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Växjö University and
Uppsala University

joakim.nivre@vxu.se

Igor M. Boguslavsky
Universidad Politécnica
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Abstract

We present the first results on parsing the
SYNTAGRUS treebank of Russian with a
data-driven dependency parser, achieving
a labeled attachment score of over 82%
and an unlabeled attachment score of 89%.
A feature analysis shows that high parsing
accuracy is crucially dependent on the use
of both lexical and morphological features.
We conjecture that the latter result can be
generalized to richly inflected languages in
general, provided that sufficient amounts
of training data are available.

1 Introduction

Dependency-based syntactic parsing has become
increasingly popular in computational linguistics
in recent years. One of the reasons for the growing
interest is apparently the belief that dependency-
based representations should be more suitable for
languages that exhibit free or flexible word order
and where most of the clues to syntactic structure
are found in lexical and morphological features,
rather than in syntactic categories and word order
configurations. Some support for this view can be
found in the results from the CoNLL shared tasks
on dependency parsing in 2006 and 2007, where
a variety of data-driven methods for dependency
parsing have been applied with encouraging results
to languages of great typological diversity (Buch-
holz and Marsi, 2006; Nivre et al., 2007a).

However, there are still important differences in
parsing accuracy for different language types. For
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example, Nivre et al. (2007a) observe that the lan-
guages included in the 2007 CoNLL shared task
can be divided into three distinct groups with re-
spect to top accuracy scores, with relatively low
accuracy for richly inflected languages like Arabic
and Basque, medium accuracy for agglutinating
languages like Hungarian and Turkish, and high
accuracy for more configurational languages like
English and Chinese. A complicating factor in this
kind of comparison is the fact that the syntactic an-
notation in treebanks varies across languages, in
such a way that it is very difficult to tease apart the
impact on parsing accuracy of linguistic structure,
on the one hand, and linguistic annotation, on the
other. It is also worth noting that the majority of
the data sets used in the CoNLL shared tasks are
not derived from treebanks with genuine depen-
dency annotation, but have been obtained through
conversion from other kinds of annotation. And
the data sets that do come with original depen-
dency annotation are generally fairly small, with
less than 100,000 words available for training, the
notable exception of course being the Prague De-
pendency Treebank of Czech (Hajič et al., 2001),
which is one of the largest and most widely used
treebanks in the field.

This paper contributes to the growing litera-
ture on dependency parsing for typologically di-
verse languages by presenting the first results on
parsing the Russian treebank SYNTAGRUS (Bo-
guslavsky et al., 2000; Boguslavsky et al., 2002).
There are several factors that make this treebank
an interesting resource in this context. First of
all, it contains a genuine dependency annotation,
theoretically grounded in the long tradition of de-
pendency grammar for Slavic languages, repre-
sented by the work of Tesnière (1959) and Mel’čuk
(1988), among others. Secondly, with close to
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500,000 tokens, the treebank is larger than most
other available dependency treebanks and provides
a good basis for experimental investigations us-
ing data-driven methods. Thirdly, the Russian lan-
guage, which has not been included in previous ex-
perimental evaluations such as the CoNLL shared
tasks, is a richly inflected language with free word
order and thus representative of the class of lan-
guages that tend to pose problems for the currently
available parsing models. Taken together, these
factors imply that experiments using the SYNTA-
GRUS treebank may be able to shed further light
on the complex interplay between language type,
annotation scheme, and training set size, as deter-
minants of parsing accuracy for data-driven depen-
dency parsers.

The experimental parsing results presented in
this paper have been obtained using MaltParser,
a freely available system for data-driven depen-
dency parsing with state-of-the-art accuracy for
most languages in previous evaluations (Buchholz
and Marsi, 2006; Nivre et al., 2007a; Nivre et al.,
2007b). Besides establishing a first benchmark for
the SYNTAGRUS treebank, we analyze the influ-
ence of different kinds of features on parsing ac-
curacy, showing conclusively that both lexical and
morphological features are crucial for obtaining
good parsing accuracy. All results are based on in-
put with gold standard annotations, which means
that the results can be seen to establish an upper
bound on what can be achieved when parsing raw
text. However, this also means that results are
comparable to those from the CoNLL shared tasks,
which have been obtained under the same condi-
tions.

The rest of the paper is structured as follows.
Section 2 introduces the SYNTAGRUS treebank,
section 3 describes the MaltParser system used in
the experiments, and section 4 presents experimen-
tal results and analysis. Section 5 contains conclu-
sions and future work.

2 The SYNTAGRUS Treebank

The Russian dependency treebank, SYNTAGRUS,
is being developed by the Computational Linguis-
tics Laboratory, Institute of Information Trans-
mission Problems, Russian Academy of Sciences.
Currently the treebank contains over 32,000 sen-
tences (roughly 460,000 words) belonging to texts
from a variety of genres (contemporary fiction,
popular science, newspaper and journal articles

dated between 1960 and 2008, texts of online
news, etc.) and it is growing steadily. It is an inte-
gral but fully autonomous part of the Russian Na-
tional Corpus developed in a nationwide research
project and can be freely consulted on the Web
(http://www.ruscorpora.ru/).

Since Russian is a language with relatively free
word order, SYNTAGRUS adopted a dependency-
based annotation scheme, in a way parallel to the
Prague Dependency Treebank (Hajič et al., 2001).
The treebank is so far the only corpus of Russian
supplied with comprehensive morphological anno-
tation and syntactic annotation in the form of a
complete dependency tree provided for every sen-
tence.

Figure 1 shows the dependency tree for the
sentence Naibol~xee vozmuwenie uqastnikov
mitinga vyzval prodol�a�wi$is� rost cen
na benzin, ustanavlivaemyh neft�nymi kom-
pani�mi (It was the continuing growth of petrol
prices set by oil companies that caused the greatest
indignation of the participants of the meeting). In
the dependency tree, nodes represent words (lem-
mas), annotated with parts of speech and morpho-
logical features, while arcs are labeled with syntac-
tic dependency types. There are over 65 distinct
dependency labels in the treebank, half of which
are taken from Mel’čuk’s Meaning⇔Text Theory
(Mel’čuk, 1988). Dependency types that are used
in figure 1 include:

1. predik (predicative), which, prototypically,
represents the relation between the verbal
predicate as head and its subject as depen-
dent;

2. 1-kompl (first complement), which denotes
the relation between a predicate word as head
and its direct complement as dependent;

3. agent (agentive), which introduces the rela-
tion between a predicate word (verbal noun
or verb in the passive voice) as head and its
agent in the instrumental case as dependent;

4. kvaziagent (quasi-agentive), which relates
any predicate noun as head with its first syn-
tactic actant as dependent, if the latter is
not eligible for being qualified as the noun’s
agent;

5. opred (modifier), which connects a noun
head with an adjective/participle dependent if
the latter serves as an adjectival modifier to
the noun;
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Figure 1: A syntactically annotated sentence from the SYNTAGRUS treebank.

6. predl (prepositional), which accounts for the
relation between a preposition as head and a
noun as dependent.

Dependency trees in SYNTAGRUS may contain
non-projective dependencies. Normally, one token
corresponds to one node in the dependency tree.
There are however a noticeable number of excep-
tions, the most important of which are the follow-
ing:

1. compound words like p�tides�ti�ta�ny$i
(fifty-storied), where one token corresponds
to two or more nodes;

2. so-called phantom nodes for the representa-
tion of hard cases of ellipsis, which do not
correspond to any particular token in the sen-
tence; for example, � kupil rubaxku, a on
galstuk (I bought a shirt and he a tie), which
is expanded into � kupil rubaxku, a on
kupilPHANTOM galstuk (I bought a shirt and
he boughtPHANTOM a tie);

3. multiword expressions like po kra$ine$i mere
(at least), where several tokens correspond to
one node.

Syntactic annotation is performed semi-
automatically: sentences are first processed
by the rule-based Russian parser of an advanced
NLP system, ETAP-3 (Apresian et al., 2003) and
then edited manually by linguists who handle
errors of the parser as well as cases of ambiguity

that cannot be reliably resolved without extra-
linguistic knowledge. The parser processes raw
sentences without prior part-of-speech tagging.

Morphological annotation in SYNTAGRUS is
based on a comprehensive morphological dictio-
nary of Russian that counts about 130,000 entries
(over 4 million word forms). The ETAP-3 mor-
phological analyzer uses the dictionary to produce
morphological annotation of words belonging to
the corpus, including lemma, part-of-speech tag
and additional morphological features dependent
on the part of speech: animacy, gender, number,
case, degree of comparison, short form (of adjec-
tives and participles), representation (of verbs), as-
pect, tense, mood, person, voice, composite form,
and attenuation.

Statistics for the version of SYNTAGRUS used
for the experiments described in this paper are as
follows:

• 32,242 sentences, belonging to the fiction
genre (9.8%), texts of online news (12.4%),
newspaper and journal articles (77.8%);

• 461,297 tokens, including expressions with
non-alphabetical symbols (e.g., 10, 1.200,
$333, +70C, #) but excluding punctuation;

• 31,683 distinct word types, of which 635 with
a frequency greater than 100, 5041 greater
than 10, and 18231 greater than 1;

• 3,414 sentences (10.3%) with non-projective
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POS DEP MOR LEM LEX

TOP + + + + +
TOP−1 +
HEAD(TOP) + +
LDEP(TOP) +
RDEP(TOP) +
NEXT + + + +
NEXT+1 + + + +
NEXT+2 +
NEXT+3 +
LDEP(NEXT) +

Table 1: History-based features (TOP = token on
top of stack; NEXT = next token in input buffer;
HEAD(w) = head of w; LDEP(w) = leftmost depen-
dent of w; RDEP(w) = leftmost dependent of w).

dependencies and 3,934 non-projective de-
pendency arcs in total;

• 478 sentences (1.5%) containing phantom
nodes and 631 phantom nodes in total.

3 MaltParser

MaltParser (Nivre et al., 2007b) is a language-
independent system for data-driven dependency
parsing, based on a transition-based parsing model
(McDonald and Nivre, 2007). More precisely, the
approach is based on four essential components:

• A transition-based deterministic algorithm
for building labeled projective dependency
graphs in linear time (Nivre, 2003).

• History-based feature models for predicting
the next parser action (Black et al., 1992;
Magerman, 1995; Ratnaparkhi, 1997).

• Discriminative classifiers for mapping histo-
ries to parser actions (Kudo and Matsumoto,
2002; Yamada and Matsumoto, 2003).

• Pseudo-projective parsing for recovering non-
projective structures (Nivre and Nilsson,
2005).

In the following subsections, we briefly describe
each of these four components in turn.

3.1 Parsing Algorithm
The parser uses the deterministic algorithm for la-
beled dependency parsing first proposed by Nivre
(2003). The algorithm builds a labeled dependency
graph in one left-to-right pass over the input, us-
ing a stack to store partially processed tokens and

adding arcs using four elementary actions (where
TOP is the token on top of the stack and NEXT is
the next token):

• Shift: Push NEXT onto the stack.

• Reduce: Pop the stack.

• Right-Arc(r): Add an arc labeled r from TOP

to NEXT; push NEXT onto the stack.

• Left-Arc(r): Add an arc labeled r from NEXT

to TOP; pop the stack.

Parser actions are predicted using a history-based
feature model (section 3.2) and SVM classifiers
(section 3.3). Although the parser only derives
projective graphs, the fact that these graphs are
labeled allows non-projective dependencies to be
captured using the pseudo-projective approach of
Nivre and Nilsson (2005) (section 3.4).

3.2 History-Based Feature Models
History-based parsing models rely on features of
the derivation history to predict the next parser ac-
tion (Black et al., 1992). The features used are
all symbolic and defined in terms of five different
node attributes:

• POS = part of speech (atomic)

• DEP = dependency type

• MOR = morphological features (set)

• LEM = lemma

• LEX = word form

Features of the type DEP have a special status in
that they are extracted during parsing from the par-
tially built dependency graph and are updated dy-
namically during parsing. The other four feature
types (LEX, LEM, POS, and MOR) are given as part
of the input to the parser and remain static during
the processing of a sentence. Of these four fea-
ture types, all except LEX presupposes that the in-
put has been preprocessed by a lemmatizer, tagger
and morphological analyzer, respectively, but for
the experiments reported below we use gold stan-
dard annotation from the treebank.

In order to study the influence of different fea-
tures, we have experimented with different combi-
nations of the five feature types, where the base-
line model contains only POS and DEP features,
while more complex models add MOR, LEM, and
LEX features in different combinations. The exact
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features included for each feature type are shown
in table 1, where rows denote tokens in a parser
configuration (defined relative to the stack, the re-
maining input, and the partially built dependency
graph), and where columns correspond to feature
types. The selection of features in each group was
tuned on a development set as described in sec-
tion 4.

3.3 Discriminative Classifiers
We use support vector machines (Vapnik, 1995) to
predict the next parser action from a feature vector
representing the history. More specifically, we use
LIBSVM (Chang and Lin, 2001) with a quadratic
kernel K(xi, xj) = (γxT

i xj + r)2 and the built-
in one-versus-all strategy for multi-class classifica-
tion. Symbolic features are converted to numerical
features using the standard technique of binariza-
tion, and we split the set values of MOR features
into their atomic components. In order to speed
up training, we also divide the training data into
smaller bins according to the feature POS of NEXT,
and train separate classifiers on each bin.

3.4 Pseudo-Projective Parsing
Pseudo-projective parsing was proposed by Nivre
and Nilsson (2005) as a way of dealing with non-
projective structures in a projective data-driven
parser. We projectivize training data by a minimal
transformation, lifting non-projective arcs one step
at a time, and extending the arc label of lifted arcs
using the encoding scheme called HEAD by Nivre
and Nilsson (2005), which means that a lifted arc
is assigned the label r↑h, where r is the original
label and h is the label of the original head in the
non-projective dependency graph.

Non-projective dependencies can be recovered
by an inverse transformation applied to the depen-
dency graph output by the parser, using a left-to-
right, top-down, breadth-first search, guided by the
extended arc labels r↑h assigned by the parser.

4 Experiments

In this section we describe the first experiments on
parsing the SYNTAGRUS treebank using a data-
driven parser. The experimental setup is described
in section 4.1, while the experimental results are
presented and discussed in section 4.2.

4.1 Experimental Setup
All experiments have been performed on the ver-
sion of SYNTAGRUS described in section 2, con-

Model Count LAS UAS
Base = POS + DEP 46506 60.2 76.0
B1 = Base + MOR 46506 73.0 84.5
B2 = Base + LEM 46506 75.5 84.6
B3 = Base + LEX 46506 74.5 84.6
BM1 = B1 + LEM 46506 82.3 89.0
BM2 = B1 + LEX 46506 81.0 88.8
All = B1 + LEM + LEX 46506 82.3 89.1

Table 2: Parsing accuracy for different feature
models on the final test set (Count = Number of
tokens in the test set, LAS = Labeled attachment
score, UAS = Unlabeled attachment score).

verted to the CoNLL data format (Buchholz and
Marsi, 2006).1 The available data were divided
into 80% for training, 10% for development, and
10% for final testing, using a pseudo-randomized
split. The development set was used for tuning
parameters of the parsing algorithm and pseudo-
projective parsing technique, and for feature selec-
tion within the feature groups not included in the
baseline model (i.e., MOR, LEM, and LEX). The
test set was used for evaluating the finally selected
models once.

The evaluation metrics used are labeled attach-
ment score (LAS) – the percentage of tokens that
are assigned the correct head and dependency type
– and unlabeled attachment score (UAS) – the per-
centage of tokens that are assigned the correct head
(regardless of dependency type). In addition, we
present precision and recall for non-projective de-
pendencies. Punctuation tokens are excluded in all
scores, but phantom tokens are included. We use
McNemar’s test for statistical significance.

4.2 Results and Discussion

Table 2 gives the parsing accuracy for different fea-
ture models on the held-out test set, measured as
labeled attachment score (LAS) and unlabeled at-
tachment score (UAS). With respect to LAS, there
are statistically significant differences between all
models except BM1 and All (p < 0.01). With re-
spect to UAS, there are statistically significant dif-
ferences between four groups, such that {Base} <
{B1, B2, B3} < {BM2} < {BM1, All}, but there

1Since SYNTAGRUS only distinguishes ten different parts
of speech (not counting morphological features), the fields
CPOSTAG and POSTAG in the CoNLL format – for coarse-
grained and fine-grained parts of speech – were given the
same content.
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are no differences within these groups.2

Looking at the results for different models, we
see that while the baseline model (Base) achieves
a modest 60.2% LAS and 76.0% UAS, the addi-
tion of only one additional feature group (B1–B3)
boosts unlabeled accuracy by close to ten percent-
age points and labeled accuracy by up to fifteen
percentage points. Somewhat surprisingly, the dif-
ferences between models B1–B3 are very small,
and only differences with respect to LAS are statis-
tically significant, which may be taken to suggest
that morphological and lexical features capture the
same type of information. However, this hypothe-
sis is clearly refuted by the results for models BM1
and BM2, where the addition of lexical features on
top of morphological features gives a further gain
in LAS of eight to ten percentage points (and over
four percentage points for UAS).

Comparing the use of raw word forms (LEX) and
lemmas (LEM) as lexical features, we see a slight
advantage for the latter, at least for labeled accu-
racy. However, it must be remembered that the ex-
periments are based on gold standard input anno-
tation, which probably leads to an overestimation
of the value of LEM features. Finally, it is worth
noting that including both LEX and LEM features
does not result in a significant improvement over
the model with only LEM features, which may be a
sign of saturation, although this may again change
in the presence of noisy LEM features.

The experimental results show conclusively that
both morphological and lexical features are crucial
for achieving high parsing accuracy. It may seem
that they are most important for labeled accuracy,
where the gain in absolute percentage points is the
greatest with respect to the baseline, but it must
be remembered that the unlabeled scores start at a
higher level, thus leaving less room for improve-
ment. In fact, the total error reduction from Base
to All is over 50% for both LAS and UAS.

Table 3 gives a more detailed picture of parsing
performance for the best model (All), by breaking
down both LAS and UAS by the part-of-speech tag
of the dependent. We note that accuracy is higher
than average for nouns (S), adjectives (A), parti-
cles (PART), and reasonably good for verbs (V).
For prepositions (PR), conjunctions (CONJ), and
adverbs (ADV), accuracy is considerably lower,
which may be attributed to attachment ambigui-

2For the difference BM2 < BM1, 0.01 < p < 0.05; for
all other differences, p < 0.01.

Part of Speech Count LAS UAS
S (noun) 7303 86.7 93.3
A (adjective) 7024 92.8 94.2
V (verb) 6946 81.9 85.8
PR (preposition) 5302 60.0 79.0
CONJ (conjunction) 2998 76.1 80.7
ADV (adverb) 2855 72.3 83.3
PART (particle) 1833 88.1 89.6
NUM (numeral) 807 88.7 93.6
NID (foreign word) 142 76.5 91.5
COM (compound) 32 93.8 96.9
P (proposition word) 7 57.1 85.7
INTJ (interjection) 5 0.0 20.0

Table 3: Accuracy by part of speech on the final
test set for All features (Count = Number of tokens
in the test set, LAS = Labeled attachment score,
UAS = Unlabeled attachment score).

ties. It is also worth noting that both prepositions
and adverbs have considerably higher UAS than
LAS (almost twenty percentage points for prepo-
sitions), which shows that even when they are at-
tached correctly they are are often mislabeled. The
remaining parts of speech are too infrequent to
warrant any conclusions.

Looking specifically at non-projective depen-
dencies, we find that the best model has a la-
beled precision of 68.8 and a labeled recall of 31.4.
The corresponding unlabeled figures are 73.3 and
33.4.3 This confirms the results of previous studies
showing that the pseudo-projective parsing tech-
nique used by MaltParser tends to give high pre-
cision – given that non-projective dependencies
are among the most difficult to parse correctly –
but rather low recall (McDonald and Nivre, 2007).
It is also worth mentioning that phantom tokens,
i.e., empty tokens inserted for the analysis of cer-
tain elliptical constructions (see section 2), have
a labeled precision of 82.4 and a labeled recall
of 82.8 (89.2 and 89.6 unlabeled), which is very
close to the average accuracy, despite being very
infrequent. However, it must be remembered that
these tokens were given as part of the input in
these experiments. In order to correctly analyse
these tokens and their dependencies when pars-
ing raw text, they would have to be recovered in
a pre-processing phase along the lines of Dienes

3The precision is the percentage of non-projective depen-
dencies predicted by the parser that were correct, while the
recall is the percentage of true non-projective dependencies
that were correctly predicted by the parser.
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and Dubey (2003).
Summing up, the main result of the experimen-

tal evaluation is that both morphological and lex-
ical features are crucial for attaining high accu-
racy when training and evaluating on the repre-
sentations found in the SYNTAGRUS treebank of
Russian. With regard to morphological features
this is in line with a number of recent studies
showing the importance of morphology for pars-
ing languages with less rigid word order, includ-
ing work on Spanish (Cowan and Collins, 2005),
Hebrew (Tsarfaty, 2006; Tsarfaty and Sima’an,
2007), Turkish (Eryigit et al., 2006), and Swedish
(Øvrelid and Nivre, 2007).

With regard to lexical features, the situation is
more complex in that there are a number of stud-
ies questioning the usefulness of lexical features
in statistical parsing and arguing that equivalent
or better results can be achieved with unlexical-
ized models provided that linguistic categories can
be split flexibly into more fine-grained categories,
either using hand-crafted splits, as in the seminal
work of Klein and Manning (2003), or using hid-
den variables and unsupervised learning, as in the
more recent work by Petrov et al. (2006), among
others. There are even studies showing that lexi-
calization can be harmful when parsing richly in-
flected languages like German (Dubey and Keller,
2003) and Turkish (Eryiğit and Oflazer, 2006).

However, it is worth noting that most of these
results have been obtained either for models of
constituency-based parsing or for models of de-
pendency parsing suffering from sparse data.4 In
the experiments presented here, we have used
a transition-based model for dependency parsing
that has much fewer parameters than state-of-the-
art probabilistic models for constituency parsing.
Moreover, we have been able to use a relatively
large training set, thereby minimizing the effect of
sparseness for lexical features. We therefore con-
jecture that the beneficial effect of lexical features
on parsing accuracy will generalize to other richly
inflected languages when similar conditions hold.

As far as we know, these are the first results for
a large-scale data-driven parser for Russian. There
do exist several rule-based parsers for Russian,
such as the ETAP-3 parser (Apresian et al., 2003)
and a Link Grammar parser,5 as well as a prototype
of a hybrid system based on the ETAP-3 parser en-

4The latter case applies to the probabilistic model of de-
pendency parsing explored by Eryiğit and Oflazer (2006).

5http://sz.ru/parser/

riched with statistics extracted from SYNTAGRUS

(Boguslavsky et al., 2003; Chardin, 2004), but dif-
ferences in both input format and output repre-
sentations make it difficult to compare the perfor-
mance directly.

5 Conclusion

We have presented the first results on parsing the
SYNTAGRUS treebank of Russian using a data-
driven dependency parser. Besides establishing
a first benchmark for the SYNTAGRUS treebank,
we have analyzed the influence of different kinds
of features on parsing accuracy, showing conclu-
sively that both lexical and morphological features
are crucial for obtaining good parsing accuracy.
We hypothesize that this result can be generalized
to other richly inflected languages, provided that
sufficient amounts of data are available.

Future work includes a deeper analysis of the in-
fluence of individual features, both morphological
and lexical, as well as an evaluation of the parser
under more realistic conditions without gold stan-
dard annotation in the input. This will require not
only automatic morphological analysis and disam-
biguation but also a mechanism for inserting so-
called phantom tokens in elliptical constructions.
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