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Abstract

In statistical machine translation, the gen-
eration of a translation hypothesis is com-
putationally expensive. If arbitrary re-
orderings are permitted, the search prob-
lem is NP-hard. On the other hand,
if we restrict the possible reorderings
in an appropriate way, we obtain a
polynomial-time search algorithm. We in-
vestigate different reordering constraints
for phrase-based statistical machine trans-
lation, namely the IBM constraints and
the ITG constraints. We present effi-
cient dynamic programming algorithms
for both constraints. We evaluate the con-
straints with respect to translation quality
on two Japanese–English tasks. We show
that the reordering constraints improve
translation quality compared to an un-
constrained search that permits arbitrary
phrase reorderings. The ITG constraints
preform best on both tasks and yield sta-
tistically significant improvements com-
pared to the unconstrained search.

1 Introduction

In statistical machine translation, we are given
a source language (‘French’) sentence fJ

1 =
f1 . . . fj . . . fJ , which is to be translated into
a target language (‘English’) sentence eI

1 =
e1 . . . ei . . . eI . Among all possible target lan-
guage sentences, we will choose the sentence
with the highest probability:

êI
1 = argmax

eI
1

{
Pr(eI

1|fJ
1 )

}

= argmax
eI
1

{
Pr(eI

1) · Pr(fJ
1 |eI

1)
}

This decomposition into two knowledge
sources is known as the source-channel ap-
proach to statistical machine translation
(Brown et al., 1990). It allows an independent
modeling of target language model Pr(eI

1) and
translation model Pr(fJ

1 |eI
1). The target lan-

guage model describes the well-formedness of

the target language sentence. The translation
model links the source language sentence to
the target language sentence. It can be fur-
ther decomposed into alignment and lexicon
model. The argmax operation denotes the
search problem, i.e. the generation of the out-
put sentence in the target language. We have
to maximize over all possible target language
sentences.

An alternative to the classical source-
channel approach is the direct modeling of the
posterior probability Pr(eI

1|fJ
1 ). Using a log-

linear model (Och and Ney, 2002), we obtain:

Pr(eI
1|fJ

1 ) = exp

(
M∑

m=1

λmhm(eI
1, f

J
1 )

)
· Z(fJ

1 )

Here, Z(fJ
1 ) denotes the appropriate normal-

ization constant. As a decision rule, we obtain:

êI
1 = argmax

eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}

This approach is a generalization of the
source-channel approach. It has the advan-
tage that additional models or feature func-
tions can be easily integrated into the over-
all system. The model scaling factors λM

1 are
trained according to the maximum entropy
principle, e.g. using the GIS algorithm. Al-
ternatively, one can train them with respect
to the final translation quality measured by
some error criterion (Och, 2003).

In this paper, we will investigate the re-
ordering problem for phrase-based translation
approaches. As the word order in source and
target language may differ, the search algo-
rithm has to allow certain reorderings. If arbi-
trary reorderings are allowed, the search prob-
lem is NP-hard (Knight, 1999). To obtain an
efficient search algorithm, we can either re-
strict the possible reorderings or we have to
use an approximation algorithm. Note that in



the latter case we cannot guarantee to find an
optimal solution.

The remaining part of this work is struc-
tured as follows: in the next section, we
will review the baseline translation system,
namely the alignment template approach. Af-
terward, we will describe different reordering
constraints. We will begin with the IBM con-
straints for phrase-based translation. Then,
we will describe constraints based on inver-
sion transduction grammars (ITG). In the fol-
lowing, we will call these the ITG constraints.
In Section 4, we will present results for two
Japanese–English translation tasks.

2 Alignment Template Approach

In this section, we give a brief description of
the translation system, namely the alignment
template approach. The key elements of this
translation approach (Och et al., 1999) are the
alignment templates. These are pairs of source
and target language phrases with an alignment
within the phrases. The alignment templates
are build at the level of word classes. This
improves the generalization capability of the
alignment templates.

We use maximum entropy to train the
model scaling factors (Och and Ney, 2002).
As feature functions we use a phrase transla-
tion model as well as a word translation model.
Additionally, we use two language model fea-
ture functions: a word-based trigram model
and a class-based five-gram model. Further-
more, we use two heuristics, namely the word
penalty and the alignment template penalty.
To model the alignment template reorderings,
we use a feature function that penalizes re-
orderings linear in the jump width.

A dynamic programming beam search al-
gorithm is used to generate the translation
hypothesis with maximum probability. This
search algorithm allows for arbitrary reorder-
ings at the level of alignment templates.
Within the alignment templates, the reorder-
ing is learned in training and kept fix during
the search process. There are no constraints
on the reorderings within the alignment tem-
plates.

This is only a brief description of the align-
ment template approach. For further details,
see (Och et al., 1999; Och and Ney, 2002).

3 Reordering Constraints

Although unconstrained reordering looks per-
fect from a theoretical point of view, we find
that in practice constrained reordering shows
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Figure 1: Illustration of the IBM constraints
with k = 3, i.e. up to three positions may be
skipped.

better performance. The possible advantages
of reordering constraints are:

1. The search problem is simplified. As a
result there are fewer search errors.

2. Unconstrained reordering is only helpful
if we are able to estimate the reorder-
ing probabilities reliably, which is unfor-
tunately not the case.

In this section, we will describe two variants
of reordering constraints. The first constraints
are based on the IBM constraints for single-
word based translation models. The second
constraints are based on ITGs. In the follow-
ing, we will use the term “phrase” to mean ei-
ther a sequence of words or a sequence of word
classes as used in the alignment templates.

3.1 IBM Constraints
In this section, we describe restrictions on the
phrase reordering in spirit of the IBM con-
straints (Berger et al., 1996).

First, we briefly review the IBM constraints
at the word level. The target sentence is pro-
duced word by word. We keep a coverage vec-
tor to mark the already translated (covered)
source positions. The next target word has to
be the translation of one of the first k uncov-
ered, i.e. not translated, source positions. The
IBM constraints are illustrated in Figure 1.
For further details see e.g. (Tillmann and Ney,
2003).

For the phrase-based translation approach,
we use the same idea. The target sentence is
produced phrase by phrase. Now, we allow
skipping of up to k phrases. If we set k = 0,
we obtain a search that is monotone at the
phrase level as a special case.



The search problem can be solved using dy-
namic programming. We define a auxiliary
function Q(j, S, e). Here, the source position
j is the first unprocessed source position; with
unprocessed, we mean this source position is
neither translated nor skipped. We use the
set S = {(jn, ln)|n = 1, ..., N} to keep track
of the skipped source phrases with lengths ln
and starting positions jn. We show the formu-
lae for a bigram language model and use the
target language word e to keep track of the
language model history. The symbol $ is used
to mark the sentence start and the sentence
end. The extension to higher-order n-gram
language models is straightforward. We use
M to denote the maximum phrase length in
the source language. We obtain the following
dynamic programming equations:

Q(1, ∅, $) = 1

Q(j, S, e) = max
{

max
e′,ẽ

{
max

j−M≤j′<j
Q(j′, S, e′) · p(f j−1

j′ |ẽ) · p(ẽ|e′),
max

(j′,l)∈S′
S=S′\{(j′,l)}

Q(j, S′, e′) · p(f j′+l−1
j′ |ẽ) · p(ẽ|e′)

}
,

max
j−M≤j′<j

S′:S=S′∪{(j′,j−j′)}∧|S′|<k

Q(j′, S′, e)
}

Q(J + 2, ∅, $) = max
e

Q(J + 1, ∅, e) · p($|e)

In the recursion step, we have distinguished
three cases: in the first case, we translate the
next source phrase. This is the same expan-
sion that is done in monotone search. In the
second case, we translate a previously skipped
phrase and in the third case we skip a source
phrase. For notational convenience, we have
omitted one constraint in the preceding equa-
tions: the final word of the target phrase ẽ is
the new language model state e (using a bi-
gram language model).

Now, we analyze the complexity of this al-
gorithm. Let E denote the vocabulary size of
the target language and let Ẽ denote the max-
imum number of phrase translation candidates
for a given source phrase. Then, J ·(J ·M)k ·E
is an upper bound for the size of the Q-table.
Once we have fixed a specific element of this
table, the maximization steps can be done in
O(E · Ẽ · (M + k − 1) + (k − 1)). There-
fore, the complexity of this algorithm is in
O(J ·(J ·M)k ·E ·(E ·Ẽ ·(M +k−1)+(k−1))).
Assuming k < M , this can be simplified to
O((J ·M)k+1 ·E2 · Ẽ). As already mentioned,
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Figure 2: Illustration of monotone and
inverted concatenation of two consecutive
blocks.

setting k = 0 results in a search algorithm that
is monotone at the phrase level.

3.2 ITG Constraints

In this section, we describe the ITG con-
straints (Wu, 1995; Wu, 1997). Here, we inter-
pret the input sentence as a sequence of blocks.
In the beginning, each alignment template is a
block of its own. Then, the reordering process
can be interpreted as follows: we select two
consecutive blocks and merge them to a single
block by choosing between two options: either
keep the target phrases in monotone order or
invert the order. This idea is illustrated in Fig-
ure 2. The dark boxes represent the two blocks
to be merged. Once two blocks are merged,
they are treated as a single block and they can
be only merged further as a whole. It is not
allowed to merge one of the subblocks again.

3.2.1 Dynamic Programming Algorithm

The ITG constraints allow for a polynomial-
time search algorithm. It is based on the fol-
lowing dynamic programming recursion equa-
tions. During the search a table Qjl,jr,eb,et

is constructed. Here, Qjl,jr,eb,et denotes the
probability of the best hypothesis translating
the source words from position jl (left) to po-
sition jr (right) which begins with the target
language word eb (bottom) and ends with the
word et (top). This is illustrated in Figure 3.

The initialization is done with the phrase-
based model described in Section 2. We in-
troduce a new parameter pm (m=̂ monotone),
which denotes the probability of a monotone
combination of two partial hypotheses. Here,
we formulate the recursion equation for a bi-
gram language model, but of course, the same
method can also be applied for a trigram lan-
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Figure 3: Illustration of the Q-table.

guage model.

Qjl,jr,eb,et =

max
jl≤k<jr,

e′,e′′

{
Q0

jl,jr,eb,et
,

Qjl,k,eb,e′ ·Qk+1,jr,e′′,et · p(e′′|e′) · pm,

Qk+1,jr,eb,e′ ·Qjl,k,e′′,et · p(e′′|e′) · (1− pm)
}

The resulting algorithm is similar to the CYK-
parsing algorithm. It has a worst-case com-
plexity of O(J3 ·E4). Here, J is the length of
the source sentence and E is the vocabulary
size of the target language.
3.2.2 Beam Search Algorithm
For the ITG constraints a dynamic program-
ming search algorithm exists as described in
the previous section. It would be more prac-
tical with respect to language model recom-
bination to have an algorithm that generates
the target sentence word by word or phrase
by phrase. The idea is to start with the beam
search decoder for unconstrained search and
modify it in such a way that it will produce
only reorderings that do not violate the ITG
constraints. Now, we describe one way to ob-
tain such a decoder. It has been pointed out
in (Zens and Ney, 2003) that the ITG con-
straints can be characterized as follows: a re-
ordering violates the ITG constraints if and
only if it contains (3, 1, 4, 2) or (2, 4, 1, 3) as
a subsequence. This means, if we select four
columns and the corresponding rows from the
alignment matrix and we obtain one of the two
patterns illustrated in Figure 4, this reordering
cannot be generated with the ITG constraints.

Now, we have to modify the beam search
decoder such that it cannot produce these two
patterns. We implement this in the follow-
ing way. During the search, we have a cover-
age vector cov of the source sentence available
for each partial hypothesis. A coverage vec-
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Figure 4: Illustration of the two reordering
patterns that violate the ITG constraints.

tor is a binary vector marking the source sen-
tence words that have already been translated
(covered). Additionally, we know the current
source sentence position jc and a candidate
source sentence position jn to be translated
next.

To avoid the patterns in Figure 4, we have
to constrain the placement of the third phrase,
because once we have placed the first three
phrases we also have determined the position
of the fourth phrase as the remaining uncov-
ered position. Thus, we check the following
constraints:

case a) jn < jc (1)
∀jn < j < jc : cov[j] → cov[j + 1]

case b) jc < jn (2)
∀jc < j < jn : cov[j] → cov[j − 1]

The constraints in Equations 1 and 2 enforce
the following: imagine, we traverse the cover-
age vector cov from the current position jc to
the position to be translated next jn. Then,
it is not allowed to move from an uncovered
position to a covered one.

Now, we sketch the proof that these con-
straints are equivalent to the ITG constraints.
It is easy to see that the constraint in Equa-
tion 1 avoids the pattern on the left-hand side
in Figure 4. To be precise: after placing the
first two phrases at (b,1) and (d,2), it avoids
the placement of the third phrase at (a,3).
Similarly, the constraint in Equation 2 avoid
the pattern on the right-hand side in Fig-
ure 4. Therefore, if we enforce the constraints
in Equation 1 and Equation 2, we cannot vio-
late the ITG constraints.

We still have to show that we can gener-
ate all the reorderings that do not violate the
ITG constraints. Equivalently, we show that
any reordering that violates the constraints in
Equation 1 or Equation 2 will also violate the
ITG constraints. It is rather easy to see that
any reordering that violates the constraint in



Table 1: Statistics of the BTEC corpus.
Japanese English

train Sentences 152 K
Words 1 044 K 893 K
Vocabulary 17 047 12 020

dev sentences 500
words 3 361 2 858

test sentences 510
words 3 498 –

Table 2: Statistics of the SLDB corpus.
Japanese English

train Sentences 15 K
Words 201 K 190 K
Vocabulary 4 757 3 663

test sentences 330
words 3 940 –

Equation 1 will generate the pattern on the
left-hand side in Figure 4. The conditions to
violate Equation 1 are the following: the new
candidate position jn is to the left of the cur-
rent position jc, e.g. positions (a) and (d).
Somewhere in between there has to be an cov-
ered position j whose successor position j + 1
is uncovered, e.g. (b) and (c). Therefore, any
reordering that violates Equation 1 generates
the pattern on the left-hand side in Figure 4,
thus it violates the ITG constraints.

4 Results

4.1 Corpus Statistics
To investigate the effect of reordering con-
straints, we have chosen two Japanese–English
tasks, because the word order in Japanese and
English is rather different. The first task is the
Basic Travel Expression Corpus (BTEC) task
(Takezawa et al., 2002). The corpus statistics
are shown in Table 1. This corpus consists of
phrasebook entries.

The second task is the Spoken Language
DataBase (SLDB) task (Morimoto et al.,
1994). This task consists of transcription of
spoken dialogs in the domain of hotel reser-
vation. Here, we use domain-specific training
data in addition to the BTEC corpus. The
corpus statistics of this additional corpus are
shown in Table 2. The development corpus is
the same for both tasks.

4.2 Evaluation Criteria
WER (word error rate). The WER is com-
puted as the minimum number of substitution,
insertion and deletion operations that have to

be performed to convert the generated sen-
tence into the reference sentence.

PER (position-independent word er-
ror rate). A shortcoming of the WER is that
it requires a perfect word order. The word or-
der of an acceptable sentence can be different
from that of the target sentence, so that the
WER measure alone could be misleading. The
PER compares the words in the two sentences
ignoring the word order.

BLEU. This score measures the precision
of unigrams, bigrams, trigrams and fourgrams
with respect to a reference translation with a
penalty for too short sentences (Papineni et
al., 2002). The BLEU score measures accu-
racy, i.e. large BLEU scores are better.

NIST. This score is similar to BLEU. It is
a weighted n-gram precision in combination
with a penalty for too short sentences (Dod-
dington, 2002). The NIST score measures ac-
curacy, i.e. large NIST scores are better.

Note that for each source sentence, we have
as many as 16 references available. We com-
pute all the preceding criteria with respect to
multiple references.

4.3 System Comparison
In Table 3 and Table 4, we show the trans-
lation results for the BTEC task. First, we
observe that the overall quality is rather high
on this task. The average length of the used
alignment templates is about five source words
in all systems. The monotone search (mon)
shows already good performance on short sen-
tences with less than 10 words. We conclude
that for short sentences the reordering is cap-
tured within the alignment templates. On the
other hand, the monotone search degrades for
long sentences with at least 10 words resulting
in a WER of 16.6% for these sentences.

We present the results for various nonmono-
tone search variants: the first one is with the
IBM constraints (skip) as described in Sec-
tion 3.1. We allow for skipping one or two
phrases. Our experiments showed that if we
set the maximum number of phrases to be
skipped to three or more the translation re-
sults are equivalent to the search without any
reordering constraints (free). The results for
the ITG constraints as described in Section 3.2
are also presented.

The unconstrained reorderings improve the
total translation quality down to a WER of
11.5%. We see that especially the long sen-
tences benefit from the reorderings resulting in
an improvement from 16.6% to 13.8%. Com-
paring the results for the free reorderings and



Table 3: Translation performance WER[%]
for the BTEC task (510 sentences). Sentence
lengths: short: < 10 words, long: ≥ 10 words;
times in milliseconds per sentence.

WER[%]
sentence length

reorder short long all time[ms]
mon 11.4 16.6 12.7 73
skip 1 10.8 13.5 11.4 134

2 10.8 13.4 11.4 169
free 10.8 13.8 11.5 194
ITG 10.6 12.2 11.0 164

Table 4: Translation performance for the
BTEC task (510 sentences).

error rates[%] accuracy measures
reorder WER PER BLEU[%] NIST
mon 12.7 10.6 86.8 14.14
skip 1 11.4 10.1 88.0 14.19

2 11.4 10.1 88.1 14.20
free 11.5 10.0 88.0 14.19
ITG 11.0 9.9 88.2 14.25

the ITG reorderings, we see that the ITG
system always outperforms the unconstrained
system. The improvement on the whole test
set is statistically significant at the 95% level.1

In Table 5 and Table 6, we show the re-
sults for the SLDB task. First, we observe
that the overall quality is lower than for the
BTEC task. The SLDB task is a spoken lan-
guage translation task and the training cor-
pus for spoken language is rather small. This
is also reflected in the average length of the
used alignment templates that is about three
source words compared to about five words for
the BTEC task.

The results on this task are similar to the
results on the BTEC task. Again, the ITG
constraints perform best. Here, the improve-
ment compared to the unconstrained search is
statistically significant at the 99% level. Com-
pared to the monotone search, the BLEU score
for the ITG constraints improves from 54.4%
to 57.1%.

5 Related Work

Recently, phrase-based translation approaches
became more and more popular. Marcu and
Wong (2002) present a joint probability model
for phrase-based translation. In (Koehn et

1The statistical significance test were done for the
WER using boostrap resampling.

Table 5: Translation performance WER[%]
for the SLDB task (330 sentences). Sentence
lengths: short: < 10 words, long: ≥ 10 words;
times in milliseconds per sentence.

WER[%]
sentence length

reorder short long all time[ms]
mon 32.0 52.6 48.1 911
skip 1 31.9 51.1 46.9 3 175

2 32.0 51.4 47.2 4 549
free 32.0 51.4 47.2 4 993
ITG 31.8 50.9 46.7 4 472

Table 6: Translation performance for the
SLDB task (330 sentences).

error rates[%] accuracy measures
reorder WER PER BLEU[%] NIST
mon 48.1 35.5 54.4 9.45
skip 1 46.9 35.0 56.8 9.71

2 47.2 35.1 57.1 9.74
free 47.2 34.9 57.1 9.75
ITG 46.7 34.6 57.1 9.76

al., 2003), various aspects of phrase-based
systems are compared, e.g. the phrase ex-
traction method, the underlying word align-
ment model, or the maximum phrase length.
In (Vogel, 2003), a phrase-based system is
used that allows reordering within a window
of up to three words. Improvements for a
Chinese–English task are reported compared
to a monotone search.

The ITG constraints were introduced in
(Wu, 1995). The applications were, for in-
stance, the segmentation of Chinese character
sequences into Chinese words and the bracket-
ing of the source sentence into sub-sentential
chunks. Investigations on the IBM constraints
(Berger et al., 1996) for single-word based sta-
tistical machine translation can be found e.g.
in (Tillmann and Ney, 2003). A comparison of
the ITG constraints and the IBM constraints
for single-word based models can be found in
(Zens and Ney, 2003). In this work, we investi-
gated these reordering constraints for phrase-
based statistical machine translation.

6 Conclusions

We have presented different reordering con-
straints for phrase-based statistical machine
translation, namely the IBM constraints and
the ITG constraints, as well as efficient dy-
namic programming algorithms. Transla-
tion results were reported for two Japanese–



English translation tasks. Both type of re-
ordering constraints resulted in improvements
compared to a monotone search. Restrict-
ing the reorderings according to the IBM con-
straints resulted already in a translation qual-
ity similar to an unconstrained search. The
translation results with the ITG constraints
even outperformed the unconstrained search
consistently on all error criteria. The improve-
ments have been found statistically significant.

The ITG constraints showed the best per-
formance on both tasks. Therefore we plan to
further improve this method. Currently, the
probability model for the ITG constraints is
very simple. More sophisticated models, such
as phrase dependent inversion probabilities,
might be promising.
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