
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 376–384,
Beijing, August 2010

Automatically Learning Source-side Reordering Rules for Large Scale
Machine Translation

Dmitriy Genzel
Google, Inc.

dmitriy@google.com

Abstract

We describe an approach to automatically
learn reordering rules to be applied as a
preprocessing step in phrase-based ma-
chine translation. We learn rules for 8 dif-
ferent language pairs, showing BLEU im-
provements for all of them, and demon-
strate that many important order trans-
formations (SVO to SOV or VSO, head-
modifier, verb movement) can be captured
by this approach.

1 Introduction

One of the major problems of modern statisti-
cal machine translation relates to its difficulties
in producing the correct word order on the target
side of the translation where the source side or-
der is not the same as the target side. In many
cases where the translation is spectacularly bad, if
one only enters the source sentence in the word or-
der of the target language the translation becomes
near-perfect (largely because the language model
can now make sense of it). The word order prob-
lems are especially extensive for languages that
have major differences, such as SOV vs. SVO
languages, but also cause insidious, but entirely
avoidable errors for the language pairs where the
word order is almost right, but not quite1. For
practical reasons all phrase-based decoders limit
the amount of reordering allowed and thus are
completely unable to produce correct translations
when the necessary movement is over a large dis-
tance. Furthermore, where the actual systematic
reordering for the two languages is within the de-
coder’s search space, it is penalized just as any

1For example of the latter kind, verb movement for
English-German and similar language pairs often causes
verbs to be aligned to nothing and to be altogether dropped
in translation.

other kind of reordering, whereas doing anything
other than this systematic reordering should in fact
be penalized.

It has been argued that this is a fundamental
flaw in phrase-based decoding systems and hier-
archical and syntax-based systems have been pro-
posed to solve this problem. These systems can
in principle resolve a part of this problem, but at
a significant time cost during training, and even
worse, during translation, making it less practical
for realtime systems. Instead we propose a system
for learning pre-ordering rules automatically from
data and demonstrate that it can capture many dif-
ferent kinds of reordering phenomena and do so at
no additional online cost.

2 Related Work

Many solutions to the reordering problem have
been proposed, e.g. syntax-based models (Chi-
ang, 2005), lexicalized reordering (Och et al.,
2004), and tree-to-string methods (Zhang et al.,
2006). All these methods try to solve the reorder-
ing problem in different ways, but have the fol-
lowing problems in common: word alignment is
not affected by them and they tend to introduce
significant additional work to be done at transla-
tion time. Most state of the art systems use HMM
or IBM Model 4 word alignment, both of which
have a penalty term associated with long distance
jumps, and tend to misalign words which move far
from their expected positions.

We are going to focus on the approaches where
reordering is done as a preprocessing step (some-
times called pre-ordering). These approaches
have the advantage that they are independent of
the actual MT system used, are often fast to ap-
ply, and tend to decrease (due to improved quality
of heuristic estimates) rather than dramatically in-
crease the time spent in actual decoding, unlike

376



some of the previously mentioned approaches.
The downside of these methods is that the reorder-
ing is fixed, and if it is wrong it can hurt the quality
of translations. We will discuss solutions for this
problem later.

Even in the relatively limited space of
preprocessing-based reordering solutions, there
has been a large amount of previous work, as far
back as Brown et al. (1992). Most approaches
focus on utilizing manually written rules for dif-
ferent languages. A common language pair for
which rules were proposed is German-English
(Nießen and Ney, 2001; Collins et al., 2005).
There is similar work for Chinese-English (Wang
et al., 2007) and quite a few other languages.
Clearly, such methods work quite well, but require
linguistic expertise to produce. Our goal, how-
ever, is to learn reordering from parallel data that
is already available to an MT system in an entirely
unsupervised manner.

We are not the first to attempt this task. In
particular, Xia and McCord (2004) proposed a
way to automatically learn reordering patterns for
French-English. Their system parses parallel data
both on the source and target side and then uses
a variety of heuristics to extract reordering rules
which are then applied during training. More
recently, Li et al. (2007) use a maximum en-
tropy system to learn reordering rules for binary
trees (i.e., whether to keep or reorder for each
node). An approach most similar to ours is that
of Rottmann and Vogel (2007) where they learn
reordering rules based on sequences of part-of-
speech tags (but do not use parse trees). All of
these approaches show improvements in transla-
tion quality, but are applied on a single language
pair. Our goal is to find a method that works
well for many language pairs, regardless of the
word order transformations needed, and without
language-specific tuning. Unlike our predeces-
sors, we use a systematic search through the space
of possible permutation rules to minimize a spe-
cific metric, related to the monotonicity of result-
ing alignments.

3 Our Approach

We limit ourselves to reorderings of the source
side of training and test data. To constrain our

reorderings, we first produce a parse tree, using
a dependency parser similar to that of Nivre and
Scholz (2004). The above parser is much faster
than the time spent in translating the same sen-
tence and thus creates almost no overhead. In
our experiments where the source language is En-
glish the training data for the parser is the Penn
Treebank (Marcus et al., 1993). For German, we
use TIGER treebank (Brants et al., 2002). We
then convert the dependency tree to a shallow con-
stituent tree. The trees are annotated by both
Penn Treebank part of speech tags and by Stan-
ford dependency types (de Marneffe et al., 2006;
de Marneffe and Manning, 2008). For an exam-
ple, see Figure 1a.

Our reorderings are constrained by reordering
of nodes in a parse tree of the source sentence.
Thus, the full space of reorderings we consider
consists of all reorderings that would produce a
parse tree with the same set of child-parent rela-
tionships. For an example of a valid reordering,
see Figure 1b.

Each reordering is described by a series of
rules and we learn one such series for each lan-
guage pair automatically. Each source sentence is
parsed, and the tree is transformed sequentially,
one rule at a time applying to the entire tree, top
down. The reordered sentence is read off the
leaves of the tree and training and evaluation pro-
ceeds as normal. We are using a state-of-the-art
phrase-based statistical machine translation sys-
tem to perform the actual translation. The system
is itself capable of further local reordering during
translation limited by the maximum distance of 4
words.

3.1 Rule Space

Each rule consists of two parts: conditioning
context and action. For every internal node in
the parse tree, traversed top-down, the node is
matched against the conditioning context, and if a
match is found, the associated action applies. All
actions are limited to reordering children of the
matching node. Furthermore, if a rule applies at a
node, its descendants are not traversed for the pur-
pose of matching to avoid modifying the same part
of the sentence twice by the same rule. A differ-
ent rule may apply on this node or its descendants

377



_VBD

PRP
I

nsubj

VBD
saw

head

_NN

dobj

DT
a

det

NN
man

head

RB
easily

advmod

(a) A sample parse tree

_VBD

PRP
I

nsubj

VBD
saw

head

RB
easily

advmod

_NN

dobj

DT
a

det

NN
man

head

(b) After reordering (moving RB over NN)

Figure 1: Parse tree of a sentence and its reordering

Feature Description
nT POS tag of this node
nL Syntactic label of this node
pT POS tag of the parent of this node
pL Syntactic label of the parent
1T POS tag of the first child
1L Label of the first child
2T POS tag of the second child
2L Label of the second child
... ...

Table 1: Set of features used as conditioning vari-
ables

later in the sequence.
A conditioning context is a conjunction of con-

ditions. Each condition is a (feature, value) pair.
List of features is given in table 1. In practice,
we limit ourselves to no more than 4 conditions in
a given context to avoid combinatorial explosion
and sparsity as well as contexts that fail to gen-
eralize. However, we may exhaustively generate
every possible conjunction of up to 5 conditions
from this list that covers up to 4 children that we
actually observe in training.

For example, the following contexts would be
valid for transformation in Fig. 1:

• nT = VBD

• 1T = PRP

• 1L = nsubj

• 3T = dobj

• etc.

or any conjunction of these. The action performed
in this example is swapping children 3 and 4 of
the VBD node, and can be denoted as the permu-
tation (1,2,4,3).

When processing a rule sequence, once a rule
applies, the action is performed, and that rule is
no longer applied on the same node or its descen-
dants (but can be further applied elsewhere in the
tree). Another rule (even an identical one) starts
from the top and can apply to nodes modified by
previous rules.

3.2 Reordering metrics
To evaluate the quality of a given reordering rule,
we need to have reliable metrics that, for each sen-
tence pair, can evaluate whether an improvement
in monotonicity has been made.

The easiest metric to use is the number of cross-
ing alignment links for a given aligned sentence
pair. For instance, in Figure 2, there are 2 cross-
ing links. This metric is trivial to compute and has
some nice properties. For instance, moving a sin-
gle word one position out of place causes one link

378



I have a dog

have’ dog’ I’

Figure 2: Counting crossing alignment links

to cross, moving it farther away from its correct
position would cause more links to cross. We will
refer to this metric as crossing score.

An ideal metric would be the actual BLEU
score that the system would obtain under this re-
ordering rule on the development set. However,
since each rule affects word alignment, phrase
extraction, optimal feature weights, and the ac-
tual translation, it would be necessary to retrain
the entire phrase-based system for each possible
rule, which is impractical. It is, however, practi-
cal, to retranslate the development set, keeping the
phrase table and feature weights constant. Nor-
mally, however, phrase tables contain multi-word
phrases, such as “a b” which may no longer match
after the reordering, and this biases the system to-
ward the original word order. To avoid this, for
this computation only, we use a phrase table that
only contains single words and is therefore inde-
pendent of the source sentence word order. This
lets us test whether a given reordering improves
the search space for the phrase-based decoder at
the relatively small computational cost of trans-
lating the development set. We obtain a differ-
ence of the BLEU scores with and without a given
rule, which we hope to be a reasonable estimate
of the true gain in BLEU score that one would ob-
tain, by retraining the full system, including word
alignment, full-length phrase extraction, and tun-
ing the feature weights. We refer to this score as
estimated BLEU gain.

Note that these two scores are used to obtain an
estimate of utility of any given rule, and are not
used for evaluation of the entire system. Those
metrics are discussed in detail in the evaluation
section.

3.3 Algorithm

We propose a straightforward algorithm to au-
tomatically learn reordering rules. The input
data for all algorithms is word-aligned sentence
pairs. We have found that sophisticated align-
ment models introduce a bias toward alignment
between certain kinds of nodes (usually ones that
are close), and this has undesirable effects. In
practical terms this means that neither HMM nor
Model 4 alignments are useful (even though they
are better as alignments), but Model 1 alignments
are. However, to compensate for poor quality of
the alignments, we simply delete those alignment
links that have posterior probabilities under 0.52

and remove sentence pairs which have very few
alignments left. The crossing score works quite
well even when only a portion of the words in a
sentence are aligned.

The algorithm’s outline is given as Alg. 1.
The algorithm proceeds by considering all rules

after the best sequence of rules so far, and ap-
pends the best new rule (according to the metric)
to the sequence. In practice, some changes are
needed, and we describe some variations. Each
of these variations produces a different sequence
of rules, but they are interchangeable, and we can
simply pick one that performs best on the devel-
opment set, or to combine them through multi-
source translation or consensus.

In all variations, we are unable to generate all
possible rules for every sentence, as the number
can easily be 104-106 per sentence. It is sufficient,
however, to take a random sample of the input,
extract top candidates, and reevaluate those on the
entire set.

We also limit the kinds of rules we are allowed
to generate. The number of possible actions on a
node with n children is n! − 1 and our trees are
quite shallow, often containing 5, 6, or even more
children per node. To avoid dealing with explo-
sion of rules and the resulting sparsity of the rule
space, we modify the process slightly, so that in-
stead of matching a node, we match a node and a
consecutive subsequence of its children of a given
size, as a sliding window. For example, in Figure
1a, node VBD has 4 children. If we limit our-

2This guarantees only one alignment per word

379



Algorithm 1 Optimizing alignment links
input: A set of aligned sentence pairs
base = <empty sequence>;
for several iterations do

candidate rules = GenerateAllCandidateRules(input, base);
base.append(MinCost(candidate rules))

end for

selves to 3 children at a time we would attempt to
match this node twice: with its children 1,2,3 and
2,3,4. In other words, we pretend to consider two
nodes, one with the first set of children, and one
with the second, proceeding left to right. If either
one matches, we apply the action to the subset of
children in the window and stop processing the
node further.

It is also useful to produce more than one rule
per iteration, although this can be problematic,
since the rules may interfere with each other.

3.3.1 Variant 1: Optimizing crossing score
We start with the initially empty base sequence.

As described above, we generate every possible
rule from a subset of sentences, and evaluate them
on the entire input, with the base sequence always
applied first. We use crossing score as a met-
ric. However, instead of extracting only one best-
scoring rule, we extract K best. Now we need to
obtain a decorrelated set: for every pair of rules,
we count the number of sentences where they both
apply. For every rule we consider all rules that are
ranked higher, and if the percentage of matches
between these two rules is high, the rules may
interfere with each other, and the current rule is
dropped. We thus obtain a small ordered set of
rules that tend to apply on different sentences, and
should not interfere with each other. From this
ordered set we produce all candidate rule subse-
quences and evaluate them, to ensure there really
is no interference. The one with the best score is
then appended to the base sequence. The process
is then repeated with a new base sequence.

3.3.2 Variant 2: Optimizing Estimated
BLEU gain

We proceed as in the previous variant, but final
evaluation of potential sequences to be appended
is done differently. Instead of using a crossing

score, we reorder the development set with each
candidate rule sequence and score it using a trans-
lation system with a fixed phrase table with sin-
gle word phrases only (to avoid bias for a spe-
cific word order). The sequence with the highest
BLEU is then appended to base sequence, and the
process is repeated.

3.3.3 Variant 3: Optimizing Estimated
BLEU gain in sequence

In this variant, once we obtain a set of
decorrelated candidate rules {a1, a2, . . . an} or-
dered by crossing score, we evaluate the fol-
lowing rule sequences (where b is base se-
quence): (b), (b, a1), (b, a1, a2) . . . (b, a1, . . . an)
using estimated BLEU gain, as above. If we
find that for some k, score(b, a1, . . . ak−1) >
score(b, a1, . . . ak−1, ak), that means that ak in-
terferes with preceding rules. We remove all
such ak, and retranslate/rescore until the score se-
quence is monotonically non-decreasing. At this
point, we append all surviving rules to the base
sequence, and repeat the process.

4 Evaluation

As described above, our base system is a phrase-
based statistical MT system, similar to that of
Och and Ney (2004). The baseline decoder is
capable of local reordering of up to 4 words.
Our training data is extracted by mining from the
Web, as well as from other published sources.
We train systems from English to 7 other lan-
guages, as well as German-English. We chose
them as follows: SOV languages (Japanese, Ko-
rean, Hindi), VSO language (Welsh), long dis-
tance verb movement (German), noun-modifier
issues (Russian and Czech). The amount of train-
ing data varies from 28 million words (for Hindi)
to 260 million (for German). The baseline sys-

380



tem is a production-quality system used by a large
number of users.

For the first set of experiments for German-
English and English-German we use WMT-09
data sets for development and testing (Callison-
Burch et al., 2009). We report BLEU scores for
each of the algorithms along with the best score
from the WMT-09 workshop for reference in Ta-
ble 2.

Unfortunately, there is no standard data set for
most of the languages we would like to experi-
ment with. For the second set of experiments, we
use an unpublished data set, containing data in En-
glish and 7 languages mentioned above. Our test
data comes from two sources: news articles from
WikiNews3 (996 sentences) and a set of random
sentences from the web (9000 sentences). From
these, we create 3 sets: dev1: 3000 sentences from
web and 486 sentences from wiki; dev2: 1000 sen-
tences from web; and test: the remainder of web
(5000 sentences) and wiki (510 sentences). The
dev1 set is used for tuning the system, both dev1
and dev2 for tuning consensus, and the test set for
evaluation. These sets are the same for all 7 lan-
guages.

Discriminative minimum error rate training
(Macherey et al., 2008) was applied to optimize
the feature weights for each system.

We evaluate the three variants of the algorithm
mentioned above. Each algorithm outputs a re-
ordering rule sequence (40-50 rules long) which
is applied to all the training and test data, and a
complete system is trained from scratch.

There is no need for us to pick a single al-
gorithm for all language pairs, since each algo-
rithm produces rules that are compatible with each
other. We are able to pick the algorithm that works
best on the development set for each language
pair.

In addition, we can use a decoder that is capa-
ble of performing a multi-input translation which
is given the unreordered input as well as the three
reordered inputs produced by the above algorithm.
This decoder is able to learn separate feature
weights for each feature/algorithm combination.

Finally, we can use consensus translation

3http://en.wikinews.org

Table 4: Manual vs. automatic reordering. Auto-
matic score is the combined score from Table 3.

Language Base Manual Auto-
matic

Diff

Hindi 16.85 19.25 19.36 0.11
Japanese 25.91 28.78 29.12 0.34
Korean 23.61 27.99 27.91 -0.08

(Macherey and Och, 2007) to produce the best
possible translation for each sentence.

Results using BLEU score (character-level for
Japanese and Korean, word-level for other lan-
guages) for English to X systems are given in Ta-
ble 3, along with the score of Google Translate as
of Feb 15, 2010, for expected quality reference.
All gains in the combined and consensus columns
are statistically significant using a bootstrap re-
sampling test (Noreen, 1989).

We should also note that the parsing and re-
ordering overhead was an average of 10msec per
sentence, and had no appreciable impact on the
speed of the system.

4.1 Comparison with manual reordering
We also compared our automatic method with a
manually written reordering rule set for SOV lan-
guages (Xu et al., 2009) (rules initially written for
Korean) for comparison with our approach. The
results are given in Table 4. The results are mostly
comparable, with automatic rules being better for
two of the three languages.

4.2 Turning off decoder reordering
All of the above experiments allowed the decoder
to further reorder the sentence as needed. Re-
ordering in the decoder creates an exponential in-
crease in the search space, and for a typical de-
coding strategy can lead to increase in decoding
time, search errors, or both. Since we already pre-
order the sentence, it should be possible to avoid
reordering in the decoder altogether.

Results for the combined decoder are given in
Table 5. It contains the gain of the combined de-
coder against the baseline from Table 3, and the
gain when decoder reordering is turned off against
the same baseline (which has decoder reordering
on). For many languages it is indeed now possi-

381



Table 2: Results for 3 algorithms on WMT-09 data with best individual system score from the workshop:
for EN to DE, Edinburgh, for DE to EN, Google

Language Base Var. 1 Var. 2 Var. 3 Best workshop
EN to DE 16.09 16.30 16.35 16.40 14.76
DE to EN 21.00 22.45 22.13 22.05 20.23

Table 3: Results on internal test set for 3 systems (Variant 1,2,3), the variant which performed best on
the development set, the combined system, and the consensus run, along with Google Translate scores
(Feb 15, 2010) for reference

Language Google Base Var. 1 Var. 2 Var. 3 Best on dev Combined Consensus
%BLEU %BLEU gain gain gain gain gain gain

Czech 16.68 15.35 -0.08 0.13 0.19 0.19 0.21 0.21
German 20.34 18.65 0.47 0.30 0.39 0.39 0.72 0.73
Hindi 19.15 16.85 2.25 2.08 0.15 2.08 2.51 2.47
Japanese 30.74 25.91 3.05 2.60 3.05 3.05 3.21 3.03
Korean 27.99 23.61 3.34 3.77 4.16 4.16 4.30 4.30
Russian 16.80 15.33 0.08 0.10 0.10 0.08 0.14 0.23
Welsh 27.38 25.48 1.25 0.77 1.43 1.43 1.34 1.63

Table 5: Disallowing decoder reordering: differ-
ence against baseline in %BLEU gain

Language Decoder
reordering

No decoder
reordering

Czech 0.21 0.08
German 0.72 0.55
Hindi 2.51 2.27
Japanese 3.21 3.21
Korean 4.30 4.15
Russian 0.14 -0.10
Welsh 1.34 0.98

ble to avoid decoder reordering altogether which
leads to a significant speedup.

5 Analysis

We looked at the rules being learned as well as at
the differences in the output to see if the gains in
BLEU are in fact due to the reordering phenomena
being resolved. The top rules for each language
are given in Table 6.

One can observe that the top rules for German
and Slavic languages are as expected: verb move-
ment and noun modifier reordering. Other top
rules for German cover other specific cases of verb

movement, other rules for Czech include, for ex-
ample, movement of the subject of the passive
sentence to the right and movement of the pos-
sessive (which is similar to the noun compound
case).

The rules for Welsh include movement of the
adjective modifier over its head (given in the ta-
ble above) and other rules moving noun modifiers,
moving a modal verb left over its subject, moving
determiners to the right of nouns, etc.

For Japanese and Korean, there are many rules
with dramatic impact, such as a rule moving all
heads to the right, reversing a sequence of three
nodes starting with a modal (e.g. can do some-
thing to something do can), moving numerical
modifiers to the right of their heads, and many oth-
ers.

Hindi is also an SOV language, but its gram-
mar is not as similar to Japanese or Korean as they
are to each other. Still, Hindi also has some simi-
lar rules, but there are many more involving verb
movement, such as a rule directly moving the verb
to the final position.

By looking at the sentences produced by the
system we can see that the differences are dra-
matic for SOV and VSO languages, as expected,

382



Table 6: Examples of top rules and their application

Languages Context Order Example
Hindi 1L:head 3L:none 2,1,3 I see him→ I him see
Japanese, Korean 2L:prep 2,1 eat with a spoon→ eat a spoon with
German 1T:VBN 2L:prep 2,1 struck with a ball→ with a ball struck
Russian, Czech 1L:nn 2L:head 2,1 a building entrance→ a entrance building
Welsh 1L:amod 2L:head 2,1 blue ball→ ball blue

but more interestingly, most German sentences
now have a verb where the baseline had none. An-
other profound effect can be observed for Rus-
sian: the baseline almost invariably translated
noun compounds incorrectly: e.g. group leaders
may be translated as group of-leaders since this
requires no reordering and no preposition inser-
tion. This is especially problematic, since the user
of the translation system often cannot detect this:
the resulting sentence is not ungrammatical and
can even make sense. Our algorithm learns a rule
that prevents this from happening. Now the de-
coder must pay a cost to keep the order the same
as in English.

6 Discussion and Future Work

We have demonstrated a general technique which
requires only access to a parser for the source lan-
guage (in addition to parallel data which already
exists for an MT system) and is capable of re-
ducing reordering problems endemic in a phrase-
based system. No linguists or even native speakers
of any of these languages were needed to write the
rules. The algorithm is quite robust and performs
well on noisy web data, much of it being ungram-
matical.

All variants turned out to perform well, al-
though variants 1 and 3 were better most of the
time. We consider all variants to be useful, since
they find different local maxima under different
objective functions, and in practice use all of them
and pick a rule sequence that performs best on the
development set for any specific language pair.

We plan to explore this research area further in
several ways. First, it would be interesting to ex-
periment with applying rules learned for one lan-
guage to a related language, e.g. Portuguese for
Spanish or German for Dutch. This would let us

use rules learned from a major language for a mi-
nor one with less available training data.

We have only used English and German as
source languages. There is training data for
parsers in other languages, and this approach
should work well for most source languages.
Where a source language parser is not available,
we can still improve quality, by learning rules
from the target side and applying them only for the
purpose of improving word alignment. Improv-
ing word alignment alone would not help as much
as also using the reordering in the decoder, but it
will probably help in extracting better phrases. We
also plan to use parser projection to induce a rea-
sonable quality parser for other languages.

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-

gang Lezius, and George Smith. 2002. The tiger
treebank. In In Proceedings of the Workshop on
Treebanks and Linguistic Theories, pages 24–41.

Peter F. Brown, Stephen A. Della, Pietra Vincent,
J. Della Pietra, John D. Lafferty Robert, and L. Mer-
cer. 1992. Analysis, statistical transfer, and syn-
thesis in machine translation. In Proceedings of
the Fourth International Conference on Theoretical
and Methodological Issues in Machine Translation,
pages 83–100.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Josh Schroeder. 2009. Findings of the 2009
Workshop on Statistical Machine Translation. In
Proceedings of the Fourth Workshop on Statistical
Machine Translation, pages 1–28, Athens, Greece,
March. Association for Computational Linguistics.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the ACL’05, pages 263–270, Ann Arbor,
Michigan, June.

Michael Collins, Philipp Koehn, and Ivona Kucerova.
2005. Clause restructuring for statistical machine

383



translation. In Proceedings of the ACL’05, pages
531–540, Ann Arbor, Michigan, June.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies rep-
resentations. In COLING’08 Workshop on Cross-
framework and Cross-domain Parser Evaluation,
Manchester, England, August.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure trees. In
LREC.

Chi-Ho Li, Minghui Li, Dongdong Zhang, Mu Li,
Ming Zhou, and Yi Guan. 2007. A probabilistic
approach to syntax-based reordering for statistical
machine translation. In Proceedings of the ACL-07,
pages 720–727, Prague, Czech Republic, June.

Wolfgang Macherey and Franz J. Och. 2007. An em-
pirical study on computing consensus translations
from multiple machine translation systems. In Pro-
ceedings of the EMNLP-CoNLL’07, pages 986–995,
Prague, Czech Republic, June.

Wolfgang Macherey, Franz Och, Ignacio Thayer, and
Jakob Uszkoreit. 2008. Lattice-based minimum er-
ror rate training for statistical machine translation.
In Proceedings of the EMNLP-2008, pages 725–
734, Honolulu, Hawaii, October.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Sonja Nießen and Hermann Ney. 2001. Morpho-
syntactic analysis for reordering in statistical ma-
chine translation. In Machine Translation Summit,
pages 247–252, Santiago de Compostela, Spain,
September.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of English text. In Proceedings
of Coling 2004, pages 64–70, Geneva, Switzerland,
Aug 23–Aug 27. COLING.

Eric W. Noreen. 1989. Computer-Intensive Meth-
ods for Testing Hypotheses. John Wiley & Sons,
Canada.

Franz Josef Och and Hermann Ney. 2004. The align-
ment template approach to statistical machine trans-
lation. Computational Linguistics, 30(4):417–449.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004.
A smorgasbord of features for statistical machine

translation. In HLT-NAACL 2004: Main Proceed-
ings, pages 161–168, Boston, Massachusetts, USA,
May 2 - May 7.

Kay Rottmann and Stephan Vogel. 2007. Word re-
ordering in statistical machine translation with a
pos-based distortion model. In Proceedings of TMI,
Skovde, Sweden.

Chao Wang, Michael Collins, and Philipp Koehn.
2007. Chinese syntactic reordering for statistical
machine translation. In Proceedings of the EMNLP-
CoNLL’2007, pages 737–745, Prague, Czech Re-
public, June.

Fei Xia and Michael McCord. 2004. Improving a
statistical MT system with automatically learned
rewrite patterns. In Proceedings of Coling 2004,
pages 508–514, Geneva, Switzerland, Aug 23–Aug
27. COLING.

Peng Xu, Jaeho Kang, Michael Ringgaard, and Franz
Och. 2009. Using a dependency parser to improve
SMT for subject-object-verb languages. In Pro-
ceedings of NAACL-HLT’09, Boulder, Colorado.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. In Proceedings of the Human
Language Technology Conference of the NAACL,
Main Conference, pages 256–263, New York City,
USA, June. Association for Computational Linguis-
tics.

384


