
Detecting Transliterated Orthographic Variants
via Two Similarity Metrics

Kiyonori Ohtake
ATR SLT

Keihanna Science City
Kyoto 619-0288,

Japan
kiyonori.ohtake@atr.jp

Youichi Sekiguchi
Nagaoka Univ. of Tech.

Nagaoka City,
Niigata 940-2188,

Japan
sekiguti@nlp.nagaokaut.ac.jp

Kazuhide Yamamoto
Nagaoka Univ. of Tech.

Nagaoka City,
Niigata 940-2188,

Japan
yamamoto@fw.ipsj.or.jp

Abstract

We propose a detection method for or-
thographic variants caused by translit-
eration in a large corpus. The method
employs two similarities. One is string
similarity based on edit distance. The
other is contextual similarity by a vec-
tor space model. Experimental results
show that the method performed a 0.889
F-measure in an open test.

1 Introduction

This paper discusses a detection method for
transliterated orthographic variants of foreign
words. Transliteration of foreign words causes
orthographic variants because there are several
conditions required for transliterating. One may
person transliterate to approximate pronunciation,
whereas another one may conduct transliteration
based on spelling. For example, the English
word report can be transliterated into two Japanese
words, “

�������
(ripooto)” and “ � ����� (re-

pooto).” The former “ripooto” is based on an ap-
proximation of its pronunciation, while “repooto”
is transliterated from its spelling.

In addition, several source languages can be
transliterated. For instance, the English word virus
corresponds to the Japanese words: “ 	�
���
(uirusu)” from Latin, “ � � ��� (biirusu)” and “��� � ��� (viirusu)” from German, while “ �

���� (bairasu)” or “

��
���� (vairasu)” are
also possible as transliterations that approximate
the English pronunciation. Moreover, some for-
eign words end up in different forms in Japanese
because of variation in English pronunciation; e.g.,
between British and American. For example, the

English word body corresponds to two words: “ �� �
(bodi)” from British and “� � � (badi)” from

American.
One may think that if back-transliteration were

done precisely, those variants would be back-
transliterated into one word, and they would
be recognized as variants. However, back-
transliteration is known to be a very difficult
task(Knight and Graehl, 1997).

Not only Japanese but any language that has a
phonetic spelling has this problem of transliter-
ated orthographic variants. For example, English
has variants for a Chinese proper noun as “Shan-
haiguan,” “Shanhaikwan,” or “Shanhaikuan.”

Nowadays, it is well recognized that ortho-
graphic variant correction is an important process-
ing step for achieving high performance in natu-
ral language processing. In order to achieve ro-
bust and reliable processing, we have to use many
language resources: many types of corpora, dic-
tionaries, thesauri, and so on. Orthographic vari-
ants cause many mismatches at any stage of natural
language processing. In addition, not only ortho-
graphic variants, but also misspelled words tend to
slip into a corpus. These words boost the perplex-
ity of the corpus, and worsen the data sparseness
problem.

To date, several studies have tried to cope with
this orthographic variant problem; however, they
considered the problem in a relatively clean corpus
that was well organized by natives of the target lan-
guage. As with orthographic variants, misspelled
words cause mismatches, and we have to detect
not only predictable orthographic variants but also
misspelled variants. In addition, it is very hard to
detect orthographic variants caused by misspelling
with ordinary rule-based methods, because prepar-
ing such rules for misspellings that might be writ-

ten is an unrealistic approach.
If a corpus includes texts that were written by

non-natives of the language, orthographic variants
that are misspelled will likely be increased because
non-natives have a limited vocabulary in that lan-
guage.

We propose a robust detection method for
transliterated orthographic variants in a Japanese
corpus. The method is marked by a combina-
tion of different types of similarities. It is not
such a difficult task to detect simple misspelled
words, because a large dictionary would tell us
whether the word is common as long as we pre-
pare a large enough dictionary. However, it often
occurs that a misspelled word is recognized as a
common word. For example, in English, someone
may mistype “from” as “form,” and string infor-
mation will tell us nothing because both words are
common. Therefore, we use contextual informa-
tion to detect this kind of mistyping.

2 Transliteration for foreign words in
Japanese: katakana

Japanese features three types of characters
(katakana, hiragana, and kanji (Chinese charac-
ters)). Katakana is a syllabary which is used
mostly to write Western loanwords, onomatopoeic
words, names of plants and animals, non-Japanese
personal and place names, for emphasis, and for
slang, while hiragana is an ordinary syllabary.

Katakana cannot express the precise pronuncia-
tion of loanwords, because the katakana transliter-
ation of a loanword is an attempt to approximate
the pronunciation of its etymon (the foreign word
from which it is derived). Thus, katakana orthog-
raphy is often irregular, thus the same word may
be written in multiple ways. Although there are
general guidelines for loanword orthography, in
practice there is considerable variation. In addi-
tion, recent years have seen an enormous increase
in katakana use, not only in technical terminology,
but in common daily usage.

To date, several detecting methods have been
proposed for English and other languages. One
may think that such methods can be applied to
Japanese and work well. However, most katakana
characters correspond to two phonemes, and this
causes several problems. Due to the correspon-
dence between katakana characters and phonemes,
it is easy to imagine that the application would re-
quire tangled procedures.

2.1 Romanization
We use Japanese romanization for katakana char-
acters to capture its pronunciation because there
are several katakana characters for which the pro-
nunciation is the same. For example, “ � (pos-
sible romanization: zi/ji)” and “ � (possible ro-
manization: di/zi)” are not differentiated in pro-
nunciation. In addition, there are several katakana
expressions that have very similar pronunciations.
For instance, “ � (possible romanization: chi/ti)”
in “ ���! � (ticket)” and “ " � (t’i)” in “ " �
�! � (ticket)” are similar in pronunciation and
they cause these variants. Naturally we can use
katakana characters to compare two strings, but
employing katakana characters makes the compar-
ing procedure cumbersome and complicated. To
avoid the complicated comparing procedure for
katakana expressions, we use Japanese romaniza-
tion.

We used a system of Japanese romanization
based on ISO 3602, the romanization of which is
based on the Kunreisiki system. There are two
major systems for Japanese romanization. One is
based on the theory of the Kunrei (Kunreisiki) sys-
tem. The other one is the Hepburn system, which
is widely used in English-speaking communities.
The Kunreisiki system was designed to represent
kana morphology accurately. For example, the
katakana character “ # ” is written as “si” in the
Kunreisiki system while it is written as “shi” in
the Hepburn system. In this example, the char-
acter “h” that is inserted disturbs simple matching
procedures, because most katakana characters cor-
respond to two romanized characters: a consonant
and a vowel. Thus we prefer to use a romanization
system based on the Kunreisiki system to make the
matching procedure simple.

3 Detecting method

We propose a detecting method for katakana vari-
ants. The method consists of two components: one
is string similarity and the other is contextual sim-
ilarity.

The string similarity part measures similarity
based on edit distance for katakana words. More
precisely, there are two metrics of similarity: one
measures the similarity between romanized strings
of two words, while the other measures the simi-
larity between raw strings of two words. We can-
not use the romanization system as a perfect sub-
stitution of katakana, because romanization causes
side effects. For example, both Japanese words “ $

% � (punch)” and “ $ % " � (panty)” are translit-
erated into “panti” by our romanization system.
Thus, we use two string similarities.

Contextual similarity is defined as the distance
between context vectors. A context vector we em-
ployed is marked by using a dependency struc-
ture of a sentence. A context vector is constructed
by gathering surrounding information for the tar-
get katakana word, such as cooccurring nouns,
the predicate expression depended upon by the
katakana word, the particle marking the katakana
word, and so on.

Corpus

Katakana
extract

Contextual

string contextual

Dependency
Analyzed
Corpus

analyze

vec(
vec(
vec(
vec(

.

score > threshold ?
detected variant

similaritysimilarity

words Vectors

)
)
)

)

Figure 1: Overview of detecting katakana variants

Figure 1 shows an overview of the detecting
method. The detection procedure is as follows:

1. Extract katakana words and contextual vec-
tors from the dependency-analyzed result of
the target corpus.

2. Choose a katakana word as the input word
from the extracted katakana words.

3. Retrieve candidates of katakana variants from
the extracted katakana words. Each candidate
should share at least one character with the
input word.

4. Calculate the similarity simed, which is based
on the ordinary edit distance, between the in-
put Str1 and each candidate Str2. The simi-
larity simed is defined as follows:

simed(Str1, Str2) = 1− 2ED(Str1, Str2)

|Str1|+ |Str2|
,

(1)
where ED(Str1, Str2) denotes the ordinary
edit distance. If the input and a candidate
word share suffix or prefix morphemes, the
shared morphemes would be excluded from
the comparing strings.

5. Calculate string similarity sims between the
input and each candidate. If the input and a
candidate word share a suffix or prefix mor-
phemes, the shared morphemes would be ex-
cluded in the same way as above.

6. Calculate the contextual similarity simc be-
tween the input and each candidate.

7. Decide whether the candidate is a variant by
means of a deciding module. The deciding
module follows the decision list showed in
Table 1, where we used the Gakken Kokugo
Daijiten as the dictionary. It has almost 8,000
katakana words, and we slightly modified it.

We explain the details of the string similarity
part and the contextual similarity part in the fol-
lowing subsections.

3.1 String similarity for romanized words
There are recognizable patterns in Japanese
transliterated orthographic variants, thus, so far
several rule-based methods to detect such vari-
ants have been developed. We use a kind of
weighted edit distance to recognize transliterated
orthographic variants. The weighting rules are
very similar to the rules that are used in conven-
tional rule-based methods. The ordinary edit dis-
tance between two strings is defined as the number
of edit operations (insertion, deletion, and substi-
tution, although sometimes substitution is not per-
mitted) required to edit from one string into the
other. Thus, the ordinary edit distance is a positive
integer value. We defined small weighted opera-
tions in specific situations to identify recognizable
patterns. Figure 2 shows an example of the differ-
ence between ordinary edit distance and weighted
edit distance, in which we used a rule for changing
a vowel that follows the same consonant (‘r’).

r i p o o t o

r e p o o t o

weighted edit distance=0.8

substitution (or deletion and insertion)

ordinary edit distance=1 (or 2)

Figure 2: Example of ordinary edit distance and
weighted edit distance

More precisely, string similarity based on
the weighted edit distance of romanizations for

length frequency simed sims simc decision
> THlen ∗ > THed1 > THst1 ∗ variant
<= THlen > THfreq ∗ ∗ < THcos1 not variant
< THlen ∗ ∗ ∗ > THcos2 variant

Both words have entries in pre-defined dictionary not variant
∗ ∗ > THed2 > THst2 ∗ variant
∗ ∗ ∗ ∗ ∗ not variant

‘∗’ means any conditions.

Table 1: Decision list of deciding module

katakana wordsA andB is defined as Formula (2),

Sims(A,B) = 1− 2EDk(rom(A), rom(B))

|rom(A)|+ |rom(B)| ,

(2)
where rom(x) denotes romanized strings of x, and
EDk(x, y) denotes a weighted edit distance be-
tween x and y that is specialized for katakana.
EDk(x, y) is a kind of weighted edit distance,

and is marked by a distance function that deter-
mines the relaxed distance based on local strings.
Here, EDk(x, y) is defined as Formula (3),

EDk(x, y) = D(|x|, |y|), (3)

where, for two strings S1 and S2,D(i, j) is defined
to be the specialized edit distance of S1[1..i] and
S2[1..j].
D(i, j) is given by the following recurrence re-

lation:

D(i, j) = min

D(i− 1, j) + id(i, j),
D(i− 1, j − 1) + 2t(i, j),
D(i, j − 1) + id(i, j)

 ,

(4)
where id(i, j) defines the insertion and deletion
operation distance, and that is defined to have
the penalty value Pid if S1(i) or S2(j) denotes
a consonant, and id(i, j) has the value 1 in all
other cases. In addition, t(i, j) defines the sub-
stitution operation distance, and that is defined to
have the value 0 if S1(i) = S2(j), in all other
cases, t(i, j) has a pre-defined table and returns a
value that depends on S1[i − 3, .., i, .., i + 3] and
S2[j − 3, .., j, .., j + 3].

Table 2 shows an example of part of the t(i, j)
table. There are 29 entries in the t(i, j) table. In
Table 2, several t(i, j) values are negative because
in such a situation the strings compared have al-
ready had or will have a positive distance, thus the
t(i, j) has a negative value to adjust the distance.

3.2 Contextual similarity
In order to use the contextual information sur-
rounding a katakana word, we employed a vec-
tor space model. We use a dependency analyzer
to achieve more precise similarity, and contextual
information is extracted from the dependency ana-
lyzed result of the text. Figure 3 shows an example
of extracting vectors from an analyzed result, in
which the vector has elements; N for cooccurring
noun, P for predicate expression that is depended
upon by the word, and PP for the particle and pred-
icate expression pairs.

syanpen o gurasu de
kudasai.
(basic form is
 kudasaru)

(A glass of champagne, please.)

vec(syanpen)

vec(gurasu)

=[N;gurasu:1, P;kudasaru:1, PP;o-kudasaru:1]

=[N;syanpen:1, P;kudasaru:1, PP;de-kudasaru:1]

Figure 3: Extracting vector from dependency-
analyzed result

The vectors are calculated by the following pro-
cedure.

1. Analyze the dependency structure for all sen-
tences of the target corpus. We employed
CaboCha1 as the dependency analyzer.

2. Extract vectors for all katakana words in-
cluded in the corpus. Each vector corresponds
to a katakana word and consists of the follow-
ing elements:

• Nouns that cooccur with the katakana
word.

1http://chasen.org/˜taku/software/
cabocha/

i− 3 i− 2 i− 1 i i+ 1 i+ 2 i+ 3
t(i, j)

j − 3 j − 2 j − 1 j j + 1 j + 2 j + 3

∗ ∗ S2(j − 1) y u [kmnt] i -0.3∗ ∗ S1(i− 1) i S1(i+ 2) y u
y u [kmnt] i u ∗ ∗ -0.3∗ i S1(i− 1) y u ∗ ∗
∗ ∗ ∗ [dz] i ∗ ∗ 0.25∗ ∗ ∗ [dz] i ∗ ∗

‘∗’ means any character.
‘[]’ means character class in a regular expression.

Table 2: A part of t(i, j) table

• Predicate that is depended upon by the
katakana word.
• Particle and predicate pair: particle that

follows the katakana word and predicate
that is depended upon by the katakana
word.

Each element is extracted from the
dependency-analyzed result of a sentence,
and the frequency of the element is counted.

3. Load a tf-idf-like weight onto each element
of the vector. The weight is calculated by the
following formula.

W (kwi, ei) = f(kwi, ei)
N

sf(kwi)
. (5)

Here, kwi is a katakana word, ei is an el-
ement of the vector corresponding to kwi,
f(kwi, ei) denotes the frequency of the el-
ement ei for kwi, sf(kwi) denotes the fre-
quency of the sentence including kwi, and N
denotes the number of katakana words in the
corpus.

The contextual similarity is defined as the fol-
lowing formula.

simc(kwi, kwj) = cos(vec(kwi), vec(kwj))

=

∑
exW (kwi, ex)W (kwj , ex)√∑

emW (kwi, em)2
√∑

enW (kwj, en)2
,

(6)
where vec(kw) denotes a vector corresponding to
the katakana word kw.

4 Experiments

We used the ATR Basic Travel Expression Cor-
pus (BTEC)(Takezawa et al., 2002) as a resource

for text. BTEC is a multilingual corpus and was
mainly developed with English and Japanese. The
Japanese part of BTEC contains not only ordi-
nary katakana variants, but also mis-transliterated
katakana strings by non-Japanese natives that serve
as our target for detection. The BTEC we used
consists of almost 200,000 sentences.

We used almost 160,000 sentences for the de-
velopment of the t(i, j) table, other rules used
in our method, and parameter estimations for the
method. We manually estimated the parameters
to achieve the highest F-measure for the develop-
ment sentences, and estimated the parameters as
follows: Pid = 2.5, THlen = 5, THst1 = 9.4,
THfreq = 3, THcos1 = 0.12, THcos2 = 0.02,
THed = 0.65, and THst2 = 0.89.

The developmental corpus includes almost
6,000 types of katakana words. We carried out
a closed test using the development corpus with
these parameter settings. There are two choices
for the detection method: One is the use of a dic-
tionary to judge whether the input and candidate
words are known as different words. The other
is the use of contextual similarity. Actually, in
the detection method, contextual similarity plays
a supportive role because there is a data sparseness
problem. Therefore we carried out an experiment
with four conditions. Table 3 shows the results of
recall, precision, and F-measure on these four con-
ditions.

The remaining 40,000 sentences were used as a
test set, with which we carried out an open test.
Table 4 shows the result of the open test.

There is an obvious tendency for the detection
of short words to be very difficult. We compared
an F-measure for each class of word length, with
Figure 4 showing the results in open tests with the
dictionary and without it. Both open tests were
conducted without contextual similarity. Compar-

Recall Precision F
with dictionary, with context

0.820 (296/361) 0.931 (296/318) 0.872
with dictionary, without context

0.850 (307/361) 0.930 (307/330) 0.889
without dictionary, with context

0.823 (297/361) 0.903 (297/329) 0.861
without dictionary, without context

0.850 (307/361) 0.862 (307/356) 0.856

Table 3: Closed test results

Recall Precision F
with dictionary, with context

0.827 (62/75) 0.886 (62/70) 0.855
with dictionary, without context

0.907 (68/75) 0.872 (68/78) 0.889
without dictionary, with context

0.800 (60/75) 0.822 (60/73) 0.811
without dictionary, without context

0.880 (66/75) 0.725 (66/91) 0.795

Table 4: Open test results

ing these results tells us the effect of the introduced
dictionary.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14

word length

F-measure

with dictionary

without dictionary

Figure 4: Results of open test with dictionary and
without dictionary in each word length

5 Discussion

The experimental results showed that it is very dif-
ficult to detect short variants. Thus, it is reasonable
to use a dictionary for words that we already know.
Figure 4 shows the impact of the dictionary.

Most of the detection errors are related to proper

nouns, because there are many proper nouns that
are difficult to recognize as different words, such
as “ & �'� (marii, Mary)” and “ & �'((maria,
Maria),” and so on. Furthermore, it is also hard
to differentiate these words by their contextual
vectors, because using proper nouns is indepen-
dent of context. If we can precisely detect these
proper nouns written in katakana, we will be able
to avoid such mis-detection. In practical situations,
an enormous dictionary of proper nouns such as
ENAMDICT2 would be useful for this problem.

The detection method successfully detected sev-
eral mistyped words, such as “)!� % (buran)” for
“)���	 % (buraun, Brown),” “ * �'�,+ % �.-
"/� (furiimonto hoteru)” for “ *�� + % �0- "
� (furemonto hoteru, the Fremont Hotel),” and so
on. Most of the detected mistypes were vowels,
because the string similarity is designed to be tol-
erant of mistyped vowels, and such mistypes were
detected successfully. However, it seems to be a
difficult task to detect mistypes with consonants,
because, in ordinary situations, most mistypes re-
lated to consonants seem to be completely different
words.

In addition, there are several variants that are
difficult to detect by this method. A typical ex-
ample was shown in the Introduction: “ 	1
1�2�
(uirusu)” or “ � � ��� (biirusu)” for the English
word virus. This type of variant includes drastic
changes; for instance, the ordinary edit distance
between “ 	�
3�2� (uirusu)” and “ � � �2� (bi-
irusu)” is four, and the similarity derived from the
distance is too small (0.5) to identify it as the same
word. Moreover, there is another type of ortho-
graphic variant that has changed with time. BTEC
includes such an example: for the English word
milkshake, both “ 45�768 �:9 (mirukuseeki)”
and “ 4;�<61#!= � 6 (mirukusyeeku)” exist. We
have to be careful of this problem when we process
a corpus that has been developed for quite some
time, and that includes both very old texts and new
ones.

A well known problem arises here: data sparse-
ness. Orthographic variants appear less frequently
than their standard expressions, and we cannot ex-
pect to have much contextual information for or-
thographic variants. Therefore, we always have
to cope with this problem even when we process
very large corpus, because the appearance of vari-
ants does not relate to the size of the corpus. The

2http://www.csse.monash.edu.au/˜jwb/
enamdict doc.html

basic idea of the contextual vector seems very rea-
sonable for words that appear frequently in a target
corpus. However, experimental results showed that
the contextual similarity did not work as expected
because of this data sparseness. Consequently, to
achieve reliable contextual similarity, we have to
use sentences in which a candidate of the variant is
used. On-line WWW searching seems to be good
as such a resource for variant detection because
WWW texts include many variants.

On the other hand, there was a pair of words
that have very high string similarity and contextual
similarity, but they are not variants. That pair is
“ #?> %�@A% (syanpen champagne): B2
 %�@A%
(sainpen sign pen / felt-tip pen),” and examples of
sentences that include each word are as follows:

syanpen o gurasu de kudasai. (Give me
a glass of champagne, please.)

sainpen o ippon kudasai. (Give me a felt-
tip pen, please.)

Both words are arguments of the same verb “ku-
dasai,” and the vectors derived from the analyzed
result of these sentences would be very similar.
Practically, these words are identified as different
words by using a dictionary. However, when us-
ing only contextual similarity, these words would
be judged as variants.

It is not easy to detect all of the variants by ap-
plying the proposed method. Indeed, the method
employs contextual information to achieve good
performance, but the contextual information used
also includes variants, and the variants cause mis-
matches. In addition, not only katakana variants,
but also other orthographic variants, such as kanji
and cross-script orthographic variants (e.g., kanji
vs. hiragana, hiragana vs. katakana, and so on),
should be detected to achieve high precision and
recall.

6 Related works

To date, there have been several studies conducted
on the detection of transliterated orthographic vari-
ants(e.g., (Kubota et al., 1994; Shishibori et al.,
1994)). Most of these, however, targeted a rel-
atively clean and well organized corpus or they
assumed artificial situations. As a practical mat-
ter, not only predictable orthographic variants but
also misspelled words should be detected. The de-
tection of transliterated orthographic variants and
spelling corrections have been studied separately,

and there is no study that is directly related to our
work.

There are several studies on transliteration (e.g.,
(Knight and Graehl, 1997)), and they tell us that
machine transliteration of language pairs that em-
ploy very different alphabets and sound systems is
extremely difficult, and that the technology is still
to immature for use in practical processing.

7 Conclusion

We propose a method to detect transliterated ortho-
graphic variants. The method is marked by the use
of string similarity and contextual similarity via
contextual vectors. The method achieved a 0.889
F-measure in an open test. The results showed that
detection of short word variants is very difficult,
and a dictionary raised the precision for such short
words. However, contextual similarity did not con-
tribute as expected to the detection of orthographic
variants.

Acknowledgements

This research was supported in part by the Min-
istry of Public Management, Home Affairs, Posts
and Telecommunications. The authors thank the
anonymous reviewers for their suggestive and en-
couraging comments.

References
Kevin Knight and Jonathan Graehl. 1997. Machine

transliteration. In Proceedings of the Conference
of the Association for Computational Linguistics
(ACL), pages 128–135.

Jun’ichi Kubota, Yukie Shoda, Masahiro Kawai, Hi-
rofumi Tamagawa, and Ryoichi Sugimura. 1994.
A method of detecting katakana variants in a doc-
ument. The Transaction of IPSJ, 35(12):2745–2751.
(in Japanese).

Masami Shishibori, Kazuhiko Tsuda, and Jun’ichi Aoe.
1994. A method for generation and normalization
of katakana variant notations. The Transactions of
IEICE, J-77-DII(2):380–387. (in Japanese).

Toshiyuki Takezawa, Eiichiro Sumita, Fumiaki Sugaya,
Hirofumi Yamamoto, and Seiichi Yamamoto. 2002.
Toward a broad-coverage bilingual corpus for speech
translation of travel converstaions in the real world.
In Proceedings of LREC 2002, volume 1, pages 147–
152.

