
Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), pages 707–715,
Beijing, August 2010

Joint Parsing and Translation

Yang Liu and Qun Liu
Key Laboratory of Intelligent Information Processing

Institute of Computing Technology
Chinese Academy of Sciences

{yliu,liuqun} @ict.ac.cn

Abstract

Tree-based translation models, which ex-
ploit the linguistic syntax of source lan-
guage, usually separate decoding into two
steps: parsing and translation. Although
this separation makes tree-based decoding
simple and efficient, its translation perfor-
mance is usually limited by the number
of parse trees offered by parser. Alter-
natively, we propose to parse and trans-
late jointly by casting tree-based transla-
tion as parsing. Given a source-language
sentence, our joint decoder produces a
parse tree on the source side and a transla-
tion on the target side simultaneously. By
combining translation and parsing mod-
els in a discriminative framework, our ap-
proach significantly outperforms a forest-
based tree-to-string system by1.1 ab-
solute BLEU points on the NIST 2005
Chinese-English test set. As a parser,
our joint decoder achieves anF1 score of
80.6% on the Penn Chinese Treebank.

1 Introduction

Recent several years have witnessed the rapid
development of syntax-based translation models
(Chiang, 2007; Galley et al., 2006; Shen et al.,
2008; Quirk et al., 2005; Liu et al., 2006; Huang
et al., 2006; Eisner, 2003; Zhang et al., 2008; Chi-
ang, 2010), which incorporate formal or linguis-
tic syntax into translation process. Depending on
whether modeling the linguistic syntax of source
language or not, we divide them into two cate-
gories:string-based andtree-based models.1

1Mi et al. (2008) also distinguish between string-based
and tree-based models but depending on the type of input.

source

target
parse+translate

string tree

string

source

target

string
parse

tree
translate

string

(a)

(b)

Figure 1: Tree-based decoding: (a) separate pars-
ing and translation versus (b) joint parsing and
translation.

String-based models includestring-to-string
(Chiang, 2007) andstring-to-tree (Galley et al.,
2006; Shen et al., 2008). Regardless of the syn-
tactic information on the source side, they treat
decoding as a parsing problem: the decoder parses
a source-language sentence using the source pro-
jection of a synchronous grammar while building
the target sub-translations in parallel.

Tree-based models includetree-to-string (Liu
et al., 2006; Huang et al., 2006) andtree-to-tree
(Quirk et al., 2005; Eisner, 2003; Zhang et al.,
2008; Chiang, 2010). These models explicitly
use source parse trees and divide decoding into
two separate steps: parsing and translation. A
parser first parses a source-language sentence into
a parse tree, and then a decoder converts the tree
to a translation on the target side (see Figure 1(a)).

Figure 2 gives a training example for tree-to-
string translation, which consists of a Chinese
tree, an English sentence, and the word align-
ment between them. Romanized Chinese words
are given to facilitate identification. Table 1 shows

707

Ù� � â9 Þ1
 ¬!NR P NR VV AS NN

NPB NPB NPB

PP VPB

VP

IP

bushi yu shalong juxing le huitan

Bush held a meeting with Sharon

Figure 2: A training example that consists of a
Chinese parse, an English sentence, and the word
alignment between them.

a set of tree-to-string rules obtained from Figure
2. The source side of a rule is a tree fragment
and the target side is a string. We usex to denote
non-terminals and the associated subscripts indi-
cate the correspondence between non-terminals
on both sides.

Conventionally, decoding for tree-to-string
translation is cast as atree parsing problem (Eis-
ner, 2003). The tree parsing algorithm visits each
node in the input source tree in a top-down order
and tries to match each translation rule against the
local sub-tree rooted at the node. For example, the
first rule in Table 1 matches a sub-tree rooted at
IP0,6 in Figure 2. The descendent nodes ofIP0,6

(i.e.,NPB0,1, PP1,3, andVPB3,6) can be further
matched by other rules in Table 1. The matching
procedure runs recursively until the entire tree is
covered. Finally, the output on the target side can
be taken as a translation.

Compared with its string-based counterparts,
tree-based decoding is simpler and faster: there
is no need forsynchronous binarization (Huang
et al., 2009b; Zhang et al., 2006) and tree parsing
generally runs in linear time (Huang et al., 2006).

While separating parsing and translation makes
tree-based decoding simple and efficient, its
search space is limited by the number of parse
trees offered by parser. Studies reveal that tree-
based systems are prone to produce degenerate
translations due to the propagation of parsing mis-
takes (Quirk and Corston-Oliver, 2006). This
problem can be alleviated by offering more alter-

(1) IP(x1:NPB VP(x2:PPx3:VPB))→x1 x3 x2

(2) NPB(NR(bushi))→Bush
(3) PP(P(yu) x1:NPB)→with x1

(4) NPB(NR(shalong))→Sharon
(5) VPB(VV(juxing) AS(le) x1:NPB)→held a x1

(6) NPB(NN(huitan))→meeting

Table 1: Tree-to-string rules extracted from Figure
2.

natives to the pipeline. An elegant solution is to
replace 1-best trees with packed forests that en-
code exponentially many trees (Mi et al., 2008;
Liu et al., 2009). Mi et al. (2008) present an
efficient algorithm to match tree-to-string rules
against packed forests that encode millions of
trees. They prove that offering more alternatives
to tree parsing improves translation performance
substantially.

In this paper, we take a further step towards the
direction of offering multiple parses to translation
by proposingjoint parsing and translation. As
shown in Figure 1(b), our approach parses and
translates jointly as it finds a parse tree and a
translation of a source-language sentence simul-
taneously. We integrate the tree-to-string model
(Liu et al., 2006; Huang et al., 2006),n-gram lan-
guage model, probabilistic context-free grammar
(PCFG), and Collins’ Model 1 (Collins, 2003) in a
discriminative framework (Och, 2003). Allowing
parsing and translation to interact with each other,
our approach obtains an absolute improvement of
1.1 BLEU points over a forest-based tree-to-string
translation system (Mi et al., 2008) on the 2005
NIST Chinese-English test set. As a parser, our
joint decoder achieves anF1 score of80.6% on
the Penn Chinese Treebank.

2 Joint Parsing and Translation

2.1 Decoding as Parsing

We propose to integrate parsing and translation
into a single step. To achieve joint parsing and
translation, we cast tree-to-string decoding as a
monolingual parsing problem (Melamed, 2004;
Chiang, 2007; Galley et al., 2006): the de-
coder takes a source-language string as input and
parses it using the source-projection of SCFG
while building the corresponding sub-translations
simultaneously.

708

For example, given the Chinese sentencebushi
yu sha long juxing le huitan in Figure 2, the
derivation in Table 1 explains how a Chinese tree,
an English string, and the word alignment be-
tween them are generated synchronously. Unlike
the string-based systems as described in (Chiang,
2007; Galley et al., 2006; Shen et al., 2008), we
exploit the linguistic syntax on the source side
explicitly. Therefore, the source parse trees pro-
duced by our decoder are meaningful from a lin-
guistic point of view.

As tree-to-string rules usually have multiple
non-terminals that make decoding complexity
generally exponential, synchronous binarization
(Huang et al., 2009b; Zhang et al., 2006) is a
key technique for applying the CKY algorithm
to parsing with tree-to-string rules.2 Huang et
al. (2009b) factor each tree-to-string rule into two
SCFG rules: one from the root nonterminal to
the subtree, and the other from the subtree to the
leaves. In this way, one can uniquely reconstruct
the original tree using a two-step SCFG deriva-
tion.

For example, consider the first rule in Table 1:

IP(x1:NPB VP(x2:PP x3:VPB))→x1 x3 x2

We use a specific non-terminal, say,T, to
uniquely identify the left-hand side subtree and
produce two SCFG rules:3

IP → 〈T 1 ,T 1 〉 (1)

T → 〈NPB 1 PP 2 VPB 3 ,NPB 1 VPB 3 PP 2 〉 (2)

where the boxed numbers indicate the correspon-
dence between nonterminals.

Then, the rule (2) can be further binarized into
two rules that have at most two non-terminals:

T → 〈NPB 1 PP-VPB 2 ,NPB 1 PP-VPB 2 〉 (3)

PP-VPB → 〈PP 1 VPB 2 ,VPB 2 PP 1 〉 (4)

wherePP-VPB is an intermediatevirtual non-
terminal.

2But CKY is not the only choice. The Earley algorithm
can also be used to parse with tree-to-string rules (Zhao and
Al-Onaizan, 2008). As the Earley algorithm binarizes multi-
nonterminal rules implicitly, there is no need for synchronous
binarization.

3It might look strange that the nodeVP disappears. This
node is actually stored in the monolithic nodeT. Please refer
to page 573 of (Huang et al., 2009b) for more details about
how to convert tree-to-string rules to SCFG rules.

We call rules the tree roots of which are vir-
tual non-terminalsvirtual rules and othersnatural
rules. For example, the rule (1) is a natural rule
and the rules (3) and (4) are virtual rules. We fol-
low Huang et al. (2009b) to keep the probabilities
of a natural rule unchanged and set those of a vir-
tual rule to 1.4

After binarizing tree-to-string rules into SCFG
rules that have at most two non-terminals, we can
use the CKY algorithm to parse a source sentence
and produce its translation simultaneously as de-
scribed in (Chiang, 2007; Galley et al., 2006).

2.2 Adding Parsing Models

As our decoder produces “genuine” parse trees
during decoding, we can integrate parsing mod-
els as features together with translation features
such as the tree-to-string model,n-gram language
model, and word penalty into a discriminative
framework (Och, 2003). We expect that pars-
ing and translation could interact with each other:
parsing offers linguistically motivated reordering
to translation and translation helps parsing resolve
ambiguity.

2.2.1 PCFG

We use the probabilistic context-free grammar
(PCFG) as the first parsing feature in our decoder.
Given a PCFG, the probability for a tree is the
product of probabilities for the rules that it con-
tains. That is, if a treeπ is a context-free deriva-
tion that involvesK rules of the formαk → βk,
its probability is given by

P(π) =
∏

k=1...K

Ppcfg(αk → βk) (5)

For example, the probability for the tree in Fig-
ure 2 is

P(π) = Ppcfg(IP → NPB VP)×
Ppcfg(NPB → NR)×
Ppcfg(NR → bushi)×
. . . (6)

4This makes the scores of hypotheses in the same chart
cell hardly comparable because some hypotheses are cov-
ered by a natural non-terminal and others covered by a virtual
non-terminal. To alleviate this problem, we follow Huang et
al. (2009b) to separate natural and virtual hypotheses in dif-
ferent beams.

709

IP

T

NPB PP-VP

PP VPB

IP

NPB VP

PP VPB

Figure 3: Reconstructing original tree from virtual
rules. We first construct the tree on the left by
substituting the trees of the rules (1), (3), and (4)
and then restore the original tree on the right via
the monolithic nodeT.

There are 13 PCFG rules involved. We omit the
remaining 10 rules.

We formalize the decoding process as a deduc-
tive system to illustrate how to include a PCFG.
Given a natural rule

VP → 〈PP 1 VPB 2 ,VPB 2 PP 1 〉 (7)

the following deductive step grows an item in the
chart by the rule

(PP1,3) : (w1, e1) (VPB3,6) : (w2, e2)

(VP1,6) : (w, e2e1)
(8)

wherePP1,3 denotes the recognition of the non-
terminalPP spanning from the substring from po-
sition 1 through 3 (i.e.,yu shalong in Figure 2),w1

ande1 are the score and translation of the first an-
tecedent item, respectively, and the resulting item
score is calculated as:5

w = w1 + w2 + logPpcfg(VP → PP VPB) (9)

As the PCFG probabilities of natural rules are
fixed during decoding, they can be pre-computed
and stored in the rule table. Therefore, including
PCFG for natural rules hardly increases decoding
complexity.

However, calculating the PCFG probabilities
for virtual rules is quite different due to the pres-
ence of virtual non-terminals. For instance, using
the rule (4) in Section 2.1 to generate an item leads
to the following deductive step:

(PP1,3) : (w1, e1) (VPB3,6) : (w2, e2)

(PP-VPB1,6) : (w, e2e1)
(10)

5The logarithmic form of probability is used to avoid ma-
nipulating very small numbers for practical reasons.w1 and
w2 take the PCFG probabilities of the two antecedent items
into consideration.

As PP-VPB is a virtual non-terminal, the sub-
tree it dominates is a virtual tree, for which we
cannot figure out its PCFG probability. There-
fore, we have to postpone the calculation of PCFG
probabilities until reaching a natural non-terminal
such asIP. In other words, only when using the
rule (1) to produce an item, the decoding algo-
rithm can update PCFG probabilities because the
original tree can be restored from the special node
T now. Figure 3 shows how to reconstruct the
original tree from virtual rules. We first construct
the tree on the left by substituting the trees of the
rules (1), (3), and (4) and then restore the origi-
nal tree on the right viaT. Now, we can calculate
the PCFG probability of the original tree.6 In
practice, we pre-compute this PCFG probability
and store it in the rule (1) to reduce computational
overhead.

2.2.2 Lexicalized PCFG

Although widely used in natural language pro-
cessing, PCFGs are often criticized for the lack of
lexicalization, which is very important to capture
the lexical dependencies between words. There-
fore, we use Collins’ Model 1 (Collins, 2003), a
simple and effective lexicalized parsing model, as
the second parsing feature in our decoder.

Following Collins (2003), we first lexicalize a
tree by associating aheadword h with each non-
terminal. Figure 4 gives the lexicalized tree corre-
sponding to Figure 2. The left-hand side of a rule
in a lexicalized PCFG isP (h) and the right-hand
side has the form:

Ln(ln) . . . L1(l1)H(h)R1(τ1) . . . Rm(τm) (11)

where H is the head-child that inherits the
headwordh from its parentP , L1 . . . Ln and
R1 . . . Rm are left and right modifiers ofH, and
l1 . . . ln andτ1 . . . τm are the corresponding head-
words. Eithern or m may be zero, andn =
m = 0 for unary rules. Collins (2003) extends the
left and right sequences to include a terminating
STOP symbol. Thus,Ln+1 = Rm+1 = STOP.

6Postponing the calculation of PCFG probabilities also
leads to the “hard-to-compare” problem mentioned in foot-
note 4 due to the presence of virtual non-terminals. We still
maintain multiple beams for natural and virtual hypotheses
(i.e., items) to alleviate this prblem.

710

Ù� � â9 Þ1
 ¬!NR P NR VV AS NN

NPB NPB NPB

PP VPB

VP

IP

bushi yu shalong juxing le huitan

bushi

bushi

yu shalong

shalong

yu

juxing le huitan

huitan

juxing

juxing

juxing

Figure 4: The lexicalized tree corresponding to
Figure 2.

Collins (2003) breaks down the generation of
the right-hand side of a rule into a sequence of
smaller steps. The probability of a rule is decom-
posed as:

Ph(H|P (h)) ×∏

i=1...n+1

Pl(Li(li)|P (h),H, t,∆) ×
∏

j=1...m+1

Pr(Rj(τj)|P (h),H, t,∆) (12)

wheret is the POS tag of of the headwordh and∆
is the distance between words that captures head-
modifier relationship.

For example, the probability of the lexicalized
rule IP(juxing) → NPB(bushi) VP(juxing) can
be computed as7

Ph(VP|IP, juxing)×
Pl(NPB(bushi)|IP,VP, juxing)×
Pl(STOP|IP,VP, juxing)×
Pr(STOP|IP,VP, juxing) (13)

We still use the deductive system to explain
how to integrate the lexicalized PCFG into the de-
coding process. Now, Eq. (8) can be rewritten as:

(PPyu
1,3) : (w1, e1) (VPBjuxing

3,6) : (w2, e2)

(VPjuxing
1,6) : (w, e2e1)

(14)

whereyu and juxing are the headwords attached
to PP1,3, VPB3,6, andVP1,6. The resulting item

7For simplicity, we omit POS tag and distance in the pre-
sentation. In practice, we implemented the Collins’ Model 1
exactly as described in (Collins, 2003).

score is given by

w = w1 + w2 + logPh(VPB|VP, juxing) +

logPl(PP(yu)|VP,VPB, juxing) +

logPl(STOP|VP,VPB, juxing) +

logPr(STOP|VP,VPB, juxing) (15)

Unfortunately, the lexicalized PCFG probabili-
ties of most natural rules cannot be pre-computed
because the headword of a non-terminal must be
determined on the fly during decoding. Consider
the third rule in Table 1

PP(P(yu) x1:NPB) → with x1

It is impossible to know what the headword of
NPB is in advance, which depends on the ac-
tual sentence being translated. However, we could
safely say that the headword attached toPP is al-
waysyu becausePP should have the same head-
word with its childP.

Similar to the PCFG scenario, calculating lex-
icalized PCFG for virtual rules is different from
natural rules. Consider the rule (4) in Section 2.1,
the corresponding deductive step is

(PPyu
1,3) : (w1, e1) (VPBjuxing

3,6) : (w2, e2)

(PP-VPB−
1,6) : (w, e2e1)

(16)

where “−” denotes that the headword of
PP-VPB1,6 is undefined.

We still need to postpone the calculation of lex-
icalized PCFG probabilities until reaching a nat-
ural non-terminal such asIP. In other words,
only when using the rule (1) to produce an item,
the decoding algorithm can update the lexicalized
PCFG probabilities. After restoring the original
tree fromT, we need to visit backwards to fron-
tier nodes of the tree to find headwords and calcu-
late lexicalized PCFG probabilities. More specifi-
cally, updating lexicalized PCFG probabilities for
the rule the rule (1) involves the following steps:

1. Reconstruct the original tree from the rules
(1), (3), and (4) as shown in Figure 3;

2. Attach headwords to all nodes;

3. Calculate the lexicalized PCFG probabilities
according to Eq. (12).

711

Back-off Pl(Li(li)| . . .)
level

Ph(H| . . .) Pr(Rj(τj)| . . .)
1 P , h, t P , H, h, t, ∆
2 P , t P , H, t, ∆
3 P P , H, ∆

Table 2: The conditioning variables for each level
of back-off.

As suggested by Collins (2003), we use back-
off smoothing for sub-model probabilities during
decoding. Table 2 shows the various levels of
back-off for each type of parameter in the lexi-
calized parsing model we use. For example,Ph

estimationp interpolates maximum-likelihood es-
timatesp1 = Ph(H|P, h, t), p2 = Ph(H|P, t),
andp3 = Ph(H|P) as follows:

p1 = λ1p1 + (1− λ1)(λ2p2 + (1− λ2)p3) (17)

whereλ1, λ2, andλ3 are smoothing parameters.

3 Experiments

In this section, we try to answer two questions:

1. Does tree-based translation by parsing out-
perform the conventional tree parsing algo-
rithm? (Section 3.1)

2. How about the parsing performance of the
joint decoder? (Section 3.2)

3.1 Translation Evaluation

We used a bilingual corpus consisting of251K
sentences with7.3M Chinese words and9.2M En-
glish words to extract tree-to-string rules. The
Chinese sentences in the bilingual corpus were
parsed by an in-house parser (Xiong et al., 2005),
which obtains anF1 score of84.4% on the Penn
Chinese Treebank. After running GIZA++ (Och
and Ney, 2003) to obtain word alignments, we
used the GHKM algorithm (Galley et al., 2004)
and extracted11.4M tree-to-string rules from the
source-side parsed, word-aligned bilingual cor-
pus. Note that the bilingual corpus does not con-
tain the bilingual version of Penn Chinese Tree-
bank. In other words, all tree-to-string rules were
learned from noisy parse trees and alignments. We
used the SRILM toolkit (Stolcke, 2002) to train a

4-gram language model on the Xinhua portion of
the GIGAWORD corpus, which contains238M
English words. We trained PCFG and Collins’
Model 1 on the Penn Chinese Treebank.

We used the2002 NIST MT Chinese-English
test set as the development set and the2005 NIST
test set as the test set. Following Huang (2008),
we modified our in-house parser to produce and
prune packed forests on the development and test
sets. There are about105M parse trees encoded
in a forest of a sentence on average. We also ex-
tracted 1-best trees from the forests.

As the development and test sets have many
long sentences (≥ 100 words) that make our de-
coder prohibitively slow, we divided long sen-
tences into short sub-sentences simply based on
punctuation marks such as comma and period.
The source trees and target translations of sub-
sentences were concatenated to form the tree and
translation of the original sentence.

We compared our parsing-based decoder with
the tree-to-string translation systems based on the
tree parsing algorithm, which match rules against
either 1-best trees (Liu et al., 2006; Huang et al.,
2006) or packed forests (Mi et al., 2008). All the
three systems used the same rule set containing
11.4M tree-to-string rules. Given the1-best trees
of the test set, there are1.2M tree-to-string rules
that match fragments of the1-best trees. For the
forest-based system (Mi et al., 2008), the num-
ber of filtered rules increases to1.9M after replac-
ing 1-best trees with packed forests, which con-
tain 105M trees on average. As our decoder takes
a string as input,7.7M tree-to-string rules can be
used to parse and translate the test set. We bi-
narized99.6% of tree-to-string rules into16.2M
SCFG rules and discarded non-binarizable rules.
As a result, the search space of our decoder is
much larger than those of the tree parsing coun-
terparts.

Table 3 shows the results. All the three sys-
tems used the conventional translation features
such as relative frequencies, lexical weights, rule
count,n-gram language model, and word count.
Without any parsing models, the tree-based sys-
tem achieves a BLEU score of29.8. The forest-
based system outperforms the tree-based system
by +1.8 BLEU points. Note that each hyperedge

712

Algorithm Input Parsing model # of rules BLEU (%) Time (s)

tree - 1.2M 29.8 0.56
tree parsing

forest PCFG 1.9M 31.6 9.49

- 32.0 51.41
PCFG 32.4 55.52

parsing string
Lex

7.7M
32.6 89.35

PCFG + Lex 32.7 91.72

Table 3: Comparison of tree parsing and parsing for tree-to-string translation in terms ofcase-insensitive
BLEU score and average decoding time (second per sentence).The column “parsing model” indicates
which parsing models were used in decoding. We use “-” to denote using only translation features.
“Lex” represents the Collins’ Model 1. We excluded the extraparsing time for producing1-best trees
and packed forests.

Forest size Exact match (%) Precision (%)

1 0.55 41.5
390 0.74 47.7

5.8M 0.92 54.1
66M 1.48 62.0
105M 2.22 65.9

Table 4: Comparison of 1-best trees produced by
our decoder and the parse forests produced by the
monolingual Chinese parser. Forest size repre-
sents the average number of trees stored in a for-
est.

in a parse forest is assigned a PCFG probabil-
ity. Therefore, the forest-based system actually in-
cludes PCFG as a feature (Mi et al., 2008). With-
out incorporating any parsing models as features,
our joint decoder achieves a BLEU score of32.0.
Adding PCFG and Collins’ Model 1 (i.e., “Lex” in
Table 2) increases translation performance. When
both PCFG and Collins’ Model 1 are used, our
joint decoder outperforms the tree parsing systems
based on 1-best trees (+2.9) and packed forests
(+1.1) significantly (p < 0.01). This result is also
better than that of using only translation features
significantly (from32.0 to 32.7, p < 0.05).

Not surprisingly, our decoder is much slower
than pattern matching on1-best trees and packed
forests (with the same beam size). In particu-
lar, including Collins’ Model 1 increases decoding
time significantly because its sub-model probabil-
ities requires back-off smoothing on the fly.

How many 1-best trees produced by our de-

coder are included in the parse forest produced by
a standard parser? We used the Chinese parser
to generate five pruned packed forests with dif-
ferent sizes (average number of trees stored in a
forest). As shown in Table 4, only2.22% of the
trees produced by our decoder were included in
the biggest forest. One possible reason is that
we used sub-sentence division to reduce decoding
complexity. To further investigate the matching
rate, we also calculated labeled precision, which
indicates how many brackets in the parse match
those in the packed forest. The labeled precision
on the biggest forest is65.9%, suggesting that the
1-best trees produced by our decoder are signifi-
cantly different from those in the packed forests
produced by a standard parser.8

3.2 Parsing Evaluation

We followed Petrov and Klein (2007) to divide the
Penn Chinese Treebank (CTB) version 5 as fol-
lows: Articles 1-270 and 400-1151 as the training
set, Articles 301-325 as the development set, and
Articles 271-300 as the test set. We used max-F1

training (Och, 2003) to train the feature weights.
We did not use sub-sentence division as the sen-
tences in the test set have no more than 40 words.

8The packed forest produced by our decoder (“rule”
forest) might be different from the forest produced by a
monolingual parser (“parser” forest). While tree-based and
forest-based decoders search in the intersection of the two
forests (i.e., matched forest), our decoder directly explores
the “rule” forest, which represents the true search space of
tree-to-string translation. This might be the key difference of
our approach from forest-based translation (Mi et al., 2008).
As sub-sentence division makes direct comparison of the two
forests quite difficult, we leave this to future work.

713

Parsing model F1 (%) Time (s)

- 62.7 23.9

PCFG 65.4 24.7

Lex 79.8 48.8

PCFG + Lex 80.6 50.4

Table 5: Effect of parsing models on parsing per-
formance (≤ 40 words) and average decoding
time (second per sentence). We use “-” to denote
only using translation features.

Table 5 shows the results. Translation features
were used for all configurations. Without pars-
ing models, theF1 score is62.7. Adding Collins’
Model 1 results in much larger gains than adding
PCFG. With all parsing models integrated, our
joint decoder achieves anF1 score of80.6 on the
test set. Although lower than theF1 score of the
in-house parser that produces the noisy training
data, this result is still very promising because
the tree-to-string rules that construct trees in the
decoding process are learned from noisy training
data.

4 Related Work

Charniak et al. (2003) firstly associate lexical-
ized parsing model with syntax-based translation.
They first run a string-to-tree decoder (Yamada
and Knight, 2001) to produce an English parse
forest and then use a lexicalized parsing model to
select the best translation from the forest. As the
parsing model operates on the target side, it actu-
ally serves as a syntax-based language model for
machine translation. Recently, Shen et al. (2008)
have shown that dependency language model is
beneficial for capturing long-distance relations
between target words. As our approach adds pars-
ing models to the source side where the source
sentence is fixed during decoding, our decoder
does parse the source sentence like a monolingual
parser instead of a syntax-based language model.
More importantly, we integrate translation models
and parsing models in a discriminative framework
where they can interact with each other directly.

Our work also has connections to joint parsing
(Smith and Smith, 2004; Burkett and Klein, 2008)
and bilingually-constrained monolingual parsing

(Huang et al., 2009a) because we use another
language to resolve ambiguity for one language.
However, while both joint parsing and bilingually-
constrained monolingual parsing rely on the target
sentence, our approach only takes a source sen-
tence as input.

Blunsom and Osborne (2008) incorporate the
source-side parse trees into their probabilistic
SCFG framework and treat every source-parse
PCFG rule as an individual feature. The differ-
ence is that they parse the test set before decoding
so as to exploit the source syntactic information to
guide translation.

More recently, Chiang (2010) has shown
that (“exact”) tree-to-tree translation as pars-
ing achieves comparable performance with Hiero
(Chiang, 2007) using much fewer rules. Xiao et
al. (2010) integrate tokenization and translation
into a single step and improve the performance of
tokenization and translation significantly.

5 Conclusion

We have presented a framework for joint parsing
and translation by casting tree-to-string transla-
tion as a parsing problem. While tree-to-string
rules construct parse trees on the source side
and translations on the target side simultaneously,
parsing models can be integrated to improve both
translation and parsing quality.

This work can be considered as a final step to-
wards the continuum of tree-to-string translation:
from single tree to forest and finally to the inte-
gration of parsing and translation. In the future,
we plan to develop more efficient decoding al-
gorithms, analyze forest matching systematically,
and use more sophisticated parsing models.

Acknowledgement

The authors were supported by National Nat-
ural Science Foundation of China, Contracts
60736014 and 60903138, and 863 State Key
Project No. 2006AA010108. We are grateful to
the anonymous reviewers for their insightful com-
ments. We thank Liang Huang, Hao Zhang, and
Tong Xiao for discussions on synchronous bina-
rization, Haitao Mi and Hao Xiong for provid-
ing and running the baseline systems, and Wenbin
Jiang for helping us train parsing models.

714

References

Blunsom, Phil and Miles Osborne. 2008. Probabilis-
tic inference for machine translation. InProc. of
EMNLP 2008.

Burkett, David and Dan Klein. 2008. Two languages
are better than one (for syntactic parsing). InProc.
of EMNLP 2008.

Charniak, Eugene, Kevin Knight, and Kenji Yamada.
2003. Syntax-based language models for statistical
machine translation. InProc. of MT Summit IX.

Chiang, David. 2007. Hierarchical phrase-based
translation.Computational Linguistics, 33(2):201–
228.

Chiang, David. 2010. Learning to translate with
source and target syntax. InProc. of ACL 2010.

Collins, Michael. 2003. Head-driven statistical mod-
els for natural language parsing.Computational
Linguistics, 29(4):589–637.

Eisner, Jason. 2003. Learning non-isomorphic tree
mappings for machine translation. InProc. of ACL
2003.

Galley, Michel, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proc. of NAACL 2004.

Galley, Michel, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. InProc.
of ACL 2006.

Huang, Liang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. InProc. of AMTA 2006.

Huang, Liang, Wenbin Jiang, and Qun Liu. 2009a.
Bilingually-constrained (monolingual) shift-reduce
parsing. InProc. of EMNLP 2009.

Huang, Liang, Hao Zhang, Daniel Gildea, and Kevin
Knight. 2009b. Binarization of synchronous
context-free grammars.Computational Linguistics,
35(4):559–595.

Huang, Liang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProc. of ACL
2008.

Liu, Yang, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical machine
translation. InProc. of ACL 2006.

Liu, Yang, Yajuan Lü, and Qun Liu. 2009. Improving
tree-to-tree translation with packed forests. InProc.
of ACL 2009.

Melamed, I. Dan. 2004. Statistical machine transla-
tion by parsing. InProc. of ACL 2004.

Mi, Haitao, Liang Huang, and Qun Liu. 2008. Forest-
based translation. InProc. of ACL 2008.

Och, Franz J. and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Och, Franz. 2003. Minimum error rate training in sta-
tistical machine translation. InProc. of ACL 2003.

Petrov, Slav and Dan Klein. 2007. Improved inference
for unlexicalized parsing. InProc. of NAACL 2007.

Quirk, Chris and Simon Corston-Oliver. 2006. The
impact of parsing quality on syntactically-informed
statistical machine translation. InProc. of EMNLP
2006.

Quirk, Chris, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: Syntactically in-
formed phrasal SMT. InProc. of ACL 2005.

Shen, Libin, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proc. of ACL 2008.

Smith, David and Noah Smith. 2004. Bilingual pars-
ing with factored estimation: using english to parse
korean. InProc. of EMNLP 2004.

Stolcke, Andreas. 2002. Srilm - an extension language
model modeling toolkit. InProc. of ICSLP 2002.

Xiao, Xinyan, Yang Liu, Young-Sook Hwang, Qun
Liu, and Shouxun Lin. 2010. Joint tokenization
and translation. InProc. of COLING 2010.

Xiong, Deyi, Shuanglong Li, Qun Liu, and Shouxun
Lin. 2005. Parsing the penn chinese treebank with
semantic knowledge. InProc. of IJCNLP 2005.

Yamada, Kenji and Kevin Knight. 2001. A syntax-
based statistical translation model. InProc. of ACL
2001.

Zhang, Hao, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translatio. InProc. of NAACL 2007.

Zhang, Min, Hongfei Jiang, Aiti Aw, Haizhou Li,
Chew Lim Tan, and Sheng Li. 2008. A tree
sequence alignment-based tree-to-tree translation
model. InProc. of ACL 2008.

Zhao, Bing and Yaser Al-Onaizan. 2008. General-
izing local and non-local word-reordering patterns
for syntax-based machine translation. InProc. of
EMNLP 2008.

715

