity of
the training corpus from 7776 to 90), followed
by 10 iterations of IBM2-training (yielding a
final perplexity of 54). We further reduced
the number of transfer parameters (originally
34 969 331) by applying an algorithm described
in Foster (2000); this algorithm basically filters
in the pairs of words with the best gain, where
gain is defined as the difference in perplexity —
measured on a held-out corpus — of a model
trained with this pair of words and a model
trained without. In this experiment, we worked
with a model containing exactly the first gain-
ranked million parameters. It is interesting to
note that by doing this, we not only save mem-
ory, and therefore time, but also obtain improv-
ments in terms of perplexity and overall perfor-
mance1.

1On a translation task from French to English on

2.2 The search algorithm

The maximum operation in equation 1, also
called search or decoding, involves a length
model. We assume that the length (counted in
words) of French sentences that translate an En-
glish sentence of a given length follow a normal
distribution.

We extended the decoder described by Nießen
et al. (1998) to a trigram language model. The
basic idea of this search algorithm is to expand
hypotheses along the positions of the target
string while progressively covering the source
ones. We refer the reader to the original paper
for the recursion on which it relies, and instead
give in Figure 1 a sketch of how a translation
is built. An hypothesis h is fully determined
by four parameters: its source (j) and target
(i) positions of the last word (e), and its cov-
erage (c). Therefore, the search space can be
represented as a 4-dimension table, each item
of which contains backtracking information (f
for the fertility of e, bj and bw for the source
position and the target word we should look at
to backtrack) and the hypothesis score (prob).

We know that better alignment models have
been proposed and extensively compared (Och
and Ney, 2000). We must however point
out that the performance we obtained on the
hansard corpus (see Section 3) is comparable
to the rates published elsewhere on the same
kind of corpus. In any case, our goal in this
study is to compare the behavior of a SMT en-
gine in both friendly and adverse situations. In
our view, the present SMT engine is suitable for
such a comparative study.

2.3 Tuning the decoder

The decoder has been tuned in several ways in
order to reduce its computations without detri-
mentally affecting the quality of its output. The
first thing we do when the decoder receives a
sentence is to compute what we call an active
vocabulary ; that is, a collection of words which
are likely to occur in the translation. This is
done by ranking for each source word the tar-
get words according to their non normalized
posterior likelihood (that is argmaxe p(f |e)p(e),
where p(e) is given by a unigram target lan-
guage model, and p(f |e) is given by the transfer

Hansard sentences, we observed a reduction in word er-
ror rate of more than 3% with the reduced model.



Input: f1 . . . fj . . . fJ

Initialize the search space table Space
Select a maximum target length: Imax

Compute the active vocabulary

// Fill the search table recursively:
for all target position i = 1, 2, . . . , Imax do

prune(i − 1);
for all alive hyp. h = Space(i, j, c, e) do

uv ← History(h);
zones ← FreeSrcPositions(h);
bestWords ← NBestTgtWords(uv);
for all w in bestWords do

prob ← Score(h) + log p(w|uv);
setIfBetter(i, j, c, b, prob, 0, j, v);
for all free source position d do

s ← prob;
for all f ∈ [1, fmax] / d + f − 1 is
free do

s+ = log a(i|d, J) + log t(fd|ei);
setIfBetter(i, d, c+f, w, s, f, j, w);

// Find and return the best hypothesis if any
maxs ← −∞
for all i ∈ [1, Imax] do

for all alive hyp. h = Space(i, j, c, e) do

s ← Score(h) + log p(i|J);
if ((c == J) and (s > maxs)) then

maxs ← s
〈maxi, maxj , maxe〉 ← 〈i, j, e〉

if (maxs! = ∞) then

Return Space(maxi, maxj , J, maxe);
else

Failure

Output: e1 . . . ei . . . emaxi

Figure 1: Sketch of our decoder.
FreeSrcPositions returns the source posi-
tions not already associated to words of h;
NBestTgtWords returns the list of words
that are likely to follow the last bigram uv
preceeding e according to the language model;
and setIfBetter(i, j, c, e, p, f, bj , bw) is an
operator that memorizes an hypothesis if its
score (p) is greater than the hypothesis already
stored in Space(i, j, c, e). a and t stands for the
alignment and transfert distributions used by
IBM2 models.

probabilities of our inverted translation model)
and keeping for each source word at most a tar-
get words.

Increasing a raises the coverage of the active
vocabulary, but also slows down the translation
process and increases the risk of admitting a
word that has nothing to do with the transla-
tion. We have conducted experiments with var-
ious a-values, and found that an a-value of 10
offers a good compromise.

As mentioned in the block diagram, we also
prune the space to make the search tractable.
This is done with relative filtering as well as ab-
solute thresholding. The details of all the filter-
ing strategies we implemented are however not
relevant to the present study.

3 Performances of our SMT engine

3.1 Test corpora

In this section we provide a comparison of the
translation performances we measured on two
corpora. The first one (namely, the hansard)
is a collection of sentences extracted from a part
of the Hansard corpus we did not use for train-
ing. In particular, we did not use any specific
strategy to select these sentences so that they
would be closely related to the ones that were
used for training.

Our second corpus (here called sniper) is
an excerpt of an army manual on sniper train-
ing and deployment that was used in an EAR-
LIER study (Macklovitch, 1995). This corpus is
highly specific to the military domain and would
certainly prove difficult for any translation en-
gine not specifically tuned to such material.

3.2 Overall performance

In this section, we evaluate the performance of
our engine in terms of sentence- and word- error
rates according to an oracle translation2. The
first rate is the percentage of sentences for which
the decoder found the exact translation (that is,
the one of our oracle), and the word error rate
is computed by a Levenstein distance (count-
ing the same penalty for both insertion, dele-
tion and substitution edition operations). We
realize that these measures alone are not suffi-
cient for a serious evaluation, but we were re-

2Both corpora have been published in both French
and English, and we took the English part as the gold
standard.



luctant in this experiment to resort to manual
judgments, following for instance the protocol
described in (Wang, 1998). Actually a quick
look at the degradation in performance we ob-
served on sniper is so clear that we feel these
two rates are informative enough !

Table 1 summarizes the performance rates we
measured. The WER is close to 60% on the
hansard corpus and close to 74% on sniper;
source sentences in the latter corpus being
slightly longer on average (21 words). Not a
single sentence was found to be identical to the
gold standard translation on the sniper corpus
3.

corpus nbs |length| SER WER
hansard 1038 〈16.2, 7.8〉 95.6 59.6
sniper 203 〈20.8, 6.8〉 100 74.6

Table 1: Main characteristics of our test cor-
pora and global performance of our statistical
translator without any adjustments. |length|
reports the average length (counted in words)
of the source sentences and the standard de-
viation; nbs is the number of sentences in the
corpus.

3.3 Analyzing the performance drop

As expected, the poor performance observed on
the sniper text is mainly due to two reasons:
the presence of out of vocabulary (OOV) words
and the incorrect translations of terminological
units.

In the sniper corpus, 3.5% of the source to-
kens and 6.5% of the target ones are unknown
to the statistical models. 44% of the source sen-
tences and 77% of the target sentences contain
at least one unknown word. In the hansard

text, the OOV rates are much lower: around
0.5% of the source and target tokens are un-
known and close to 5% of the source and target
sentences contain at least one OOV words.

These OOV rates have a clear impact on
the coverage of our active vocabulary. On the
sniper text, 72% of the oracle tokens are in the
active vocabulary (only 0.5% of the target sen-
tences are fully covered); whilst on hansard,

3The full output of our translation sessions
is available at www-iro.umontreal.ca/∼felipe/
ResearchOutput/Computerm2002

86% of the oracle’s tokens are covered (24% of
the target sentences are fully covered).

Another source of disturbance is the presence
of terminological units (TU) within the text to
translate. Table 2 provides some examples of
mistranslated TU from the sniper text. We
also observed that many words within termino-
logical units are not even known by the statisti-
cal models. Therefore accounting for terminol-
ogy is one of the ways that should be considered
to reduce the impact of OOV words.

< source term / oracle / translation>
<âme / bore / heart>
<huile polyvalente / general purpose oil / oil
polyvalente>
<chambre / chamber / house of common>
<tireur d’ élite / sniper / issuer of elite>
<la longueur de la crosse / butt length / the
length of the crosse>

Table 2: Examples of mistranslated terminolog-
ical entries of the sniper corpus.

4 Integrating non-probabilistic
terminological resources

Using terminological resources to improve the
quality of an automatic translation engine is not
at all a new idea. However, we know of very few
studies that actually investigated this avenue
in the field of statistical machine translation.
Among them, (Brown et al., 1993a) have pro-
posed a way to exploit bilingual dictionnaries at
training time. There may also be cases where
domain-specific corpora are available which al-
low for the training of specialized models that
can be combined with the general ones.

Another approach that would not require
such material at training time consists in de-
signing an adaptative translation engine. For
instance, a cache-based language model could
be used instead of our static trigram model.
However, the design of a truly adaptative trans-
lation model remains a more speculative enter-
prise. At the very least, it would require a fairly
precise location of errors in previously trans-
lated sentences; and we know from the AR-
CADE campaign on bilingual alignments, that
accurate word alignments are difficult to obtain
(Véronis and Langlais, 2000). This may be even
more difficult in situations where errors will in-



volve OOV words.
We investigated a third option, which involves

taking advantage – at run time – of existing ter-
minological resources, such as Termium4. As
mentioned by Langlais et al. (2001), one of
a translator’s first tasks is often terminological
research; and many translation companies em-
ploy specialized terminologists. Actually, aside
from the infrequent cases where, in a given
thematic context, a word is likely to have a
clearly preferred translation (e.g. bill/facture
vs bill/projet de loi), lexicons are often the
only means for a user to influence the transla-
tion engine.

Merging such lexicons at run time offers
a complementary solution to those mentioned
above and it should be a fruitful strategy in sit-
uations where terminological resources are not
available at training time (which may often be
the case). Unfortunately, integrating termino-
logical (or user) lexicons into a probabilistic en-
gine is not a straightforward operation, since
we cannot expect them to come with attached
probabilities. Several strategies do come to
mind, however. For instance, we could credit a
translation of a sentence that contains a source
lexicon entry in cases it contains an authorized
translation. But this strategy may prouve dif-
ficult to tune since decoding usually involves
many filtering strategies.

The approach we adopted consists in view-
ing a terminological lexicon as a set of con-
straints that are employed to reduce the search
space. For instance, knowing that sniper is a
sanctioned translation of tireur d’élite, we may
require that current hypotheses in the search
space associate the target word sniper with the
three source French words.

In our implementation, we had to slightly
modify the block diagram of Figure 1 in order
to: 1) forbid a given word ei from being asso-
ciated with a word belonging to a source ter-
minological unit, if it is not sanctioned by the
lexicon; and 2) add at any target position an
hypothesis linking a target lexicon entry to its
source counterpart. Whether these hypotheses
will survive intact will depend on constraints
imposed by the maximum operation (of equa-
tion 1) over the full translation.

The score associated with a target entry ei′

i

4See http://www.termium.com/site/.

when linked to its source counterpart f j′

j in the
latter case is given by:

∑

k∈[i,i′]

log p(ek|ek−2ek−1) + max
l∈[j,j′]

log(a(k|l, J))

The rationale behind this equation is that
both the language (p) and the alignment (a)
models have some information that can help
to decide the appropriateness of an extension:
the former knows how likely it is that a word
(known or not) will follow the current history5;
and the latter knows to some extent where the
target unit should be (regardless of its identity).
In the absence of a better mechanism (e.g. a
cache-model should be worth a try) We hope
that this will be sufficient to determine the final
position of the target unit in a given hypothesis.

5 Results

We considered three terminological lexicons
whose characteristics are summarized in Table
3; they essentially differ in terms of number
of entries and therefore coverage of the text to
translate.

lexicon nb coverage SER WER
sniper-1 33 20/247 99 67.4
sniper-2 59 47/299 98 66.2
sniper-3 146 132/456 98 64.3

Table 3: Translation performance with differ-
ent terminological lexicons. nb is the number of
entries in the lexicon and coverage reports the
number of different source entries from the lex-
icon belonging to the text to translate and the
total number of their occurrences.

The first lexicon (namely sniper-1) contains
the 33 entries used in the study of terminological
consistency checking described in (Macklovitch,
1995). The second and third lexicons (namely
sniper-2 and sniper-3) contain those entries
plus other ones added manually after an incre-
mental inspection of the sniper corpus.

As can be observed from Table 3, introduc-
ing terminological lexicons into the translation
engine does improve performance, measured in
terms of WER, and this even with lexicons that

5Our trigram model has been trained to provide pa-
rameters such as p(UNK|ab).



Source le tireur d’ élite voit simultanément les fils croisés et l’ image ( l’ objectif ) .
Target the sniper sees the crosshairs and the image - target - at the same time .
without the gunman being same son sit and picture of the hon. members : agreed .
with the sniper simultaneously see the crosshairs and the image (objective . )
Source contrôle de la détente .
Target exercising trigger control .
without the control of détente .
with control of the trigger .

Table 4: Two examples of translation with and without a terminological lexicon; TU appear in
bold.

cover only a small portion of the text to trans-
late. With the narrow coverage lexicon, we ob-
serve an absolute reduction of 7%, and a reduc-
tion of 10% with the broader lexicon sniper-3.
This suggests that adding more entries into the
lexicon is likely to decrease WER. In another
study (Carl and Langlais, 2002), we investigated
whether an automatic procedure designed to de-
tect term variants could improve these perfor-
mances futher.

Table 4 provides two examples of translation
outputs, with and without the help of termino-
logical units. The first one clearly shows that
EVEN A few TU (two in this case) may sub-
stantially improve the quality of the translation
output; (the translation produced without the
lexicon was particularly poor in this very case.

Even though terminological lexicons do im-
prove the overall WER figure, a systematic in-
spection of the outputs produced with TU re-
veals that the translations are still less faithful
to the source text than the translations pro-
duced for the hansard text. OOV words re-
main a serious problem.

6 Discussion

In this study, we have shown that translat-
ing texts in specific domains with a general[-
]purpose statistical engine is difficult. This sug-
gests the need to implementing an adaptative
strategy. Among the possible scenarios, we have
shown that opening the engine to terminologi-
cal resources is a natural and efficient way of
softening the decoder.

In a similar vein, Marcu (2001) investigated
how to combine Example Based Machine Trans-
lation (EBMT) and SMT approaches. The au-
thor automatically derived from the Hansard
corpus what he calls a translation memory: ac-

tually a collection of pairs of source and target
word sequences that are in a translation rela-
tion according to the viterbi alignment run with
an IBM4 model that was also trained on the
Hansard corpus. This collection of phrases was
then merged with a greedy statistical decoder to
improve the overall performance of the system.

What this study suggests is that translation
memories collected from a given corpus can im-
prove the performance of a statistical engine
trained on the same corpus, which in itself is
an interesting result. A very similar study but
with weaker results is derscribed in (Langlais et
al., 2000), in the framework of the TransType

project. Besides the different metrics the au-
thors used, the discrepancy in performance in
these two studies may be explained by the na-
ture of the test corpora used. The test corpus
in the latter study was more representative of a
real translation task, while the test corpus that
Marcu used was a set of around 500 French sen-
tences of no more than 10 words.

Our present study is close in spirit to these
last two, except that we do not attack the prob-
lem of automatically acquiring bilingual lexi-
cons; instead, we consider it a part of the trans-
lator’s task to provide such lexicons. Actually,
we feel this may be one of the only ways a user
has of retaining some control over the engine’s
output, a fact that professional translators seem
to appreciate (Langlais et al., 2001).

As a final remark, we want to stress that we
see the present study as a first step toward the
eventual unification of EBMT and SMT, and in
this respect we agree with (Marcu, 2001). Po-
tentially, of course, EBMT can offer much more
than just a simple list of equivalences, like those
we used in this study. However, the basic ap-



proach we describe here still holds, as long as
we can extend the notion of constraint used in
this study to include non-consecutive sequences
of words. This is a problem we we plan to in-
vestigate in future research.
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