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Abstract 

We describe an entirely statistics-based, 
unsupervised, and language-
independent approach to multilingual 
information retrieval, which we call La-
tent Morpho-Semantic Analysis 
(LMSA). LMSA overcomes some of the 
shortcomings of related previous ap-
proaches such as Latent Semantic 
Analysis (LSA). LMSA has an impor-
tant theoretical advantage over LSA: it 
combines well-known techniques in a 
novel way to break the terms of LSA 
down into units which correspond more 
closely to morphemes. Thus, it has a 
particular appeal for use with morpho-
logically complex languages such as 
Arabic. We show through empirical re-
sults that the theoretical advantages of 
LMSA can translate into significant 
gains in precision in multilingual infor-
mation retrieval tests. These gains are 
not matched either when a standard 
stemmer is used with LSA, or when 
terms are indiscriminately broken down 
into n-grams. 

1 Introduction 

As the linguistic diversity of textual resources 
increases, and need for access to those resources 
grows, there is also greater demand for efficient 

 
© 2008. Licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 Unported license 
(http://creativecommons.org/licenses/by-nc-sa/3.0/). Some 
rights reserved. 

information retrieval (IR) methods which are 
truly language-independent. In the ideal but pos-
sibly unattainable case, an IR algorithm would 
produce equally reliable results for any language 
pair: for example, a query in English would re-
trieve equally good results in Arabic as in 
French. 

A number of developments in recent years 
have brought that goal more within reach. One of 
the factors that severely hampered early attempts 
at machine translation, for example, was the lack 
of available computing power. However, 
Moore’s Law, the driving force of change in 
computing since then, has opened the way for 
recent progress in the field, such as Statistical 
Machine Translation (SMT) (Koehn et al. 2003). 
Even more closely related to the topic of the pre-
sent paper, implementations of the Singular 
Value Decomposition (SVD) (which is at the 
heart of LSA), and related algorithms such as 
PARAFAC2 (Harshman 1972), have become 
both more widely available and more powerful. 
SVD, for example, is available in both commer-
cial off-the-shelf packages and at least one open-
source implementation designed to run on a par-
allel cluster (Heroux et  al. 2005). 

Despite these advances, there are (as yet) not 
fully surmounted obstacles to working with cer-
tain language pairs, particularly when the lan-
guages are not closely related. This is 
demonstrated in Chew and Abdelali (2008). At 
least in part, this has to do with the lexical statis-
tics of the languages concerned. For example, 
because Arabic has a much richer morphological 
structure than English and French (meaning is 
varied through the addition of prefixes and suf-
fixes rather than separate terms such as parti-
cles), it has a considerably higher type-to-token 
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ratio. Exactly this type of language-specific sta-
tistical variation seems to lead to difficulties for 
statistics-based techniques such as LSA, as evi-
denced by lower cross-language information re-
trieval (CLIR) precision for Arabic/English than 
for French/English (Chew and Abdelali 2008). 

In this paper, we present a strategy for over-
coming these difficulties. In section 2, we outline 
the basic problem and the thinking behind our 
approach: that breaking words down into mor-
phemes, or at least morphologically significant 
subconstituents, should enable greater inter-
language comparability. This in turn should in 
theory lead to improved CLIR results. Several 
alternatives for achieving this are considered in 
section 3. One of these, a novel combination of 
mutual-information-based morphological tokeni-
zation (a step beyond simple n-gram tokeniza-
tion) and SVD, is what we call LMSA. Section 4 
discusses the framework for testing our intui-
tions, and the results of these tests are presented 
and discussed in section 5. Finally, we draw 
some conclusions and outline possible directions 
for future research in section 6. 

2 The problem 

In many approaches to IR, the underlying 
method is to represent a corpus as a term-by-
document matrix in which each row corresponds 
to a unique term2, and each column to a docu-
ment in the corpus. The standard LSA frame-
work (Deerwester et al. 1990) is no different, 
except that the (sparse) term-by-document matrix 
X is subjected to SVD,  
 

X = USVT (1) 
 
where U is a smaller but dense term-by-concept 
matrix, S is a diagonal matrix of singular values, 
and V is a dense document-by-concept matrix for 
the documents used in training. Effectively, U 
and V respectively map the terms and documents 
to a single set of arbitrary concepts, such that 
semantically related terms or documents (as de-
termined by patterns of co-occurrence) will tend 
to be similar; similarity is usually measured by 
taking the cosine between two (term or docu-
ment) vectors. New documents can also be pro-
jected into the LSA ‘semantic space’ by 
multiplying their document vectors (formed in 
exactly the same way as the columns for X) by 
 
2 Pragmatically, terms can be defined very straightforwardly 
in the regular expressions language as sequences of charac-
ters delimited by non-word characters. 

the product US-1, to yield document-by-concept 
vectors. LSA is a completely unsupervised ap-
proach to IR in that associations between terms 
simply fall out when SVD is applied to the data. 

With cross-language or multilingual LSA, the 
approach differs little from that just outlined. The 
only required modification is in the training data: 
the term-by-document matrix must be formed 
from a parallel corpus, in which each document 
is the combination of text from the parallel lan-
guages (as described in Berry et al. 1994). 
Clearly, this IR model cannot be deployed to any 
languages not in the parallel corpus used for 
training SVD. However, recent work (Chew et 
al. 2007) shows not only that there is no limit (at 
least up to a certain point) to the number of lan-
guages that can be processed in parallel, but that 
precision actually increases for given language 
pairs as more other languages are included. In 
practice, the factors which limit the addition of 
parallel languages are likely to be computational 
power and the availability of parallel aligned 
text. As noted in section 1, the first of these is 
less and less of an issue; and regarding the sec-
ond, parallel corpora (which are the mainstay of 
many current approaches to computational lin-
guistics and IR, particularly in real-world appli-
cations) are becoming increasingly available. 
Substantially all of the Bible, in particular, is al-
ready electronically available in at least 40-50 
languages from diverse language families (Biola 
University 2005-2006). 

Yet, there are clearly variations in how well 
CLIR works. In previous results (Chew et al. 
2007, Chew and Abdelali 2008) it is noticeable 
in particular that the results for Arabic and Rus-
sian (the two most morphologically complex 
languages for which they present results) are 
consistently poorer than they are for other lan-
guages. To our knowledge, no solution for this 
has been proposed and validated. Ideally, a solu-
tion would both make sense theoretically (or lin-
guistically) and be statistics-based rather than 
rule-based, consistent with the general frame-
work of LSA and other recent developments in 
the field, such as SMT, and avoiding the need to 
build a separate grammar for every new language 
– an expensive undertaking. 

Translation Types Tokens Ratio 
English (KJV) 12,335 789,744 1.56% 
French (Darby) 20,428 812,947 2.51% 
Spanish (RV 1909) 28,456 704,004 4.04% 
Russian (Syn 1876) 47,226 560,524 8.43% 
Arabic (S. Van Dyke) 55,300 440,435 12.56% 

Table 1. Lexical statistics in a parallel corpus 
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To begin to assess the problem, one can com-
pare the lexical statistics for the Bible from 
Chew et al. (2007), which should be directly 
comparable since they are from a parallel corpus. 
These are arranged in Table 1 in order of type-to-
token ratio. 

This ordering also corresponds to the ordering 
of languages on a scale from ‘analytic’ to ‘syn-
thetic’: meaning is shaped in the former by the 
use of particles and word order, and in the latter 
by inflection and suffixation. Some examples 
illustrating differences between Russian and 
English in this respect are given in Table 2. 

English I read you read they read 
Russian читаю читаешь читают 

Table 2. Analytic versus synthetic languages 
 

The element in Russian, of course, which cor-
responds to ‘read’ is the stem ‘чита’, but this is 
embedded within a larger term. Hence, in all 
three examples, Russian takes one term to ex-
press what in English takes two terms. The same 
occurs (although to a lesser extent) in English, in 
which ‘read’ and ‘reads’ are treated as distinct 
terms. Without any further context (such as sen-
tences in which these terms are instantiated), the 
similarity in meaning between ‘read’ and ‘reads’ 
will be readily apparent to any linguist, simply 
because of the shared orthography and morphol-
ogy. But for an approach like standard LSA in 
which terms are defined simply as distinct enti-
ties delimited by non-word characters, the mor-
phology is considered immaterial – it is invisible. 
The only way a standard term-based approach 
can detect any similarity between ‘read’ and 
‘reads’ is through the associations of terms in 
documents. Clearly, then, such an approach op-
erates under a handicap. 

Two unfortunate consequences will inevitably 
result from this. First, some terms will be treated 
as out-of-vocabulary even when at least some of 
the semantics could perhaps have been derived 
from a part of the term. For example, if the train-
ing corpus contains ‘read’ and ‘reads’ but not 
‘reading’, valuable information is lost every time 
‘reading’ is encountered in a new document to 
which LSA might be deployed. Secondly, asso-
ciations that should be made between in-
vocabulary terms will also be missed. Perhaps a 
reason that more attention has not been devoted 
to this is that the problem can largely be disre-
garded in highly analytic languages like English. 
But, as previous results such as Chew and Abde-
lali’s (2008) show, for a language like Arabic, 

the adverse consequences of a morphology-blind 
approach are more severe. The question then is: 
how can information which is clearly available in 
the training corpus be more fully leveraged with-
out sacrificing efficiency? 

3 Possible solutions 

3.1 Replacing terms with n-grams 

At first glance, one might think that stemming 
would be an answer. Stemming has been shown 
to improve IR, in particular for morphologically 
complex languages (recent examples, including 
with Arabic, are Lavie et al. 2004 and Abdou et 
al. 2005). We are not aware, however, of any 
previous results that show unequivocally that 
stemming is beneficial specifically in CLIR. 
Chew and Abdelali (2008) examine the use of a 
light stemmer for Arabic (Darwish 2002), and 
while this does result in a small overall increase 
in overall precision, there is paradoxically no 
increase for Arabic. The problem may be that the 
approach for Arabic needs to be matched by a 
similar approach for other languages in the paral-
lel corpus. However, since stemmers are usually 
tailored to particular languages – and may even 
be unavailable for some languages – use of exist-
ing stemmers may not always be an option. 

Another more obviously language-
independent approach is to replace terms with 
character n-grams3. This is feasible for more or 
less any language, regardless of script. Moreover, 
implementation of a similar idea is described in 
McNamee and Mayfield (2004) and applied spe-
cifically to CLIR. However, McNamee and May-
field’s CLIR results are solely for European 
languages written in the Roman script. This is 
why they are able to obtain, in their words, ‘sur-
prisingly good results… without translation [of 
the query]’, and without using LSA in any form. 
With related languages in the same script, and 
particularly when n-grams are used in place of 
terms, the existence of cognates means that many 
translations can easily be identified, since they 
probably share many of the same n-grams (e.g. 
French ‘parisien’ versus English ‘Parisian’). 
When languages do not all share the same script 
or come from the same language family, how-
ever, the task can be considerably harder. 

Since the approach of n-gram tokenization has 
the advantages of being entirely statistically-
 
3 Hereafter, we use the term ‘n-grams’ to refer specifically 
to character (not word) n-grams. 
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based and language-independent, however, we 
examined whether it could be combined with 
LSA to allow CLIR (including cross-script re-
trieval), and whether this would lead to any ad-
vantage over term-based LSA. Our intuition was 
that some (although not all) n-grams would cor-
respond to morphologically significant subcon-
stituents of terms, such as ‘read’ from ‘reading’, 
and therefore associations at the morpheme level 
might be facilitated. The steps for this approach 
are listed in Table 3. 

1 Form a term-by-document array from the paral-
lel corpus as described above 

2 For each term, list all (overlapping) n-grams4

3 Replace terms in the term-by-document array 
with n-grams, to form an n-gram-by-document 
array 

4 Subject the n-gram-by-document array to SVD 
to produce an n-gram-by-concept U matrix, sin-
gular values (the diagonal S matrix), and docu-
ment-by-concept V matrix 

5 Project new documents into the semantic space 
by multiplying their vectors by US-1 

Table 3. Steps for n-gram-based LSA 
 

Under all approaches, we selected the same 
log-entropy term weighting scheme that we used 
for standard LSA. Thus, whether a term t stands 
for a wordform or an n-gram, its weighted fre-
quency W in a particular document k is given by: 

 
W = log2 (F + 1) × (1 + Ht / log2 (N))α (2) 

 
where F is the raw frequency of t in k, Ht is the 
entropy of the term or n-gram across all docu-
ments, N is the number of documents in the cor-
pus, and α is some arbitrary constant (a power to 
which the global weight is raised).  We have 
found that an α > 1 improves precision by chang-
ing the relative distribution of weighted frequen-
cies. Common terms with high entropy become 
much less influential in the SVD.  

It should be noted that step (2) in Table 3 is 
similar to McNamee and Mayfield’s approach, 
except that we did not include word-spanning n-
grams, owing to computational constraints. We 
also tried two variants of step (2), one in which 
all n-grams were of the same length (as per 
McNamee and Mayfield 2004), and one in which 
n-grams of different lengths were mixed. Under 
the second of these, the number of rows in both 
the term-by-document and U matrices is of 
course considerably larger. For example, Table 4 

 
4 As an example, for ‘cat’, the complete list of overlapping 
n-grams would be ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, and ‘cat’. 

shows that the number of rows in the n-gram-by-
document matrix for English (EN) under the first 
variant (with n = 6) is 19,801, while under the 
second (with n ≤ 6) it is 58,907. Comparable sta-
tistics are given for Arabic (AR), Spanish (ES), 
French (FR) and Russian (RU). 

n= AR EN ES FR RU 
1 35 27 41 41 47
2 939 516 728 708 827
3 11,127 4,267 5,563 5,067 7,808
4 40,835 13,927 19,686 15,948 30,702
5 53,671 20,369 35,526 25,253 54,647
6 39,822 19,801 42,408 28,274 65,308

Total 146,429 58,907 103,952 75,291 159,339
Table 4. Number of distinct n-grams by language 
and length, up to length 6, based on Bible text 
 

3.2 Replacing terms with morphemes: 
LMSA 

We also attempted a related approach with 
non-overlapping n-grams. This set of 
experiments was guided by the intuition that not 
all n-grams are morphologically significant. 
Before we discuss the details of this approach, 
consider the English example ‘comingle’. Here, 
‘co’ + ‘mingle’ are likely to be more significant 
to the overall meaning than ‘coming’ + ‘le’ – in 
fact, the presence of the n-gram ‘coming’ could 
be misleading in this case. One way to model this 
would be to change the weighting scheme. The 
problem with this is that the weighting for one 
token has to be contingent on the weighting for 
another in the same term. Otherwise, in this 
example, the n-gram ‘coming’ would presumably 
receive a high weighting based on its frequency 
elsewhere in the corpus. 

An alternative is to select the tokenization 
which maximizes mutual information (MI). 
Brown et al. (1992) describe one application of 
MI to identify word collocations; Kashioka et al. 
(1998) describe another, based on MI of charac-
ter n-grams, for morphological analysis of Japa-
nese. The pointwise MI of a pair s1 and s2 as 
adjacent symbols is 
 

MI = log P(s1 s2) – log P(s1) – log P(s2) (3) 
 
If s1 follows s2 less often than expected on the 
basis of their independent frequencies, then MI is 
negative; otherwise, it is positive. 

In our application, we want to consider all 
candidate tokenizations, sum MI for each candi-
date, and rule out all but one candidate. A to-
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kenization is a candidate if it exhaustively parses 
the entire string and has no overlapping tokens. 
Thus, for ‘comingle’, co+mingle, coming+le, 
comingle, c+o+m+i+n+g+l+e, etc., are some of 
the candidates, but comi+ngl and com+mingle 
are not. To obtain MI, we need to compute the 
log probability (logp) of every n-gram in the cor-
pus. If Sk (k = 1, …, K) denotes the set of all n-
grams of length k, and sn is a particular n-gram of 
length n, then we compute logp for sn as: 
 

logp = log F(sn) – log Σ (F(Sn))  (4) 
 
where F(sn) is the frequency of sn in the corpus, 
and Σ (F(Sn)) is the sum of the frequencies of all 
Sn in the corpus.5 In all cases, logp is negative, 
and MI is maximized when the magnitude of the 
sum of logp for all elements in the tokenization 
(also negative) is minimized, i.e. closest to zero. 
Tokenizations consisting of one, two or more 
elements (respective examples are comingle, 
co+mingle, and co+ming+le) will all receive a 
score, although those with fewer elements will 
tend to be favored. 

We considered some minor variants in the set-
tings for this approach in which word-initial and 
word-final n-grams were indexed separately from 
word-medial n-grams. Guided by McNamee and 
Mayfield’s (2004) finding that there is an optimal 
(language-dependent) value of k for Sk, we also 
varied the maximum length of n-grams allowed 
in tokenizations. Under all settings, we followed 
steps 3-5 from Table 3 (including SVD) from 
here on. 

This approach (which we call latent morpho-
semantic analysis), then, is like LSA, except that 
the types and tokens are statistically-derived 
morphemes rather than terms. Whatever LMSA 
variant is used, the underlying approach to mor-
phological tokenization is completely language-
independent. Example output is shown in Table 5 
for wordforms from the Russian lemma 
пресмыкаться ‘to crawl’, where the common 
stem (or at least an approximation thereof) is cor-
rectly identified. 

Wordform Tokenization 
пресмыкающемуся пресмыкаю щемуся 
пресмыкающимися пресмыкаю щимися 
пресмыкающимся пресмыкаю щимся 
пресмыкающихся пресмыкаю щихся 

Table 5. Examples of MI-based tokenization 
 

5 Note that (4) is closely related to the ‘weighted mutual 
information’ measure used in Goldsmith (2001: 172). 

We do not directly test the accuracy of these 
tokenizations. Rather, measures of CLIR preci-
sion (described in section 4) indirectly validate 
our morphological tokenizations. 

4 Testing framework 

To assess our results on a basis comparable with 
previous work, we used the same training and 
test data as used in Chew et al. (2007) and Chew 
and Abdelali (2008). The training data consists 
of the text of the Bible in 31,226 parallel chunks, 
corresponding generally to verses, in Arabic, 
English, French, Russian and Spanish. The test 
data is the text of the Quran in the same 5 lan-
guages, in 114 parallel chunks corresponding to 
suras (chapters). 

Questions are sometimes raised as to how rep-
resentative the Bible and/or Quran are of modern 
language. However, there is little question that 
the number and diversity of parallel languages 
covered by the Bible6 is not matched elsewhere 
(Resnik et al. 1999), even by more mainstream 
parallel corpora such as Europarl (Koehn 2002)7.
The diversity of languages covered is a particu-
larly important criterion for our purposes, since 
we would like to look at methods which enhance 
retrieval for languages across the analytic-
synthetic spectrum. The Bible also has the ad-
vantage of being readily available in electronic 
form: we downloaded all our data in a tab-
delimited, verse-indexed format from the ‘Un-
bound Bible’ website mentioned above (Biola 
University, 2005-2006). 

In accordance with previous work, we split the 
test set into each of the 10 possible language-pair 
combinations: AR-EN, AR-FR, EN-FR, and so 
on. For each language pair and test, 228 distinct 
‘queries’ were submitted – each query consisting 
of one of the 228 sura ‘documents’. To assess the 
aggregate performance of the framework, we 
used average precision at 1 document, hereafter 
‘P1’ (1 if the translation of the document ranked 
highest, zero otherwise – thus, a fairly strict 
measure of precision). We also measured preci-
sion on a basis not used by Chew et al. (2007) or 
Chew and Abdelali (2008): multilingual preci-
sion at 5 documents (hereafter ‘MP5’). For this, 

 
6 At December 31, 2006, complete translations existed in 
429 languages, and partial translations in 2,426 languages 
(Bible Society 2007).  
7 Since the Europarl text is extracted from the proceedings 
of the European Parliament, the languages represented are 
generally closely-related to one another (most being Ger-
manic or Romance). 
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each of the 570 documents (114 suras, each in 5 
languages) is submitted as a query. The results 
are drawn from the pool of all five languages, so 
MP5 represents the percentage, on average, of 
the top 5 documents which are translations of the 
query. This measure is still stricter than P1 (this 
is a mathematical necessity) because the retrieval 
task is harder. Essentially, MP5 measures how 
well similar documents cluster across languages, 
while P1 measures how reliably document trans-
lations are retrieved when the target language is 
known. 

5 Results and Discussion 

The following tables show the results of our 
tests. First, we present in Table 6 the results us-
ing standard LSA, in which terms are sequences 
of characters delimited by non-word characters. 
Here, in essence, we reperformed an experiment 
in Chew and Abdelali (2008). 

P1 (overall average: 0.8796) 
AR EN ES FR RU 

AR 1.0000 0.7544 0.7193 0.7368 0.7544 
EN 0.7719 1.0000 0.9123 0.9386 0.9474 
ES 0.6316 0.9298 1.0000 0.9298 0.8947 
FR 0.7719 0.9035 0.9298 1.0000 0.9386 
RU 0.7719 0.9298 0.9035 0.9211 1.0000 

MP5: AR 0.4456, EN 0.7211, ES 0.6649,  
FR 0.7614, RU 0.6947; overall average: 0.6575 

Table 6. Results with standard LSA 
 

Our results differ from Chew and Abdelali’s 
(2008) – our precision is higher – because we use 
a different value of α in equation (2) above (here, 
1.8 rather than 1). Generally, we selected α so as 
to maximize MP5; discussion of this is beyond 
the scope of this paper, and not strictly relevant 
in any case, since we present like-for-like com-
parisons throughout this section. However, Table 
6 shows clearly that our results replicate those 
previously published, in that precision for Arabic 
(the most ‘synthetic’ of the five languages) is 
consistently lower than for the other four. 

The next set of results (in Table 7) is for LSA 
with SVD of an array in which the rows corre-
spond to all overlapping, but not word-spanning, 
n-grams of fixed length. The best results here, for 
n=4, are essentially no better on average than 
those obtained with standard LSA. However, 
averaging across languages obscures the fact that 
results for Arabic have significantly improved 
(for example, where Arabic documents are used 
as queries, MP5 is now 0.6205 instead of 
0.4456). Still, the fact that average MP5 is essen-

tially unchanged means that this is at the expense 
of results for other languages. 

n = Average P1 Average MP5 
3 0.8340 0.4951 
4 0.8779 0.6761 
5 0.8232 0.6365 
6 0.6957 0.5197 
7 0.5321 0.3986 

Table 7. Results with LSA / overlapping n-grams 
of fixed length 
 

Now we present results in Table 8 where SVD 
is performed on an array in which the rows cor-
respond to all overlapping, but not word-
spanning, n-grams of any length (varying maxi-
mum length). 

n ≤ Average P1 Average MP5 
3 0.8235 0.3909 
4 0.9039 0.6256 
5 0.9095 0.6839 
6 0.8863 0.6716 
7 0.8635 0.6470 

Table 8. Results with LSA / overlapping n-grams 
of variable length 
 
Here, the best results (with n<=5) more clearly 
improve upon LSA: the increases in both P1 and 
MP5, though each only about 0.03 in absolute 
terms, are highly significant (p < 0.005). Very 
likely this is related to the fact that when n-grams 
are used in place of words, the out-of-vocabulary 
problem is alleviated. But there is quite a high 
computational cost, which will become apparent 
in Table 10 and the discussion accompanying it. 

A practical advantage of the ‘morpheme’-by-
document array of LMSA, on the other hand, is 
that this cost is substantially reduced. This is be-
cause, as already mentioned, the vast majority of 
n-grams are eliminated from consideration. 
However, does taking this step significantly hurt 
performance? The results for LMSA presented in 
Table 9 provide an answer to this. 

For P1, the results are comparable to standard 
LSA when we select settings of n ≤ 7 (maximum 
permitted morpheme length) or above. But under 
the stricter MP5 measure, LMSA not only sig-
nificantly outperforms standard LSA (p < 0.001, 
at n ≤ 9); the results are also superior to those 
obtained under any other method we tested. The 
improvement in MP5 is comparable to that for 
P1 – 0.677 to 0.707 – when Chew and Abdelali 
(2008) use the Darwish Arabic light stemmer to 
provide input to LSA; our approach, however, 
has the advantage that it is fully unsupervised. 
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n ≤ Average P1 Average MP5 
4 0.6947 0.4411 
5 0.8151 0.6102 
6 0.8614 0.6793 
7 0.8709 0.6912 
8 0.8663 0.6856 
9 0.8765 0.6909 
10 0.8772 0.6740 

Table 9. Results with LMSA8

As when n-grams are used without MI, fewer 
types are out-of-vocabulary: for example, with 
certain settings for LMSA, we found that the 
percentage of out-of-vocabulary types dropped 
from 65% under LSA to 29% under LMSA, and 
the effect was even more marked for Arabic 
taken individually (78.5% to 34.4%). This is de-
spite the fact mentioned above that LMSA arrays 
are more economical than LSA arrays: in fact, as 
Table 10 shows, 22% more economical (the size 
of the U matrix output by SVD, used to create 
vectors for new documents, is determined solely 
by the number of rows, or types). Note also that 
both LSA and LMSA are significantly more eco-
nomical than SVD with overlapping n-grams. 

Technique Rows Nonzeros 
LSA 163,745 2,684,938 
LSA with overlapping 
n-grams (where n ≤ 5) 

527,506 45,878,062 

LMSA 127,722 3,215,078 
Table 10. Comparative matrix sizes 
 

Even the results in Table 9 can still be im-
proved upon. Following McNamee and May-
field’s insight that different length n-grams may 
be optimal for different languages, we attempted 
to improve precision further by varying n inde-
pendently by language. For all languages but 
Arabic, n ≤ 9 seems to work well (either increas-
ing or decreasing maximum n resulted in a drop 
in precision), but by setting n ≤ 6 for Arabic, P1 
increased to 0.8874 and MP5 to 0.7368. As com-
parison of Table 11 with Table 6 shows, some of 
the most significant individual increases were for 
Arabic. It should however be noted that the op-
timal value for n may be dataset-dependent. 

Since n is a maximum length (unlike in 
McNamee and Mayfield’s experiments), one 
might expect that increasing n should never re-
 
8 These results are with the stipulation that word-initial and 
word-final n-grams are distinguished from word-medial n-
grams. We also ran experiments in which this distinction 
was not made. Detailed results are not presented here; suf-
fice it to say that when word-medial and other morphemes 
were not distinguished, precision was hurt somewhat (low-
ering it often by several percentage points). 

sult in a drop in precision. We believe the benefit 
to limiting the size of n is connected to Brown et 
al.’s (1992: 470) observation that ‘as n increases, 
the accuracy of an n-gram model increases, but 
the reliability of our parameter estimates, drawn 
as they must be from a limited training text, de-
creases’. Effectively, the probabilities used in MI 
are unrepresentatively high for longer n-grams 
(this becomes clear if one considers the extreme 
example of an n-gram the same length as the 
training corpus). 

P1 (overall average: 0.8874) 
AR EN ES FR RU 

AR 1.0000 0.7895 0.7719 0.7281 0.7807 
EN 0.8158 1.0000 0.9298 0.9298 0.9123 
ES 0.7807 0.9474 1.0000 0.9123 0.8684 
FR 0.7632 0.9035 0.9474 1.0000 0.8947 
RU 0.7456 0.9298 0.9298 0.9035 1.0000 

MP5: AR 0.5140, EN 0.8035, ES 0.8228,  
FR 0.8035, RU 0.7404; overall average: 0.7368 

Table 11. Best results with LMSA 
 
If setting a maximum value for n makes sense 

in general, the idea of a lower maximum for 
Arabic in particular also seems reasonable since 
Arabic words, generally written as they are with-
out vowels, contain on average fewer characters 
than the other four languages, and contain roots 
which are usually three or fewer characters long. 

6 Conclusion 

In this paper, we have demonstrated LMSA, a 
linguistically (specifically, morphologically) 
more sophisticated alternative to LSA. By com-
puting mutual information of character n-grams 
of non-fixed length, we are able to obtain an ap-
proximation to a morpheme-by-document matrix 
which can substitute for the commonly-used 
term-by-document matrix. At the same time, be-
cause mutual information is based entirely on 
statistics, rather than grammar rules, all the ad-
vantages of LSA (language-independence, speed 
of implementation and fast run-time processing) 
are retained. In fact, some of these advantages 
may be increased since the number of index 
items is often lower. 

Although from a linguist’s point of view the 
theoretical advantages of LMSA may be intrinsi-
cally satisfying, the benefit is not confined to the 
theoretical realm. Our empirical results show that 
LMSA also brings practical benefits, particularly 
when performing IR with morphologically com-
plex languages like Arabic. Principally, this 
seems to be due to two factors: alleviation of the 
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out-of-vocabulary problem and improvement in 
the associations made by SVD. 

We believe that the results we have presented 
may point the way towards still more sophisti-
cated types of analysis, particularly for multilin-
gual text. We would like to explore, for example, 
whether it is possible to use tensor decomposi-
tion methods like PARAFAC2 to leverage asso-
ciations between n-grams, words, documents and 
languages to still better advantage. 

Finally, it is worth pointing out that our ap-
proach offers an indirect way to test our statis-
tics-based approach to morphological analysis. 
The better our ‘morphemes’ correspond to mini-
mal semantic units (as theory dictates they 
should), the more coherently our system should 
work overall. In this case, our final arbiter of the 
system’s overall performance is CLIR precision. 

In short, our initial attempts appear to show 
that statistics-based morphological analysis can 
be integrated into a larger information retrieval 
architecture with some success. 
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