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Abstract

In this paper, we consider sentence sim-
plification as a special form of translation
with the complex sentence as the source
and the simple sentence as the target.
We propose a Tree-based Simplification
Model (TSM), which, to our knowledge,
is the first statistical simplification model
covering splitting, dropping, reordering
and substitution integrally. We also de-
scribe an efficient method to train our
model with a large-scale parallel dataset
obtained from the Wikipedia and Simple
Wikipedia. The evaluation shows that our
model achieves better readability scores
than a set of baseline systems.

1 Introduction

Sentence simplification transforms long and dif-
ficult sentences into shorter and more readable
ones. This helps humans read texts more easily
and faster. Reading assistance is thus an impor-
tant application of sentence simplification, espe-
cially for people with reading disabilities (Carroll
et al., 1999; Inui et al., 2003), low-literacy read-
ers (Watanabe et al., 2009), or non-native speakers
(Siddharthan, 2002).

Not only human readers but also NLP ap-
plications can benefit from sentence simplifica-
tion. The original motivation for sentence sim-
plification is using it as a preprocessor to facili-
tate parsing or translation tasks (Chandrasekar et
al., 1996). Complex sentences are considered as
stumbling blocks for such systems. More recently,
sentence simplification has also been shown help-
ful for summarization (Knight and Marcu, 2000),
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sentence fusion (Filippova and Strube, 2008b), se-
mantic role labeling (Vickrey and Koller, 2008),
question generation (Heilman and Smith, 2009),
paraphrase generation (Zhao et al., 2009) and
biomedical information extraction (Jonnalagadda
and Gonzalez, 2009).

At sentence level, reading difficulty stems ei-
ther from lexical or syntactic complexity. Sen-
tence simplification can therefore be classified
into two types: lexical simplification and syntac-
tic simplification (Carroll et al., 1999). These two
types of simplification can be further implemented
by a set of simplification operations. Splitting,
dropping, reordering, and substitution are widely
accepted as important simplification operations.
The splitting operation splits a long sentence into
several shorter sentences to decrease the complex-
ity of the long sentence. The dropping operation
further removes unimportant parts of a sentence to
make it more concise. The reordering operation
interchanges the order of the split sentences (Sid-
dharthan, 2006) or parts in a sentence (Watanabe
et al., 2009). Finally, the substitution operation re-
places difficult phrases or words with their simpler
synonyms.

In most cases, different simplification opera-
tions happen simultaneously. It is therefore nec-
essary to consider the simplification process as
a combination of different operations and treat
them as a whole. However, most of the ex-
isting models only consider one of these opera-
tions. Siddharthan (2006) and Petersen and Osten-
dorf (2007) focus on sentence splitting, while sen-
tence compression systems (Filippova and Strube,
2008a) mainly use the dropping operation. As far
as lexical simplification is concerned, word sub-
stitution is usually done by selecting simpler syn-
onyms from Wordnet based on word frequency
(Carroll et al., 1999).

In this paper, we propose a sentence simplifica-
tion model by tree transformation which is based
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on techniques from statistical machine translation
(SMT) (Yamada and Knight, 2001; Yamada and
Knight, 2002; Graehl et al., 2008). Our model in-
tegrally covers splitting, dropping, reordering and
phrase/word substitution. The parameters of our
model can be efficiently learned from complex-
simple parallel datasets. The transformation from
a complex sentence to a simple sentence is con-
ducted by applying a sequence of simplification
operations. An expectation maximization (EM)
algorithm is used to iteratively train our model.
We also propose a method based on monolingual
word mapping which speeds up the training pro-
cess significantly. Finally, a decoder is designed to
generate the simplified sentences using a greedy
strategy and integrates language models.

In order to train our model, we further com-
pile a large-scale complex-simple parallel dataset
(PWKP) from Simple English Wikipedia1 and En-
glish Wikipedia2, as such datasets are rare.

We organize the remainder of the paper as fol-
lows: Section 2 describes the PWKP dataset. Sec-
tion 3 presents our TSM model. Sections 4 and 5
are devoted to training and decoding, respectively.
Section 6 details the evaluation. The conclusions
follow in the final section.

2 Wikipedia Dataset: PWKP

We collected a paired dataset from the English
Wikipedia and Simple English Wikipedia. The
targeted audience of Simple Wikipedia includes
“children and adults who are learning English lan-
guage”. The authors are requested to “use easy
words and short sentences” to compose articles.
We processed the dataset as follows:

Article Pairing 65,133 articles from Simple
Wikipedia3 and Wikipedia4 were paired by fol-
lowing the “language link” using the dump files
in Wikimedia.5 Administration articles were fur-
ther removed.

Plain Text Extraction We use JWPL (Zesch et
al., 2008) to extract plain texts from Wikipedia ar-
ticles by removing specific Wiki tags.

Pre-processing including sentence boundary
detection and tokenization with the Stanford

1http://simple.wikipedia.org
2http://en.wikipedia.org
3As of Aug 17th, 2009
4As of Aug 22nd, 2009
5http://download.wikimedia.org

Parser package (Klein and Manning, 2003),
and lemmatization with the TreeTagger (Schmid,
1994).

Monolingual Sentence Alignment As we need
a parallel dataset aligned at the sentence level,
we further applied monolingual sentence align-
ment on the article pairs. In order to achieve
the best sentence alignment on our dataset, we
tested three similarity measures: (i) sentence-level
TF*IDF (Nelken and Shieber, 2006), (ii) word
overlap (Barzilay and Elhadad, 2003) and (iii)
word-based maximum edit distance (MED) (Lev-
enshtein, 1966) with costs of insertion, deletion
and substitution set to 1. To evaluate their perfor-
mance we manually annotated 120 sentence pairs
from the article pairs. Tab. 1 reports the precision
and recall of these three measures. We manually
adjusted the similarity threshold to obtain a recall
value as close as possible to 55.8% which was pre-
viously adopted by Nelken and Shieber (2006).

Similarity Precision Recall
TF*IDF 91.3% 55.4%
Word Overlap 50.5% 55.1%
MED 13.9% 54.7%

Table 1: Monolingual Sentence Alignment
The results in Tab. 1 show that sentence-level
TF*IDF clearly outperforms the other two mea-
sures, which is consistent with the results reported
by Nelken and Shieber (2006). We henceforth
chose sentence-level TF*IDF to align our dataset.

As shown in Tab. 2, PWKP contains more
than 108k sentence pairs. The sentences from
Wikipedia and Simple Wikipedia are considered
as “complex” and “simple” respectively. Both the
average sentence length and average token length
in Simple Wikipedia are shorter than those in
Wikipedia, which is in compliance with the pur-
pose of Simple Wikipedia.

Avg. Sen. Len Avg. Tok. Len #Sen.Pairs
complex simple complex simple -
25.01 20.87 5.06 4.89 108,016

Table 2: Statistics for the PWKP dataset
In order to account for sentence splitting, we al-

low 1 to n sentence alignment to map one complex
sentence to several simple sentences. We first per-
form 1 to 1 mapping with sentence-level TF*IDF
and then combine the pairs with the same complex
sentence and adjacent simple sentences.

3 The Simplification Model: TSM
We apply the following simplification operations
to the parse tree of a complex sentence: splitting,
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dropping, reordering and substitution. In this sec-
tion, we use a running example to illustrate this
process. c is the complex sentence to be simpli-
fied in our example. Fig. 1 shows the parse tree of
c (we skip the POS level).
c: August was the sixth month in the ancient Ro-
man calendar which started in 735BC.

NP VP

S

August was

NPinsixththe
SBAR

NP

NP PP

WHNP S

VP

started PP

in 735BC

ancient calendar whichthe Roman

month

Figure 1: Parse Tree of c

3.1 Splitting
The first operation is sentence splitting, which we
further decompose into two subtasks: (i) segmen-
tation, which decides where and whether to split
a sentence and (ii) completion, which makes the
new split sentences complete.

First, we decide where we can split a sentence.
In our model, the splitting point is judged by the
syntactic constituent of the split boundary word
in the complex sentence. The decision whether a
sentence should be split is based on the length of
the complex sentence. The features used in the
segmentation step are shown in Tab. 3.

Word Constituent iLength isSplit Prob.
“which” SBAR 1 true 0.0016
“which” SBAR 1 false 0.9984
“which” SBAR 2 true 0.0835
“which” SBAR 2 false 0.9165

Table 3: Segmentation Feature Table (SFT)
Actually, we do not use the direct constituent of

a word in the parse tree. In our example, the direct
constituent of the word “which” is “WHNP”. In-
stead, we use Alg. 1 to calculate the constituent
of a word. Alg. 1 returns “SBAR” as the ad-
justed constituent for “which”. Moreover, di-
rectly using the length of the complex sentence
is affected by the data sparseness problem. In-
stead, we use iLength as the feature which is
calculated as iLength = ceiling( comLength

avgSimLength),
where comLength is the length of the complex
sentence and avgSimLength is the average length
of simple sentences in the training dataset. The
“Prob.” column shows the probabilities obtained
after training on our dataset.

Algorithm 1 adjustConstituent(word, tree)
constituent← word.father;
father ← constituent.father;
while father 6= NULL AND constituent is the most
left child of father do

constituent← father;
father ← father.father;

end while
return constituent;

In our model, one complex sentence can be split
into two or more sentences. Since many splitting
operations are possible, we need to select the most
likely one. The probability of a segmentation op-
eration is calculated as:

P (seg|c) =
∏

w:c

SFT (w|c) (1)

where w is a word in the complex sentence c and
SFT (w|c) is the probability of the word w in the
Segmentation Feature Table (SFT); Fig. 2 shows
a possible segmentation result of our example.

NP VP

S

August was

NPinsixththe

SBAR

NP

NP PP

WHNP S

VP

started PP

in 735BC

ancient calendar

which

the Roman

month

Figure 2: Segmentation
The second step is completion. In this step,

we try to make the split sentences complete and
grammatical. In our example, to make the second
sentence “which started in 735BC” complete and
grammatical we should first drop the border word
“which” and then copy the dependent NP “the
ancient Roman calendar” to the left of “started”
to obtain the complete sentence “the ancient Ro-
man calendar started in 735BC”. In our model,
whether the border word should be dropped or
retained depends on two features of the border
word: the direct constituent of the word and the
word itself, as shown in Tab. 4.

Const. Word isDropped Prob.
WHNP which True 1.0
WHNP which False Prob.Min

Table 4: Border Drop Feature Table (BDFT)

In order to copy the necessary parts to complete
the new sentences, we must decide which parts
should be copied and where to put these parts in
the new sentences. In our model, this is judged
by two features: the dependency relation and the
constituent. We use the Stanford Parser for pars-
ing the dependencies. In our example, the de-

1355



pendency relation between “calendar” in the com-
plex sentence and the verb “started” in the second
split sentence is “gov nsubj”.6 The direct con-
stituent of “started” is “VP” and the word “calen-
dar” should be put on the “left” of “started”, see
Tab. 5.

Dep. Const. isCopied Pos. Prob.
gov nsubj VP(VBD) True left 0.9000
gov nsubj VP(VBD) True right 0.0994
gov nsubj VP(VBD) False - 0.0006

Table 5: Copy Feature Table (CFT)

For dependent NPs, we copy the whole NP
phrase rather than only the head noun.7 In our
example, we copy the whole NP phrase “the an-
cient Roman calendar” to the new position rather
than only the word “calendar”. The probability of
a completion operation can be calculated as

P (com|seg) =
Y
bw:s

BDFT (bw|s)
Y
w:s

Y
dep:w

CFT (dep).

where s are the split sentences, bw is a border
word in s, w is a word in s, dep is a dependency
of w which is out of the scope of s. Fig. 3 shows
the most likely result of the completion operation
for our example.

NP VP

pt1

August was

NPinsixththe

NP
NP PPpt2

VP

started PP

in 735BC

ancient calendarthe RomanNP

ancient calendarthe Roman

month

Figure 3: Completion

3.2 Dropping and Reordering
We first apply dropping and then reordering to
each non-terminal node in the parse tree from top
to bottom. We use the same features for both drop-
ping and reordering: the node’s direct constituent
and its children’s constituents pattern, see Tab. 6
and Tab. 7.

Constituent Children Drop Prob.
NP DT JJ NNP NN 1101 7.66E-4
NP DT JJ NNP NN 0001 1.26E-7

Table 6: Dropping Feature Table (DFT)

6With Stanford Parser, “which” is a referent of “calender”
and the nsubj of “started”. “calender” thus can be considered
to be the nsubj of “started” with “started” as the governor.

7The copied NP phrase can be further simplified in the
following steps.

Constituent Children Reorder Prob.
NP DT JJ NN 012 0.8303
NP DT JJ NN 210 0.0039

Table 7: Reordering Feature Table (RFT)
The bits ‘1’ and ‘0’ in the “Drop” column indi-

cate whether the corresponding constituent is re-
tained or dropped. The number in the “Reorder”
column represents the new order for the children.
The probabilities of the dropping and reordering
operations can be calculated as Equ. 2 and Equ. 3.

P (dp|node) = DFT (node) (2)

P (ro|node) = RFT (node) (3)

In our example, one of the possible results is
dropping the NNP “Roman”, as shown in Fig. 4.

NP VP

pt1

August was

NPinsixththe

NP
NP PPpt2

VP

started PP

in 735BC

ancient calendartheNP

ancient calendarthe

month

Figure 4: Dropping & Reordering

3.3 Substitution
3.3.1 Word Substitution

Word substitution only happens on the termi-
nal nodes of the parse tree. In our model, the
conditioning features include the original word
and the substitution. The substitution for a word
can be another word or a multi-word expression
(see Tab. 8). The probability of a word substitu-
tion operation can be calculated as P (sub|w) =
SubFT (Substitution|Origin).

Origin Substitution Prob.
ancient ancient 0.963
ancient old 0.0183
ancient than transport 1.83E-102
old ancient 0.005

Table 8: Substitution Feature Table (SubFT)

3.3.2 Phrase Substitution
Phrase substitution happens on the non-

terminal nodes and uses the same conditioning
features as word substitution. The “Origin” con-
sists of the leaves of the subtree rooted at the
node. When we apply phrase substitution on a
non-terminal node, then any simplification opera-
tion (including dropping, reordering and substitu-
tion) cannot happen on its descendants any more

1356



because when a node has been replaced then its
descendants are no longer existing. Therefore, for
each non-terminal node we must decide whether a
substitution should take place at this node or at its
descendants. We perform substitution for a non-
terminal node if the following constraint is met:

Max(SubFT (∗|node)) ≥
Y

ch:node

Max(SubFT (∗|ch)).

where ch is a child of the node. “∗” can
be any substitution in the SubFT. The proba-
bility of the phrase substitution is calculated as
P (sub|node) = SubFT (Substitution|Origin).
Fig. 5 shows one of the possible substitution re-
sults for our example where “ancient” is replaced
by “old”.

NP VP

pt1

August was

NPinsixththe

NP

NP PPpt2

VP

started PP

in 735BC

old calendartheNP

old calendarthe

month

Figure 5: Substitution
As a result of all the simplification operations,

we obtain the following two sentences: s1 =
Str(pt1)=“August was the sixth month in the old
calendar.” and s2 = Str(pt2)=“The old calendar
started in 735BC.”

3.4 The Probabilistic Model
Our model can be formalized as a direct transla-
tion model from complex to simple P (s|c) multi-
plied by a language model P (s) as shown in Equ.
4.

s = argmax
s

P (s|c)P (s) (4)

We combine the parts described in the previous
sections to get the direct translation model:

P (s|c) =
∑

θ:Str(θ(c))=s

(P (seg|c)P (com|seg)

(5)
∏

node

P (dp|node)P (ro|node)P (sub|node)
∏

w

(sub|w)).

where θ is a sequence of simplification operations
and Str(θ(c)) corresponds to the leaves of a sim-

plified tree. There can be many sequences of op-
erations that result in the same simplified sentence
and we sum up all of their probabilities.

4 Training

In this section, we describe how we train the prob-
abilities in the tables. Following the work of
Yamada and Knight (2001), we train our model
by maximizing P (s|c) over the training corpus
with the EM algorithm described in Alg. 2, us-
ing a constructed graph structure. We develop the
Training Tree (Fig. 6) to calculate P (s|c). P (s|c)
is equal to the inside probability of the root in the
Training Tree. Alg. 3 and Alg. 4 are used to cal-
culate the inside and outside probabilities. We re-
fer readers to Yamada and Knight (2001) for more
details.
Algorithm 2 EM Training (dataset)

Initialize all probability tables using the uniform distribu-
tion;
for several iterations do

reset all cnt = 0;
for each sentence pair < c, s > in dataset do

tt = buildTrainingTree(< c, s >);
calcInsideProb(tt);
calcOutsideProb(tt);
update cnt for each conditioning feature in each
node of tt: cnt = cnt + node.insideProb ∗
node.outsideProb/root.insideProb;

end for
updateProbability();

end for

root

sp

sp_res1 sp_res2

dp

ro

mp

mp_res1 mp_res2

sub

mp

mp_res

subsub

dp

ro

mp_res

root

sp

sp_res sp_res

dp

ro

ro_res ro_res

sub

ro_res

subsub

dp

ro

ro_res

sub_res

sub_res sub_res

Figure 6: Training Tree (Left) and Decoding Tree
(Right)

We illustrate the construction of the training
tree with our running example. There are two
kinds of nodes in the training tree: data nodes in
rectangles and operation nodes in circles. Data
nodes contain data and operation nodes execute
operations. The training is a supervised learning
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process with the parse tree of c as input and the
two strings s1 and s2 as the desired output. root
stores the parse tree of c and also s1 and s2. sp,
ro, mp and sub are splitting, reordering, mapping
and substitution operations. sp res and mp res
store the results of sp and mp. In our example,
sp splits the parse tree into two parse trees pt1
and pt2 (Fig. 3). sp res1 contains pt1 and s1.
sp res2 contains pt2 and s2. Then dp, ro and mp
are iteratively applied to each non-terminal node
at each level of pt1 and pt2 from top to down.
This process continues until the terminal nodes
are reached or is stopped by a sub node. The func-
tion of mp operation is similar to the word map-
ping operation in the string-based machine trans-
lation. It maps substrings in the complex sentence
which are dominated by the children of the current
node to proper substrings in the simple sentences.

Speeding Up The example above is only one
of the possible paths. We try all of the promis-
ing paths in training. Promising paths are the
paths which are likely to succeed in transform-
ing the parse tree of c into s1 and s2. We select
the promising candidates using monolingual word
mapping as shown in Fig. 7. In this example,
only the word “which” can be a promising can-
didate for splitting. We can select the promising
candidates for the dropping, reordering and map-
ping operations similarly. With this improvement,
we can train on the PWKP dataset within 1 hour
excluding the parsing time taken by the Stanford
Parser.

We initialize the probabilities with the uniform
distribution. The binary features, such as SFT and
BDFT, are assigned the initial value of 0.5. For
DFT and RFT, the initial probability is 1

N! , where
N is the number of the children. CFT is initial-
ized as 0.25. SubFT is initialized as 1.0 for any
substitution at the first iteration. After each itera-
tion, the updateProbability function recalculates
these probabilities based on the cnt for each fea-
ture.

Algorithm 3 calcInsideProb (TrainingTree tt)
for each node from level = N to root of tt do

if node is a sub node then
node.insideProb = P (sub|node);

else if node is a mp OR sp node then
node.insideProb =

Q
child child.insideProb;

else
node.insideProb =

P
child child.insideProb;

end if
end for

Algorithm 4 calcOutsideProb (TrainingTree tt)
for each node from root to level = N of tt do

if node is the root then
node.outsideProb = 1.0;

else if node is a sp res OR mp res node then
{COMMENT: father are the fathers of the current
node, sibling are the children of father excluding
the current node}
node.outsideProb =

P
father

father.outsideProb ∗Q
sibling sibling.insideProb;

else if node is a mp node then
node.outsideProb = father.outsideProb ∗ 1.0;

else if node is a sp, ro, dp or sub node then
node.outsideProb = father.outsideProb ∗
P (sp or ro or dp or sub|node);

end if
end for

August was the sixth in the ancient Roman calendar statedwhich in 735BC

August was the sixth in the old Roman calendar stated in 735BCThe old calendar.

.

.

Complex sentence

Simple sentences

month

month

Figure 7: Monolingual Word Mapping
5 Decoding

For decoding, we construct the decoding tree
(Fig. 6) similarly to the construction of the train-
ing tree. The decoding tree does not have mp op-
erations and there can be more than one sub nodes
attached to a single ro res. The root contains the
parse tree of the complex sentence. Due to space
limitations, we cannot provide all the details of the
decoder.

We calculate the inside probability and out-
side probability for each node in the decoding
tree. When we simplify a complex sentence, we
start from the root and greedily select the branch
with the highest outside probability. For the sub-
stitution operation, we also integrate a trigram
language model to make the generated sentences
more fluent. We train the language model with
SRILM (Stolcke, 2002). All the articles from the
Simple Wikipedia are used as the training corpus,
amounting to about 54 MB.

6 Evaluation

Our evaluation dataset consists of 100 complex
sentences and 131 parallel simple sentences from
PWKP. They have not been used for training.
Four baseline systems are compared in our eval-
uation. The first is Moses which is a state of
the art SMT system widely used as a baseline in
MT community. Obviously, the purpose of Moses
is cross-lingual translation rather than monolin-

1358



gual simplification. The goal of our comparison
is therefore to assess how well a standard SMT
system may perform simplification when fed with
a proper training dataset. We train Moses with the
same part of PWKP as our model. The second
baseline system is a sentence compression sys-
tem (Filippova and Strube, 2008a) whose demo
system is available online.8 As the compression
system can only perform dropping, we further ex-
tend it to our third and fourth baseline systems,
in order to make a reasonable comparison. In our
third baseline system, we substitute the words in
the output of the compression system with their
simpler synonyms. This is done by looking up
the synonyms in Wordnet and selecting the most
frequent synonym for replacement. The word fre-
quency is counted using the articles from Simple
Wikipedia. The fourth system performs sentence
splitting on the output of the third system. This
is simply done by splitting the sentences at “and”,
“or”, “but”, “which”, “who” and “that”, and dis-
carding the border words. In total, there are 5
systems in our evaluation: Moses, the MT sys-
tem; C, the compression system; CS, the com-
pression+substitution system; CSS, the compres-
sion+substitution+split system; TSM, our model.
We also provide evaluation measures for the sen-
tences in the evaluation dataset: CW: complex
sentences from Normal Wikipedia and SW: par-
allel simple sentences from Simple Wikipedia.

6.1 Basic Statistics and Examples
The first three columns in Tab. 9 present the ba-
sic statistics for the evaluation sentences and the
output of the five systems. tokenLen is the aver-
age length of tokens which may roughly reflect the
lexical difficulty. TSM achieves an average token
length which is the same as the Simple Wikipedia
(SW). senLen is the average number of tokens in
one sentence, which may roughly reflect the syn-
tactic complexity. Both TSM and CSS produce
shorter sentences than SW. Moses is very close to
CW. #sen gives the number of sentences. Moses,
C and CS cannot split sentences and thus produce
about the same number of sentences as available
in CW.
Here are two example results obtained with our
TSM system.
Example 1. CW: “Genetic engineering has ex-
panded the genes available to breeders to utilize
in creating desired germlines for new crops.” SW:

8http://212.126.215.106/compression/

“New plants were created with genetic engineer-
ing.” TSM: “Engineering has expanded the genes
available to breeders to use in making germlines
for new crops.”
Example 2. CW: “An umbrella term is a word that
provides a superset or grouping of related con-
cepts, also called a hypernym.” SW: “An umbrella
term is a word that provides a superset or group-
ing of related concepts.” TSM: “An umbrella term
is a word. A word provides a superset of related
concepts, called a hypernym.”
In the first example, both substitution and drop-
ping happen. TSM replaces “utilize” and “cre-
ating” with “use” and “making”. “Genetic” is
dropped. In the second example, the complex sen-
tence is split and “also” is dropped.

6.2 Translation Assessment
In this part of the evaluation, we use traditional
measures used for evaluating MT systems. Tab. 9
shows the BLEU and NIST scores. We use
“mteval-v11b.pl”9 as the evaluation tool. CW
and SW are used respectively as source and ref-
erence sentences. TSM obtains a very high BLEU
score (0.38) but not as high as Moses (0.55).
However, the original complex sentences (CW)
from Normal Wikipedia get a rather high BLEU
(0.50), when compared to the simple sentences.
We also find that most of the sentences generated
by Moses are exactly the same as those in CW:
this shows that Moses only performs few modi-
fications to the original complex sentences. This
is confirmed by MT evaluation measures: if we
set CW as both source and reference, the BLEU
score obtained by Moses is 0.78. TSM gets 0.55
in the same setting which is significantly smaller
than Moses and demonstrates that TSM is able to
generate simplifications with a greater amount of
variation from the original sentence. As shown in
the “#Same” column of Tab. 9, 25 sentences gen-
erated by Moses are exactly identical to the com-
plex sentences, while the number for TSM is 2
which is closer to SW. It is however not clear how
well BLEU and NIST discriminate simplification
systems. As discussed in Jurafsky and Martin
(2008), “BLEU does poorly at comparing systems
with radically different architectures and is most
appropriate when evaluating incremental changes
with similar architectures.” In our case, TSM and
CSS can be considered as having similar architec-
tures as both of them can do splitting, dropping

9http://www.statmt.org/moses/
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TokLen SenLen #Sen BLEU NIST #Same Flesch Lix(Grade) OOV% PPL
CW 4.95 27.81 100 0.50 6.89 100 49.1 53.0 (10) 52.9 384
SW 4.76 17.86 131 1.00 10.98 3 60.4 (PE) 44.1 (8) 50.7 179
Moses 4.81 26.08 100 0.55 7.47 25 54.8 48.1 (9) 52.0 363
C 4.98 18.02 103 0.28 5.37 1 56.2 45.9 (8) 51.7 481
CS 4.90 18.11 103 0.19 4.51 0 59.1 45.1 (8) 49.5 616
CSS 4.98 10.20 182 0.18 4.42 0 65.5 (PE) 38.3 (6) 53.4 581
TSM 4.76 13.57 180 0.38 6.21 2 67.4 (PE) 36.7 (5) 50.8 353

Table 9: Evaluation

and substitution. But Moses mostly cannot split
and drop. We may conclude that TSM and Moses
have different architectures and BLEU or NIST is
not suitable for comparing them. Here is an exam-
ple to illustrate this: (CW): “Almost as soon as he
leaves, Annius and the guard Publius arrive to es-
cort Vitellia to Titus, who has now chosen her as
his empress.” (SW): “Almost as soon as he leaves,
Annius and the guard Publius arrive to take Vitel-
lia to Titus, who has now chosen her as his em-
press.” (Moses): The same as (SW). (TSM): “An-
nius and the guard Publius arrive to take Vitellia
to Titus. Titus has now chosen her as his empress.”
In this example, Moses generates an exactly iden-
tical sentence to SW, thus the BLUE and NIST
scores of Moses is the highest. TSM simplifies
the complex sentence by dropping, splitting and
substitution, which results in two sentences that
are quite different from the SW sentence and thus
gets lower BLUE and NIST scores. Nevertheless,
the sentences generated by TSM seem better than
Moses in terms of simplification.

6.3 Readability Assessment
Intuitively, readability scores should be suitable
metrics for simplification systems. We use the
Linux “style” command to calculate the Flesch
and Lix readability scores. The results are pre-
sented in Tab. 9. “PE” in the Flesch column stands
for “Plain English” and the “Grade” in Lix repre-
sents the school year. TSM achieves significantly
better scores than Moses which has the best BLEU
score. This implies that good monolingual trans-
lation is not necessarily good simplification. OOV
is the percentage of words that are not in the Ba-
sic English BE850 list.10 TSM is ranked as the
second best system for this criterion.

The perplexity (PPL) is a score of text proba-
bility measured by a language model and normal-
ized by the number of words in the text (Equ. 6).

10http://simple.wikipedia.org/wiki/
Wikipedia:Basic_English_alphabetical_
wordlist

PPL can be used to measure how tight the lan-
guage model fits the text. Language models con-
stitute an important feature for assessing readabil-
ity (Schwarm and Ostendorf, 2005). We train a
trigram LM using the simple sentences in PWKP
and calculate the PPL with SRILM. TSM gets the
best PPL score. From this table, we can conclude
that TSM achieves better overall readability than
the baseline systems.

PPL(text) = P (w1w2...wN )
− 1

N (6)

There are still some important issues to be con-
sidered in future. Based on our observations, the
current model performs well for word substitution
and segmentation. But the completion of the new
sentences is still problematic. For example, we
copy the dependent NP to the new sentences. This
may break the coherence between sentences. A
better solution would be to use a pronoun to re-
place the NP. Sometimes, excessive droppings oc-
cur, e.g., “older” and “twin” are dropped in “She
has an older brother and a twin brother...”. This
results in a problematic sentence: “She has an
brother and a brother...”. There are also some er-
rors which stem from the dependency parser. In
Example 2, “An umbrella term” should be a de-
pendency of “called”. But the parser returns “su-
perset” as the dependency. In the future, we will
investigate more sophisticated features and rules
to enhance TSM.

7 Conclusions
In this paper, we presented a novel large-scale par-
allel dataset PWKP for sentence simplification.
We proposed TSM, a tree-based translation model
for sentence simplification which covers splitting,
dropping, reordering and word/phrase substitution
integrally for the first time. We also described an
efficient training method with speeding up tech-
niques for TSM. The evaluation shows that TSM
can achieve better overall readability scores than
a set of baseline systems.
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