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Abstract 

Comparisons of automatic evaluation metrics 
for machine translation are usually conducted 
on corpus level using correlation statistics 
such as Pearson’s product moment correlation 
coefficient or Spearman’s rank order 
correlation coefficient between human scores 
and automatic scores. However, such 
comparisons rely on human judgments of 
translation qualities such as adequacy and 
fluency. Unfortunately, these judgments are 
often inconsistent and very expensive to 
acquire. In this paper, we introduce a new 
evaluation method, ORANGE, for evaluating 
automatic machine translation evaluation 
metrics automatically without extra human 
involvement other than using a set of reference 
translations. We also show the results of 
comparing several existing automatic metrics 
and three new automatic metrics using 
ORANGE. 

1 Introduction 

To automatically evaluate machine translations, 
the machine translation community recently 
adopted an n-gram co-occurrence scoring 
procedure BLEU (Papineni et al. 2001). A similar 
metric, NIST, used by NIST (NIST 2002) in a 
couple of machine translation evaluations in the 
past two years is based on BLEU. The main idea of 
BLEU is to measure the translation closeness 
between a candidate translation and a set of 
reference translations with a numerical metric. 
Although the idea of using objective functions to 
automatically evaluate machine translation quality 
is not new (Su et al. 1992), the success of BLEU 
prompts a lot of interests in developing better 
automatic evaluation metrics. For example, Akiba 
et al. (2001) proposed a metric called RED based 
on edit distances over a set of multiple references.  
Nießen et al. (2000) calculated the length-
normalized edit distance, called word error rate 
(WER), between a candidate and multiple 

reference translations. Leusch et al. (2003) 
proposed a related measure called position-
independent word error rate (PER) that did not 
consider word position, i.e. using bag-of-words 
instead. Turian et al. (2003) introduced General 
Text Matcher (GTM) based on accuracy measures 
such as recall, precision, and F-measure.  

With so many different automatic metrics 
available, it is necessary to have a common and 
objective way to evaluate these metrics. 
Comparison of automatic evaluation metrics are 
usually conducted on corpus level using correlation 
analysis between human scores and automatic 
scores such as BLEU, NIST, WER, and PER. 
However, the performance of automatic metrics in 
terms of human vs. system correlation analysis is 
not stable across different evaluation settings. For 
example, Table 1 shows the Pearson’s linear 
correlation coefficient analysis of 8 machine 
translation systems from 2003 NIST Chinese-
English machine translation evaluation. The 
Pearson’ correlation coefficients are computed 
according to different automatic evaluation 
methods vs. human assigned adequacy and 
fluency. BLEU1, 4, and 12 are BLEU with 
maximum n-gram lengths of 1, 4, and 12 
respectively. GTM10, 20, and 30 are GTM with 
exponents of 1.0, 2.0, and 3.0 respectively. 95% 
confidence intervals are estimated using bootstrap 
resampling (Davison and Hinkley 1997). From the 
BLEU group, we found that shorter BLEU has better 
adequacy correlation while longer BLEU has better 
fluency correlation. GTM with smaller exponent 
has better adequacy correlation and GTM with 
larger exponent has better fluency correlation. 
NIST is very good in adequacy correlation but not 
as good as GTM30 in fluency correlation. Based 
on these observations, we are not able to conclude 
which metric is the best because it depends on the 
manual evaluation criteria. This results also 
indicate that high correlation between human and 
automatic scores in both adequacy and fluency 
cannot always been achieved at the same time. 

The best performing metrics in fluency 
according to Table 1 are BLEU12 and GTM30 



(dark/green cells). However, many metrics are 
statistically equivalent (gray cells) to them when 
we factor in the 95% confidence intervals. For 
example, even PER is as good as BLEU12 in 
adequacy. One reason for this might be due to data 
sparseness since only 8 systems are available. 

The other potential problem for correlation 
analysis of human vs. automatic framework is that 
high corpus-level correlation might not translate to 
high sentence-level correlation. However, high 
sentence-level correlation is often an important 
property that machine translation researchers look 
for. For example, candidate translations shorter 
than 12 words would have zero BLEU12 score but 
BLEU12 has the best correlation with human 
judgment in fluency as shown in Table 1. 

In order to evaluate the ever increasing number 
of automatic evaluation metrics for machine 
translation objectively, efficiently, and reliably, we 
introduce a new evaluation method: ORANGE. We 
describe ORANGE in details in Section 2 and 
briefly introduce three new automatic metrics that 
will be used in comparisons in Section 3. The 
results of comparing several existing automatic 
metrics and the three new automatic metrics using 
ORANGE will be presented in Section 4. We 
conclude this paper and discuss future directions in 
Section 5. 

2 ORANGE 

Intuitively a good evaluation metric should give 
higher score to a good translation than a bad one. 
Therefore, a good translation should be ranked 
higher than a bad translation based their scores. 
One basic assumption of all automatic evaluation 
metrics for machine translation is that reference 
translations are good translations and the more a 
machine translation is similar to its reference 
translations the better. We adopt this assumption 
and add one more assumption that automatic 
translations are usually worst than their reference 

translations. Therefore, reference translations 
should be ranked higher than machine translations 
on average if a good automatic evaluation metric is 
used. Based on these assumptions, we propose a 
new automatic evaluation method for evaluation of 
automatic machine translation metrics as follows: 

 
Given a source sentence, its machine 
translations, and its reference translations, we 
compute the average rank of the reference 
translations within the combined machine and 
reference translation list. For example, a 
statistical machine translation system such as 
ISI’s AlTemp SMT system (Och 2003) can 
generate a list of n-best alternative translations 
given a source sentence. We compute the 
automatic scores for the n-best translations 
and their reference translations. We then rank 
these translations, calculate the average rank 
of the references in the n-best list, and 
compute the ratio of the average reference 
rank to the length of the n-best list. We call 
this ratio “ORANGE” (Oracle1 Ranking for 
Gisting Evaluation) and the smaller the ratio 
is, the better the automatic metric is. 
 
There are several advantages of the proposed 

ORANGE evaluation method: 
• No extra human involvement – ORANGE 

uses the existing human references but not 
human evaluations. 

• Applicable on sentence-level – Diagnostic 
error analysis on sentence-level is naturally 
provided. This is a feature that many 
machine translation researchers look for. 

• Many existing data points – Every sentence 
is a data point instead of every system 
(corpus-level). For example, there are 919 
sentences vs. 8 systems in the 2003 NIST 
Chinese-English machine translation 
evaluation. 

• Only one objective function to optimize – 
Minimize a single ORANGE score instead of 
maximize Pearson’s correlation coefficients 
between automatic scores and human 
judgments in adequacy, fluency, or other 
quality metrics.  

• A natural fit to the existing statistical 
machine translation framework – A metric 
that ranks a good translation high in an n-
best list could be easily integrated in a 
minimal error rate statistical machine 
translation training framework (Och 2003). 
The overall system performance in terms of 

                                                      
1 Oracles refer to the reference translations used in 

the evaluation procedure. 

Method Pearson 95%L 95%U Pearson 95%L 95%U

BLEU1 0.86 0.83 0.89 0.81 0.75 0.86

BLEU4 0.77 0.72 0.81 0.86 0.81 0.90

BLEU12 0.66 0.60 0.72 0.87 0.76 0.93

NIST 0.89 0.86 0.92 0.81 0.75 0.87

WER 0.47 0.41 0.53 0.69 0.62 0.75

PER 0.67 0.62 0.72 0.79 0.74 0.85

GTM10 0.82 0.79 0.85 0.73 0.66 0.79

GTM20 0.77 0.73 0.81 0.86 0.81 0.90

GTM30 0.74 0.70 0.78 0.87 0.81 0.91

Adequacy Fluency

Table 1. Pearson's correlation analysis of 8 
machine translation systems in 2003 NIST 
Chinese-English machine translation 
evaluation. 



generating more human like translations 
should also be improved.  

Before we demonstrate how to use ORANGE to 
evaluate automatic metrics, we briefly introduce 
three new metrics in the next section. 

3 Three New Metrics 

ROUGE-L and ROUGE-S are described in details 
in Lin and Och (2004). Since these two metrics are 
relatively new, we provide short summaries of 
them in Section 3.1 and Section 3.3 respectively. 
ROUGE-W, an extension of ROUGE-L, is new and 
is explained in details in Section 3.2. 

3.1 ROUGE-L: Longest Common Sub-
sequence 

Given two sequences X and Y, the longest 
common subsequence (LCS) of X and Y is a 
common subsequence with maximum length 
(Cormen et al. 1989). To apply LCS in machine 
translation evaluation, we view a translation as a 
sequence of words. The intuition is that the longer 
the LCS of two translations is, the more similar the 
two translations are. We propose using LCS-based 
F-measure to estimate the similarity between two 
translations X of length m and Y of length n, 
assuming X is a reference translation and Y is a 
candidate translation, as follows: 
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Where LCS(X,Y) is the length of a longest 

common subsequence of X and Y, and β = Plcs/Rlcs 
when ∂Flcs/∂Rlcs_=_∂Flcs/∂Plcs. We call the LCS-
based F-measure, i.e. Equation 3, ROUGE-L. 
Notice that ROUGE-L is 1 when X = Y since 
LCS(X,Y) = m or n; while ROUGE-L is zero when 
LCS(X,Y) = 0, i.e. there is nothing in common 
between X and Y.  

One advantage of using LCS is that it does not 
require consecutive matches but in-sequence 
matches that reflect sentence level word order as n-
grams. The other advantage is that it automatically 
includes longest in-sequence common n-grams, 
therefore no predefined n-gram length is necessary.  
By only awarding credit to in-sequence unigram 
matches, ROUGE-L also captures sentence level 
structure in a natural way. Consider the following 
example: 
 

S1. police killed the gunman 
S2. police kill the gunman 
S3. the gunman kill police 

 
Using S1 as the reference translation, S2 has a 

ROUGE-L score of 3/4 = 0.75 and S3 has a ROUGE-
L score of 2/4 = 0.5, with β = 1. Therefore S2 is 
better than S3 according to ROUGE-L. This 
example illustrated that ROUGE-L can work 
reliably at sentence level. However, LCS suffers 
one disadvantage: it only counts the main in-
sequence words; therefore, other alternative LCSes 
and shorter sequences are not reflected in the final 
score. In the next section, we introduce ROUGE-W. 

3.2 ROUGE-W: Weighted Longest Common 
Subsequence 

LCS has many nice properties as we have 
described in the previous sections. Unfortunately, 
the basic LCS also has a problem that it does not 
differentiate LCSes of different spatial relations 
within their embedding sequences. For example, 
given a reference sequence X and two candidate 
sequences Y1 and Y2 as follows: 

 
X:  [A B C D E F G] 
Y1: [A B C D H I K] 
Y2:  [A H B K C I D] 
 
Y1 and Y2 have the same ROUGE-L score. 

However, in this case, Y1 should be the better 
choice than Y2 because Y1 has consecutive matches. 
To improve the basic LCS method, we can simply 
remember the length of consecutive matches 
encountered so far to a regular two dimensional 
dynamic program table computing LCS. We call 
this weighted LCS (WLCS) and use k to indicate 
the length of the current consecutive matches 
ending at words xi and yj. Given two sentences X 
and Y, the recurrent relations can be written as 
follows: 

 
(1) If xi = yj Then 

// the length of consecutive matches at 
// position i-1 and j-1 
k = w(i-1,j-1) 
c(i,j) = c(i-1,j-1) + f(k+1) – f(k) 
// remember the length of consecutive 
// matches at position i, j 
w(i,j) = k+1 

(2) Otherwise 
If c(i-1,j) > c(i,j-1) Then 

c(i,j) = c(i-1,j) 
w(i,j) = 0           // no match at i, j 

Else c(i,j) = c(i,j-1) 
 w(i,j) = 0           // no match at i, j 

(3) WLCS(X,Y) = c(m,n) 



 
Where c is the dynamic programming table, 0 <= 

i <= m, 0 <= j <= n, w is the table storing the 
length of consecutive matches ended at c table 
position i and j, and f is a function of consecutive 
matches at the table position, c(i,j). Notice that by 
providing different weighting function f, we can 
parameterize the WLCS algorithm to assign 
different credit to consecutive in-sequence 
matches.  

The weighting function f must have the property 
that f(x+y) > f(x) + f(y) for any positive integers x 
and y. In other words, consecutive matches are 
awarded more scores than non-consecutive 
matches. For example, f(k)-=-αk – β when k >= 0, 
and α, β > 0. This function charges a gap penalty 
of –β for each non-consecutive n-gram sequences. 
Another possible function family is the polynomial 
family of the form kα where -α > 1. However, in 
order to normalize the final ROUGE-W score, we 
also prefer to have a function that has a close form 
inverse function. For example, f(k)-=-k2 has a close 
form inverse function f -1(k)-=-k1/2. F-measure 
based on WLCS can be computed as follows, 
given two sequences X of length m and Y of length 
n: 
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 f -1 is the inverse function of f. We call the 

WLCS-based F-measure, i.e. Equation 6, ROUGE-
W. Using Equation 6 and f(k)-=-k2 as the 
weighting function, the ROUGE-W scores for 
sequences Y1 and Y2 are 0.571 and 0.286 
respectively. Therefore, Y1 would be ranked 
higher than Y2 using WLCS. We use the 
polynomial function of the form kα in the 
experiments described in Section 4 with the 
weighting factor α varying from 1.1 to 2.0 with 0.1 
increment. ROUGE-W is the same as ROUGE-L 
when α is set to 1. 

In the next section, we introduce the skip-bigram 
co-occurrence statistics. 

3.3 ROUGE-S: Skip-Bigram Co-Occurrence 
Statistics 

Skip-bigram is any pair of words in their sentence 
order, allowing for arbitrary gaps. Skip-bigram co-
occurrence statistics measure the overlap of skip-
bigrams between a candidate translation and a set 

of reference translations. Using the example given 
in Section 3.1: 

 
S1. police killed the gunman 
S2. police kill the gunman 
S3. the gunman kill police 
S4. the gunman police killed 

 
each sentence has C(4,2)2 = 6 skip-bigrams. For 
example, S1 has the following skip-bigrams: 
 
(“police killed”, “police the”, “police gunman”, 
“killed the”, “killed gunman”, “the gunman”) 
 

Given translations X of length m and Y of length 
n, assuming X is a reference translation and Y is a 
candidate translation, we compute skip-bigram-
based F-measure as follows: 
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Where SKIP2(X,Y) is the number of skip-bigram 

matches between X and Y, β = Pskip2/Rskip2 when 
∂Fskip2/∂Rskip2_=_∂Fskip2/∂Pskip2, and  C is the 
combination function. We call the skip-bigram-
based F-measure, i.e. Equation 9, ROUGE-S. Using 
Equation 9 with β = 1 and S1 as the reference, S2’s 
ROUGE-S score is 0.5, S3 is 0.167, and S4 is 0.333. 
Therefore, S2 is better than S3 and S4, and S4 is 
better than S3.  
One advantage of skip-bigram vs. BLEU is that it 
does not require consecutive matches but is still 
sensitive to word order. Comparing skip-bigram 
with LCS, skip-bigram counts all in-order 
matching word pairs while LCS only counts one 
longest common subsequence. We can limit the 
maximum skip distance, between two in-order 
words to control the admission of a skip-bigram. 
We use skip distances of 1 to 9 with increment of 1 
(ROUGE-S1 to 9) and without any skip distance 
constraint (ROUGE-S*).  
In the next section, we present the evaluations of 
BLEU, NIST, PER, WER, ROUGE-L, ROUGE-W, 
and ROUGE-S using the ORANGE evaluation 
method described in Section 2. 

                                                      
2 Combinations: C(4,2) = 4!/(2!*2!) = 6. 



4 Experiments 

Comparing automatic evaluation metrics using 
the ORANGE evaluation method is straightforward. 
To simulate real world scenario, we use n-best lists 
from ISI’s state-of-the-art statistical machine 
translation system, AlTemp (Och 2003), and the 
2002 NIST Chinese-English evaluation corpus as 
the test corpus. There are 878 source sentences in 
Chinese and 4 sets of reference translations 
provided by LDC3. For exploration study, we 
generate 1024-best list using AlTemp for 872 
source sentences. AlTemp generates less than 1024 
alternative translations for 6 out of the 878 source 

                                                      
3 Linguistic Data Consortium prepared these manual 

translations as part of the DARPA’s TIDES project. 

sentences. These 6 source sentences are excluded 
from the 1024-best set. In order to compute BLEU 
at sentence level, we apply the following 
smoothing technique: 

Add one count to the n-gram hit and total n-
gram count for n > 1. Therefore, for candidate 
translations with less than n words, they can 
still get a positive smoothed BLEU score from 
shorter n-gram matches; however if nothing 
matches then they will get zero scores. 

We call the smoothed BLEU: BLEUS. For each 
candidate translation in the 1024-best list and each 
reference, we compute the following scores: 

1. BLEUS1 to 9 
2. NIST, PER, and WER 
3. ROUGE-L 
4. ROUGE-W with weight ranging from 1.1 

to 2.0 with increment of 0.1 
5. ROUGE-S with maximum skip distance 

ranging from 0 to 9 (ROUGE-S0 to S9) 
and without any skip distance limit 
(ROUGE-S*) 

We compute the average score of the references 
and then rank the candidate translations and the 
references according to these automatic scores. 
The ORANGE score for each metric is calculated as 
the average rank of the average reference (oracle) 
score over the whole corpus (872 sentences) 
divided by the length of the n-best list plus 1. 
Assuming the length of the n-best list is N and the 
size of the corpus is S (in number of sentences), we 
compute Orange as follows: 
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Rank(Oraclei) is the average rank of source 
sentence i’s reference translations in n-best list i. 
Table 2 shows the results for BLEUS1 to 9. To 
assess the reliability of the results, 95% confidence 
intervals (95%-CI-L for lower bound and CI-U for 
upper bound) of average rank of the oracles are 

Method ORANGE Avg Rank 95%-CI-L  95%-CI-U
BLEUS1 35.39% 363 337 387
BLEUS2 25.51% 261 239 283
BLEUS3 23.74% 243 221 267
BLEUS4 23.13% 237 215 258
BLEUS5 23.13% 237 215 260
BLEUS6 22.91% 235 211 257
BLEUS7 22.98% 236 213 258
BLEUS8 23.20% 238 214 261
BLEUS9 23.56% 241 218 265

Table 2. ORANGE scores for BLEUS1 to 9. 

Method Pearson 95%L 95%U Pearson 95%L 95%U

BLEUS1 0.87 0.84 0.90 0.83 0.77 0.88

BLEUS2 0.84 0.81 0.87 0.85 0.80 0.90

BLEUS3 0.80 0.76 0.84 0.87 0.82 0.91

BLEUS4 0.76 0.72 0.80 0.88 0.83 0.92

BLEUS5 0.73 0.69 0.78 0.88 0.83 0.91

BLEUS6 0.70 0.65 0.75 0.87 0.82 0.91

BLEUS7 0.65 0.60 0.70 0.85 0.80 0.89

BLEUS8 0.58 0.52 0.64 0.82 0.76 0.86

BLEUS9 0.50 0.44 0.57 0.76 0.70 0.82

Adequacy Fluency

Table 3. Pearson's correlation analysis 
BLEUS1 to 9 vs. adequacy and fluency of 8 
machine translation systems in 2003 NIST 
Chinese-English machine translation 
evaluation. 

Method ORANGE Avg Rank 95%-CI-L 95%-CI-U
ROUGE-L 20.56% 211 190 234
ROUGE-W-1.1 20.45% 210 189 232
ROUGE-W-1.2 20.47% 210 186 230
ROUGE-W-1.3 20.69% 212 188 234
ROUGE-W-1.4 20.91% 214 191 238
ROUGE-W-1.5 21.17% 217 196 241
ROUGE-W-1.6 21.47% 220 199 242
ROUGE-W-1.7 21.72% 223 200 245
ROUGE-W-1.8 21.88% 224 204 246
ROUGE-W-1.9 22.04% 226 203 249
ROUGE-W-2.0 22.25% 228 206 250

Table 4. ORANGE scores for ROUGE-L and 
ROUGE-W-1.1 to 2.0. 

Method ORANGE Avg Rank 95%-CI-L 95%-CI-U
ROUGE-S0 25.15% 258 234 280
ROUGE-S1 22.44% 230 209 253
ROUGE-S2 20.38% 209 186 231
ROUGE-S3 19.81% 203 183 226
ROUGE-S4 19.66% 202 177 224
ROUGE-S5 19.95% 204 184 226
ROUGE-S6 20.32% 208 187 230
ROUGE-S7 20.77% 213 191 236
ROUGE-S8 21.42% 220 198 242
ROUGE-S9 21.92% 225 204 247
ROUGE-S* 27.43% 281 259 304

Table 5. ORANGE scores for ROUGE-S1 to 9 
and ROUGE-S*. 



estimated using bootstrap resampling (Davison and 
Hinkley). According to Table 2, BLEUS6 
(dark/green cell) is the best performer among all 
BLEUSes, but it is statistically equivalent to 
BLEUS3, 4, 5, 7, 8, and 9 with 95% of confidence. 

Table 3 shows Pearson’s correlation coefficient 
for BLEUS1 to 9 over 8 participants in 2003 NIST 
Chinese-English machine translation evaluation. 
According to Table 3, we find that shorter BLEUS 
has better correlation with adequacy. However, 
correlation with fluency increases when longer n-
gram is considered but decreases after BLEUS5. 
There is no consensus winner that achieves best 
correlation with adequacy and fluency at the same 
time. So which version of BLEUS should we use? 
A reasonable answer is that if we would like to 
optimize for adequacy then choose BLEUS1; 
however, if we would like to optimize for fluency 
then choose BLEUS4 or BLEUS5. According to 
Table 2, we know that BLEUS6 on average places 
reference translations at rank 235 in a 1024-best 
list machine translations that is significantly better 
than BLEUS1 and BLEUS2. Therefore, we have 
better chance of finding more human-like 
translations on the top of an n-best list by choosing 
BLEUS6 instead of BLEUS2. To design automatic 
metrics better than BLEUS6, we can carry out error 
analysis over the machine translations that are 
ranked higher than their references. Based on the 
results of error analysis, promising modifications 
can be identified. This indicates that the ORANGE 
evaluation method provides a natural automatic 
evaluation metric development cycle. 

Table 4 shows the ORANGE scores for ROUGE-L 
and ROUGE-W-1.1 to 2.0. ROUGE-W 1.1 does have 
better ORANGE score but it is equivalent to other 
ROUGE-W variants and ROUGE-L. Table 5 lists 

performance of different ROUGE-S variants. 
ROUGE-S4 is the best performer but is only 
significantly better than ROUGE-S0 (bigram), 
ROUGE-S1, ROUGE-S9 and ROUGE-S*. The 
relatively worse performance of ROUGE-S* might 
to due to spurious matches such as “the the” or 
“the of”. 

Table 6 summarizes the performance of 7 
different metrics. ROUGE-S4 (dark/green cell) is 
the best with an ORANGE score of 19.66% that is 
statistically equivalent to ROUGE-L and ROUGE-
W-1.1 (gray cells) and is significantly better than 
BLEUS6, NIST, PER, and WER. Among them 
PER is the worst. 

To examine the length effect of n-best lists on  
the relative performance of automatic metrics, we 
use the AlTemp SMT system to generate a 16384-
best list and compute ORANGE scores for BLEUS4, 
PER, WER, ROUGE-L, ROUGE-W-1.2, and 
ROUGE-S4. Only 474 source sentences that have 
more than 16384 alternative translations are used 
in this experiment. Table 7 shows the results. It 
confirms that when we extend the length of the n-
best list to 16 times the size of the 1024-best, the 
relative performance of each automatic evaluation 
metric group stays the same. ROUGE-S4 is still the 
best performer. Figure 1 shows the trend of 
ORANGE scores for these metrics over N-best list 
of N from 1 to 16384 with length increment of 64. 
It is clear that relative performance of these metrics 
stay the same over the entire range. 

5 Conclusion 

In this paper we introduce a new automatic 
evaluation method, ORANGE, to evaluate automatic 
evaluation metrics for machine translations. We 
showed that the new method can be easily 
implemented and integrated with existing 
statistical machine translation frameworks. 
ORANGE assumes a good automatic evaluation 
metric should assign high scores to good 
translations and assign low scores to bad 
translations. Using reference translations as 
examples of good translations, we measure the 
quality of an automatic evaluation metric based on 
the average rank of the references within a list of 
alternative machine translations. Comparing with 
traditional approaches that require human 
judgments on adequacy or fluency, ORANGE 
requires no extra human involvement other than 
the availability of reference translations.  It also 
streamlines the process of design and error analysis 
for developing new automatic metrics. Using 
ORANGE, we have only one parameter, i.e. 
ORANGE itself, to optimize vs. two in correlation 
analysis using human assigned adequacy and 
fluency. By examining the rank position of the 

Method ORANGE Avg Rank 95%-CI-L 95%-CI-U
BLEUS6 22.91% 235 211 257
NIST 29.70% 304 280 328
PER 36.84% 378 350 403
WER 23.90% 245 222 268
ROUGE-L 20.56% 211 190 234
ROUGE-W-1.1 20.45% 210 189 232
ROUGE-S4 19.66% 202 177 224

Table 6. Summary of ORANGE scores for 7 
automatic evaluation metrics. 

Method ORANGE Avg Rank 95%-CI-L 95%-CI-U
BLEUS4 18.27% 2993 2607 3474
PER 28.95% 4744 4245 5292
WER 19.36% 3172 2748 3639
ROUGE-L 16.22% 2657 2259 3072
ROUGE-W-1.2 15.87% 2600 2216 2989
ROUGE-S4 14.92% 2444 2028 2860

Table 7. Summary of ORANGE scores for 6 
automatic evaluation metrics (16384-best list). 



references, we can easily identify the confusion set 
of the references and propose new features to 
improve automatic metrics. 

One caveat of the ORANGE method is that what 
if machine translations are as good as reference 
translations? To rule out this scenario, we can 
sample instances where machine translations are 
ranked higher than human translations. We then 
check the portion of the cases where machine 
translations are as good as the human translations.  
If the portion is small then the ORANGE method 
can be confidently applied. We conjecture that this 
is the case for the currently available machine 
translation systems. However, we plan to conduct 
the sampling procedure to verify this is indeed the 
case. 
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Figure 1. ORANGE scores for 6 metrics vs. length of n-best list from 1 to 
16384 with increment of 64.


