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Abstract
Tree-based approaches to alignment model
translation as a sequence of probabilistic op-
erations transforming the syntactic parse tree
of a sentence in one language into that of the
other. The trees may be learned directly from
parallel corpora (Wu, 1997), or provided by a
parser trained on hand-annotated treebanks (Ya-
mada and Knight, 2001). In this paper, we
compare these approaches on Chinese-English
and French-English datasets, and find that au-
tomatically derived trees result in better agree-
ment with human-annotated word-level align-
ments for unseen test data.

1 Introduction
Statistical approaches to machine translation, pio-
neered by Brown et al. (1990), estimate parame-
ters for a probabilistic model of word-to-word cor-
respondences and word re-orderings directly from
large corpora of parallel bilingual text. In re-
cent years, a number of syntactically motivated ap-
proaches to statistical machine translation have been
proposed. These approaches assign a parallel tree
structure to the two sides of each sentence pair, and
model the translation process with reordering oper-
ations defined on the tree structure. The tree-based
approach allows us to represent the fact that syn-
tactic constituents tend to move as unit, as well as
systematic differences in word order in the gram-
mars of the two languages. Furthermore, the tree
structure allows us to make probabilistic indepen-
dence assumptions that result in polynomial time
algorithms for estimating a translation model from
parallel training data, and for finding the highest
probability translation given a new sentence.

Wu (1997) modeled the reordering process with
binary branching trees, where each production
could be either in the same or in reverse order going
from source to target language. The trees of Wu’s
Inversion Transduction Grammar were derived by
synchronously parsing a parallel corpus, using a
grammar with lexical translation probabilities at the
leaves and a simple grammar with a single nonter-

minal providing the tree structure. While this gram-
mar did not represent traditional syntactic categories
such as verb phrases and noun phrases, it served
to restrict the word-level alignments considered by
the system to those allowable by reordering opera-
tions on binary trees. This restriction corresponds
to intuitions about the alignments that could be pro-
duced by systematic differences between the two
language’s grammars, and allows for a polynomial
time algorithm for finding the highest-probability
alignment, and for re-estimation of the lexical trans-
lation and grammar probabilities using the Expecta-
tion Maximization algorithm.

Yamada and Knight (2001) present an algorithm
for estimating probabilistic parameters for a simi-
lar model which represents translation as a sequence
of re-ordering operations over children of nodes in
a syntactic tree, using automatic parser output for
the initial tree structures. This gives the translation
model more information about the structure of the
source language, and further constrains the reorder-
ings to match not just a possible bracketing as in Wu
(1997), but the specific bracketing of the parse tree
provided.

In this paper, we make a direct comparison
of a syntactically unsupervised alignment model,
based on Wu (1997), with a syntactically super-
vised model, based on Yamada and Knight (2001).
We use the term syntactically supervised to indicate
that the syntactic structure in one language is given
to the training procedure. It is important to note,
however, that both algorithms are unsupervised in
that they are not provided any hand-aligned train-
ing data. Rather, they both use Expectation Maxi-
mization to find an alignment model by iteratively
improving the likelihood assigned to unaligned par-
allel sentences. Our evaluation is in terms of agree-
ment with word-level alignments created by bilin-
gual human annotators. We describe each of the
models used in more detail in the next two sections,
including the clone operation of Gildea (2003). The
reader who is familiar with these models may pro-
ceed directly to our experiments in Section 4, and



further discussion in Section 5.

2 The Inversion Transduction Grammar
The Inversion Transduction Grammar of Wu (1997)
can be thought as a a generative process which si-
multaneously produces strings in both languages
through a series of synchronous context-free gram-
mar productions. The grammar is restricted to bi-
nary rules, which can have the symbols in the right
hand side appear in the same order in both lan-
guages, represented with square brackets:

X → [Y Z]

or the symbols may appear in reverse order in the
two languages, indicated by angle brackets:

X → 〈Y Z〉

Individual lexical translations between English
words e and French words f take place at the leaves
of the tree, generated by grammar rules with a single
right hand side symbol in each language:

X → e/f

Given a bilingual sentence pair, a synchronous
parse can be built using a two-dimensional exten-
sion of chart parsing, where chart items are indexed
by their nonterminal Y and beginning and ending
positions l, m in the source language string, and be-
ginning and ending positions i, j in the target lan-
guage string. For Expectation Maximization train-
ing, we compute inside probabilities β(Y, l, m, i, j)
from the bottom up as outlined below:

for all l,m, n such that 1 ≤ l < m < n < Ns do
for all i, j, k such that 1 < i < j < k < Nt do

for all rules X → Y Z ∈ G do
β(X, l, n, i, k)+=
P ([Y Z]|X)β(Y, l,m, i, j)β(Z,m, n, j, k)
β(X, l, n, i, k)+=
P (〈Y Z〉|X)β(Y,m, n, i, j)β(Z, l,m, j, k)

end for
end for

end for

A similar recursion is used to compute outside
probabilities for each chart item, and the inside
and outside probabilities are combined to derive ex-
pected counts for occurrence of each grammar rule,
including the rules corresponding to individual lex-
ical translations. In our experiments we use a gram-
mar with a start symbol S, a single preterminal C,
and two nonterminals A and B used to ensure that
only one parse can generate any given word-level
alignment (ignoring insertions and deletions) (Wu,
1997; Zens and Ney, 2003). The individual lexical

translations produced by the grammar may include
a NULL word on either side, in order to represent
insertions and deletions.

3 The Tree-To-String Model

The model of Yamada and Knight (2001) can be
thought of as a generative process taking a tree in
one language as input and producing a string in
the other through a sequence of probabilistic oper-
ations. If we follow the process of an English sen-
tence’s transformation into French, the English sen-
tence is first given a syntactic tree representation by
a statistical parser (Collins, 1999). As the first step
in the translation process, the children of each node
in the tree can be re-ordered. For any node with
m children, m! re-orderings are possible, each of
which is assigned a probability Porder conditioned
on the syntactic categories of the parent node and its
children. As the second step, French words can be
inserted at each node of the parse tree. Insertions are
modeled in two steps, the first predicting whether an
insertion to the left, an insertion to the right, or no
insertion takes place with probability Pins , condi-
tioned on the syntactic category of the node and that
of its parent. The second step is the choice of the in-
serted word Pt(f |NULL), which is predicted with-
out any conditioning information. The final step,
a French translation of each original English word,
at the leaves of the tree, is chosen according to a
distribution Pt(f |e). The French word is predicted
conditioned only on the English word, and each En-
glish word can generate at most one French word,
or can generate a NULL symbol, representing dele-
tion. Given the original tree, the re-ordering, inser-
tion, and translation probabilities at each node are
independent of the choices at any other node. These
independence relations are analogous to those of a
stochastic context-free grammar, and allow for effi-
cient parameter estimation by an inside-outside Ex-
pectation Maximization algorithm. The computa-
tion of inside probabilities β, outlined below, con-
siders possible reorderings of nodes in the original
tree in a bottom-up manner:

for all nodes εi in input tree T do
for all k, l such that 1 < k < l < N do

for all orderings ρ of the children ε1...εm of εi

do
for all partitions of span k, l into
k1, l1...km, lm do

β(εi, k, l)+=
Porder (ρ|εi)

∏m

j=1
β(εj , kj , lj)

end for
end for

end for
end for



As with Inversion Transduction Grammar, many
alignments between source and target sentences are
not allowed. As a minimal example, take the tree:

A

B

X Y

Z

Of the six possible re-orderings of the three ter-
minals, the two which would involve crossing the
bracketing of the original tree (XZY and YZX)
are not allowed. While this constraint gives us a
way of using syntactic information in translation,
it may in many cases be too rigid. In part to deal
with this problem, Yamada and Knight (2001) flat-
ten the trees in a pre-processing step by collapsing
nodes with the same lexical head-word. This allows,
for example, an English subject-verb-object (SVO)
structure, which is analyzed as having a VP node
spanning the verb and object, to be re-ordered as
VSO in a language such as Arabic. Larger syntactic
divergences between the two trees may require fur-
ther relaxation of this constraint, and in practice we
expect such divergences to be frequent. For exam-
ple, a nominal modifier in one language may show
up as an adverbial in the other, or, due to choices
such as which information is represented by a main
verb, the syntactic correspondence between the two
sentences may break down completely. While hav-
ing flatter trees can make more reorderings possible
than with the binary Inversion Transduction Gram-
mar trees, fixing the tree in one language generally
has a much stronger opposite effect, dramatically re-
stricting the number of permissible alignments.

3.1 Tree-to-String With Cloning

In order to provide more flexibility in alignments, a
cloning operation was introduced for tree-to-string
alignment by Gildea (2003). The model is modified
to allow for a copy of a (translated) subtree from the
English sentences to occur, with some cost, at any
point in the resulting French sentence. For example,
in the case of the input tree

A

B

X Y

Z

a clone operation making a copy of node 3 as a new
child of B would produce the tree:

A

B

X Z Y

Z

This operation, combined with the deletion of the
original node Z, produces the alignment (XZY)
that was disallowed by the original tree reordering
model.

The probability of adding a clone of original node
εi as a child of node εj is calculated in two steps:
first, the choice of whether to insert a clone under
εj , with probability Pins(clone|εj), and the choice
of which original node to copy, with probability

Pclone(εi|clone = 1) =
Pmakeclone(εi)

∑
k Pmakeclone(εk)

where Pmakeclone is the probability of an original
node producing a copy. In our implementation,
Pins(clone) is estimated by the Expectation Max-
imization algorithm conditioned on the label of the
parent node εj , and Pmakeclone is a constant, mean-
ing that the node to be copied is chosen from all the
nodes in the original tree with uniform probability.

4 Experiments
We trained our translation models on a parallel
corpus of Chinese-English newswire text. We re-
stricted ourselves to sentences of no more than 25
words in either language, resulting in a training cor-
pus of 18,773 sentence pairs with a total of 276,113
Chinese words and 315,415 English words. The
Chinese data were automatically segmented into to-
kens, and English capitalization was retained. We
replace words occurring only once with an unknown
word token, resulting in a Chinese vocabulary of
23,783 words and an English vocabulary of 27,075
words. Our hand-aligned data consisted of 48 sen-
tence pairs also with less than 25 words in either
language, for a total of 788 English words and 580
Chinese words. A separate development set of 49
sentence pairs was used to control overfitting. These
sets were the data used by Hwa et al. (2002). The
hand aligned test data consisted of 745 individual
aligned word pairs. Words could be aligned one-
to-many in either direction. This limits the perfor-
mance achievable by our models; the IBM models
allow one-to-many alignments in one direction only,
while the tree-based models allow only one-to-one
alignment unless the cloning operation is used.

Our French-English experiments were based on
data from the Canadian Hansards made available by



Ulrich German. We used as training data 20,000
sentence pairs of no more than 25 words in ei-
ther language. Our test data consisted of 447 sen-
tence pairs of no more than 30 words, hand aligned
by Och and Ney (2000). A separate development
set of 37 sentences was used to control overfitting.
We used of vocabulary of words occurring at least
10 times in the entire Hansard corpus, resulting in
19,304 English words and 22,906 French words.
Our test set is that used in the alignment evalua-
tion organized by Mihalcea and Pederson (2003),
though we retained sentence-initial capitalization,
used a closed vocabulary, and restricted ourselves
to a smaller training corpus. We parsed the English
side of the data with the Collins parser. As an ar-
tifact of the parser’s probability model, it outputs
sentence-final punctuation attached at the lowest
level of the tree. We raised sentence-final punctu-
ation to be a daughter of the tree’s root before train-
ing our parse-based model. As our Chinese-English
test data did not include sentence-final punctuation,
we also removed it from our French-English test set.

We evaluate our translation models in terms of
agreement with human-annotated word-level align-
ments between the sentence pairs. For scoring
the viterbi alignments of each system against gold-
standard annotated alignments, we use the align-
ment error rate (AER) of Och and Ney (2000),
which measures agreement at the level of pairs of
words:

AER = 1 −
|A ∩ GP | + |A ∩ GS |

|A| + |GS |

where A is the set of word pairs aligned by the
automatic system, GS is the set marked in the
gold standard as “sure”, and GP is the set marked
as “possible” (including the “sure” pairs). In our
Chinese-English data, only one type of alignment
was marked, meaning that GP = GS . For a better
understanding of how the models differ, we break
this figure down into precision:

P =
|A ∩ GP |

|A|

and recall:

R =
|A ∩ GS |

|GS |

Since none of the systems presented in this com-
parison make use of hand-aligned data, they may
differ in the overall proportion of words that are
aligned, rather than inserted or deleted. This affects
the precision/recall tradeoff; better results with re-
spect to human alignments may be possible by ad-

justing an overall insertion probability in order to
optimize AER.

Table 1 provides a comparison of results using the
tree-based models with the word-level IBM models.
IBM Models 1 and 4 refer to Brown et al. (1993).
We used the GIZA++ package, including the HMM
model of Och and Ney (2000). We ran Model 1 for
three iterations, then the HMM model for three iter-
ations, and finally Model 4 for two iterations, train-
ing each model until AER began to increase on our
held-out cross validation data. “Inversion Transduc-
tion Grammar” (ITG) is the model of Wu (1997),
“Tree-to-String” is the model of Yamada and Knight
(2001), and “Tree-to-String, Clone” allows the node
cloning operation described above. Our tree-based
models were initialized from uniform distributions
for both the lexical translation probabilities and the
tree reordering operations, and were trained until
AER began to rise on our held-out cross-validation
data, which turned out to be four iterations for the
tree-to-string models and three for the Inversion
Transduction Grammar. French-English results are
shown in Table 2. Here, IBM Model 1 was trained
for 12 iterations, then the HMM model for 5 iter-
ations and Model 4 for 5 iterations. The ITG and
tree-to-string models were both trained for 5 itera-
tions. A learning curve for the Inversion Transduc-
tion Grammar, is shown in Figure 1, showing both
perplexity on held-out data and alignment error rate.
In general we found that while all models would in-
crease in AER if trained for too many iterations, the
increases were of only a few percent.

5 Discussion

The Inversion Transduction Grammar significantly
outperforms the syntactically supervised tree-to-
string model of Yamada and Knight (2001). The
tree-to-string and IBM models are roughly equiva-
lent. Adding the cloning operation improves tree-
to-string results by 2% precision and recall. It is
particularly significant that the ITG gets higher re-
call than the other models, when it is the only model
entirely limited to one-to-one alignments, bounding
the maximum recall it can achieve.

Our French-English experiments show only small
differences between the various systems. Overall,
performance on French-English is much better than
for Chinese-English. French-English has less re-
ordering overall, as shown by the percentage of pro-
ductions in the viterbi ITG parses that are inverted:
14% for French-English in comparison to 23% for
Chinese-English.

One possible explanation for our results is parser
error. While we describe our system as “syntacti-



Alignment
Precision Recall Error Rate

IBM Model 1 .56 .42 .52
IBM Model 4 .67 .43 .47
Inversion Transduction Grammar .68 .52 .40
Tree-to-String w/ Clone .65 .43 .48
Tree-to-String w/o Clone .63 .41 .50

Table 1: Alignment results on Chinese-English corpus. Higher precision and recall correspond to lower
alignment error rate.

Alignment
Precision Recall Error Rate

IBM Model 1 .63 .71 .34
IBM Model 4 .83 .83 .17
Inversion Transduction Grammar .82 .87 .16
Tree-to-String w/ Clone .84 .85 .15

Table 2: French-English results.

cally supervised”, in fact this supervision comes in
the form of the annotation of the Wall Street Journal
treebank on which the parser is trained, rather than
parses for our parallel training corpus. In particular,
the text we are parsing has a different vocabulary
and style of prose from the WSJ treebank, and often
the fluency of the English translations leaves some-
thing to be desired. While both corpora consist of
newswire text, a typical WSJ sentence

Pierre Vinken, 61 years old, will join the
board as a nonexecutive director Nov. 29.

contrasts dramatically with

In the past when education on opposing
Communists and on resisting Russia was
stressed, retaking the mainland and uni-
fying China became a slogan for the au-
thoritarian system, which made the uni-
fication under the martial law a tool for
oppressing the Taiwan people.

a typical sentence from our corpus.
While we did not have human-annotated gold-

standard parses for our training data, we did have
human annotated parses for the Chinese side of our
test data, which was taken from the Penn Chinese
Treebank (Xue et al., 2002). We trained a second
tree-to-string model in the opposite direction, us-
ing Chinese trees and English strings. The Chi-
nese training data was parsed with the Bikel (2002)
parser, and used the Chinese Treebank parses for
our test data. Results are shown in Table 3. Because
the ITG is a symmetric, generative model, the ITG
results in Table 3 are identical to those in Table 1.
While the experiment does not show a significant

improvement, it is possible that better parses for the
training data might be equally important.

Even when the automatic parser output is correct,
the tree structure of the two languages may not cor-
respond. Dorr (1994) categorizes sources of syntac-
tic divergence between languages, and Fox (2002)
analyzed a parallel French-English corpus, quanti-
fying how often parse dependencies cross when pro-
jecting an English tree onto a French string. Even
in this closely related language pair with gener-
ally similar word order, crossed dependencies were
caused by such common occurrences as adverb
modification of a verb, or the correspondence of
“not” to “ne pas”. Galley et al. (2004) extract trans-
lation rules from a large parsed parallel corpus that
extend in scope to tree fragments beyond a single
node; we believe that adding such larger-scale op-
erations to the translation model is likely to signifi-
cantly improve the performance of syntactically su-
pervised alignment.

The syntactically supervised model has been
found to outperform the IBM word-level alignment
models of Brown et al. (1993) for translation by
Yamada and Knight (2002). An evaluation for the
alignment task, measuring agreement with human
judges, also found the syntax-based model to out-
perform the IBM models. However, a relatively
small corpus was used to train both models (2121
Japanese-English sentence pairs), and the evalua-
tions were performed on the same data for training,
meaning that one or both models might be signifi-
cantly overfitting.

Zens and Ney (2003) provide a thorough analy-
sis of alignment constraints from the perspective of
decoding algorithms. They train the models of Wu
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Figure 1: Training curve for ITG model, showing perplexity on cross-validation data, and alignment error
rate on a separate hand-aligned dataset.

Alignment
Precision Recall Error Rate

Inversion Transduction Grammar .68 .52 .40
Tree-to-String, automatic parses .61 .48 .46
Tree-to-String, gold parses .61 .52 .44

Table 3: Chinese Tree to English String

(1997) as well as Brown et al. (1993). Decoding,
meaning exact computation of the highest probabil-
ity translation given a foreign sentence, is not pos-
sible in polynomial time for the IBM models, and
in practice decoders search through the space of hy-
pothesis translations using a set of additional, hard
alignment constraints. Zens and Ney (2003) com-
pute the viterbi alignments for German-English and
French-English sentences pairs using IBM Model
5, and then measure how many of the resulting
alignments fall within the hard constraints of both
Wu (1997) and Berger et al. (1996). They find
higher coverage for an extended version of ITG than
for the IBM decoding constraint for both language
pairs, with the unmodified ITG implementation cov-
ering about the same amount of German-English
data as IBM, and significantly less French-English
data. These results show promise for ITG as a ba-
sis for efficient decoding, but do not address which
model best aligns the original training data, as IBM-
derived alignments were taken as the gold standard,
rather than human alignments. We believe that our
results show that syntactically-motivated models are
a promising general approach to training translation
models as well to searching through the resulting

probability space.
Computational complexity is an issue for the tree-

based models presented here. While training the
IBM models with the GIZA++ software takes min-
utes, the tree-based EM takes hours. With our C im-
plementation, one iteration of the syntactically su-
pervised model takes 50 CPU hours, which can be
parallelized across machines. Our tree-based mod-
els are estimated with complete EM, while the train-
ing procedure for the IBM models samples from a
number of likely alignments when accumulating ex-
pected counts. Because not every alignment is legal
with the tree-based models, the technique of sam-
pling by choosing likely alignments according to a
simpler model is not straightforward. Nonetheless,
we feel that training times can be improved with the
right pruning and sampling techniques, as will be
necessary to train on the much larger amounts data
now available, and on longer sentences.

6 Conclusion

We present a side-by-side comparison of syntacti-
cally supervised and unsupervised tree-based align-
ment, along with the non tree-based IBM Model 4.
For Chinese-English, using trees helps the align-



ment task, but a data-derived tree structure gives
better results than projecting automatic English
parser output onto the Chinese string. The French-
English task is easier overall, and exhibits smaller
differences between the systems.
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