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ABSTRACT
We present a global log-linear model for synchronous grammar induction, which is capable
of incorporating arbitrary features. The parameters in the model are trained in an unsuper-
vised fashion from parallel sentences without word alignments. To make parameter training
tractable, we also propose a novel and efficient cube pruning based synchronous parsing algo-
rithm. Using learned synchronous grammar rules with millions of features that contain rule
level, word level and translation boundary information, we significantly outperform a compet-
itive hierarchical phrased-based baseline system by +1.4 BLEU on average on three NIST test
sets.

KEYWORDS: synchronous grammar induction, discriminative model, unsupervised learning,
machine translation.
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1 Introduction

In the last decade, statistical machine translation (SMT) has been advanced by expanding the
basic unit of translation from word to phrase (Koehn et al., 2003) and grammar (Galley et al.,
2006; Liu et al., 2006; Chiang, 2007). Most systems induce synchronous grammars (includ-
ing phrases) from parallel corpora using a heuristic two-step pipeline. This pipeline first
aligns a parallel corpus at the word level with heuristic word alignment combination strate-
gies (e.g., grow-diag-final-and) (Koehn et al., 2003), and then extracts translation rules from
word-aligned sentence pairs. It is working well in practice and therefore widely adopted. How-
ever, such a pipeline artificially brings an undesirable disconnection between translation model
and word alignment model (Blunsom et al., 2009; DeNero and Klein, 2010).

Recently, researchers have resorted to principled probabilistic formulations. Various genera-
tive models are proposed to learn translation rules directly from sentence pairs without word
alignments (Marcu and Wong, 2002; Cherry and Lin, 2007; Zhang et al., 2008; DeNero et al.,
2008; Blunsom et al., 2009; Cohn and Blunsom, 2009; Neubig et al., 2011; Levenberg et al.,
2012). Due to the independency assumptions in such generative models, it is hard to extend
them to incorporate arbitrary features, especially word alignment information as used in the
traditional two-step pipeline. As a result, despite theoretical advantages of these models over
the two-step pipeline, in practice they can only produce comparable translation quality with
the two-step pipeline in some scenarios, and usually even worse results.

Yet another alternative for synchronous grammar induction is unsupervised discriminative
model. Unsupervised discriminative model can directly learn synchronous grammars in a
theoretically justified manner just like generative model. However, the advantage over gen-
erative model is that it is able to easily incorporate word alignment information which has
been proved useful in the two-step pipeline.

In this paper, we propose a global log-linear model (Sec. 2) for the induction of synchronous
context free grammar (SCFG) (Chiang, 2007). The log-linear model is able to incorporate
arbitrary features. Furthermore, it is trained from sentence pairs without word alignments in
an unsupervised fashion. In particular:

• We approximate the exact conditional log-likelihood objective inspired by contrastive
estimation (Smith and Eisner, 2005) as the optimization of the exact objective is very ex-
pensive. The key idea is to estimate parameters via synchronous hypergraphs of sentence
pairs and neighbor source hypergraphs of source sentences (Sec. 3).

• Synchronous parsing is often impractical in large-scale learning applications due to its
high complexity O(n6). We address this challenge by proposing a novel and efficient
O(n3) cube pruning based synchronous parsing algorithm (Sec. 4).

• Aiming to enhance the ability to predict whether a translation derivation is good or not,
we incorporate a variety of fine-grained features into our model, including rule level
features, word level features and phrase boundary features (Xiong et al., 2010) (Sec. 5).

We evaluate our approach on the NIST Chinese-English translation task. According to the
analysis of grammar (Sec. 6.2), our induced grammar is more reusable, and is able to generate
better (+8.3 BLEU points) oracle translations than the grammar of the baseline. Meanwhile,
in the end-to-end machine translation experiments, our approach outperforms the two-step
pipeline by +1.4 BLEU points (Sec. 6.3).
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2 Global Log-linear Model

We propose a log-linear model to induce SCFG rules for hierarchical phrase-based translation
(Chiang, 2007) which transforms a source sentence s into a target sentence t by a sequence of
SCFG rules. Such a sequence of rules {r} is called a derivation d.

As the training data only contains sentence pairs, we model the derivation as a latent variable.
The conditional probability p(t|s) of a target sentence given a source sentence is defined as the
sum over all possible derivations d:

p(t|s) =
∑

d∈△(t,s)
p(d, t|s) (1)

where △(t, s) is the set of all possible derivations that translate s into t, and d is one such
derivation. Given a source sentence s, the conditional probability of a derivation d and the
corresponding translation t is:

p(d, t|s) = exp
∑

i λi Hi(d, t, s)
Z(s)

(2)

where Hi(d, t, s) =
∑

r∈d hi(r, s) is feature function. We assume Hi decomposes with derivation
d in terms of local feature function hi , which is related to a rule r and a source sentence s. λi
is the correspondent feature weight. Z(s) is the partition function:

Z(s) =
∑

t

∑
d∈△(t,s)

exp
∑

i

λi Hi(d, t, s) (3)

Such a discriminative latent variable model is not new to SMT (Blunsom et al., 2008;
Kääriäinen, 2009; Xiao et al., 2011). However, we are distinguished from previous work by
applying this model to synchronous grammar induction. The purpose of the latent variable
model in such previous work is to do max-translation decoding and training (Blunsom et al.,
2008), or to eliminate the gap between heuristic extraction and decoding (Kääriäinen, 2009),
instead of grammar induction as synchronous rules are still extracted by the heuristic two-step
pipeline. In contrast, our interest lies in using latent variable model to learn synchronous
grammar directly from sentence pairs. Overall, to the best of our knowledge, this is the first
attempt to apply this log-linear model for synchronous grammar induction.

3 Training

We use maximum a posteriori estimator with stochastic gradient descent algorithm for opti-
mization. We maximize the log-likelihood L of the bilingual corpus T= {(sn, tn)}Nn=1, penalized
by a gaussian prior with mean 0 and variance σ (L2 norm):

L=
∑

(sn ,tn)∈T

log p(t|s)+
∑

i

log p0(λi) (4)

The gradient of the above objective is as follows:

∂L
∂ λi

= Ep(d|t,s)[Hi]− Ep(d,t|s)[Hi]−
λi

σ2 (5)
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Figure 1: Synchronous hypergraph and source hypergraph of a sentence pair from Chinese segment
“shaoshu guojia zhiyi” aligned with an English string “one of the few countries”. These two hypergraphs
are constructed in order to calculate the expectation in Eq. (5). Here, a hyperedge corresponds to an
SCFG rule. A node is a bispan in synchronous hypergraph and is a source span in source hypergraph.
Notably, the dotted derivation in Figure (b), which contains dotted hyperedges and goes through the
source-span [1,3], is a “wrong” derivation, because it results in a translation inconsistent with the target
string. Intuitively, we achieve the unsupervised learning by moving the probability of such “wrong”
derivations in source hypergraph into the derivations in synchronous hypergraph.

Eq. (5) clearly shows that there are two expectations need to be calculated. The first one is the
expectation Ep(d|t,s)[Hi] of a parameter given a sentence pair, and the second one Ep(d,t|s)[Hi]
is the expectation of a parameter given the source sentence.

In the following sections, we first introduce how to use hypergraph to compute these expec-
tations by synchronous hypergraph and source hypergraph respectively (Sec. 3.1). Then, we
discuss the intractability of the exact training, and achieve tractable training by approximation
(Sec. 3.2). Finally, we describe the training algorithm in detail to explain how the rules is
induced (Sec. 3.3).

3.1 Inference with Hypergraph

We use hypergraph (Klein and Manning, 2001) to compactly represent the space of derivations.
Based on hypergraphs, it’s straightforward to calculate the two expectations in Eq. (5). The
first expectation Ep(d|t,s)[Hi] is the expected value when observing both source sentence s and
target sentence t. The second expectation Ep(d,t|s)[Hi] is a similar function, but only the source
sentence is observed. Thus, in order to calculate the first expectation, we construct a syn-
chronous hypergraph to represent all derivations of a sentence pair. Similarly, for the second
expectation, we use a source hypergraph to represent all derivations of a source sentence.

Figure 1 shows a synchronous hypergraph (a) and a source hypergraph (b). Each hyperedge
is associated with an SCFG rule. In a synchronous hypergraph, a node is denoted by a nonter-
minal with a bispan. In contrast, a node in the source hypergraph is a nonterminal that spans
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a continuous sequence of words of source sentence.

More formally, a hypergraph is a pair 〈V, E〉, where V is the set of nodes, E is the set of
hyperedges. Each hyperedge e ∈ E connects a set of antecedent nodes to a single consequent
node. And each hyperedge corresponds to an SCFG rule r. In a synchronous hypergraph, a
node v ∈ V is in the form X i, j,k,l , which denotes the nonterminal X spanning from i to j (that is
si+1...s j) in the source sentence, and from k to l in the target sentence. In a source hypergraph,
each node v ∈ V is in the form X i, j , which spans from i to j in the source sentence.

Based on these hypergraphs, we compute the two expectations by applying the inside-outside
algorithm as described in Li et al. (2009). The computation complexity is linear to the size of
hypergraph O(|E|). More exactly, O(|E|) denotes O(|s|3|t|3) for synchronous hypergraph, and
O(|G||s|3) for source hypergraph. Here, G denotes all potential synchronous grammars.

3.2 Tractable Estimation by Approximation

However, the size of potential SCFGs G is extremely large given a vocabulary Ω, resulting in
a large number of hyperedges in source hypergraph. See the rule r2 in Figure 1. In reality,
there are many potential translation rules that share the same source side “shaoshu X ” as r2,
but with different target side. Suppose n is the maximum number of terminals in the target
side, the number of such rules is up to O(|Ω|n). All these rules can connect the source word
“shaoshu” and the node X1,2 to the node X0,2, which produces a large number of incoming
hyperedges for node X0,2. Therefore, due to the large number of potential SCFGs, the number
of hyperedges in a source hypergraph is very large. The computation on such a huge source
hypergraph makes the exact inference intractable.

To make inference tractable and efficient, we shrink the size of source hypergraph by defining
a smaller neighborhood with the synchronous hypergraph. We parse the source hypergraph
using the neighbor grammar NG of synchronous hypergraph H:

NG= Neighbor(G′,H) = {r|r ∈ G′ ∧ src(r) ∈ {src(r ′)|r ′ ∈ G(H)} } (6)

Here, G′ is the set of translation rules discovered in the training corpus by our algorithm. src()
denotes the source side of a rule. G() is the set of rules in a hypergraph. The neighbor grammar
contains those rules that are discovered during training (rather than all potential rules), and
whose source sides occur in the synchronous hypergraph. Sine the size of NG is typical fairly
small, the parsing of our source hypergraph becomes tractable in practice.

The definition of neighbor source hypergraph is inspired by contrastive estimation
(Smith and Eisner, 2005). Similar shrinkage of discriminative neighborhood is also used in
Dyer et al. (2011a). Notably, our approximation is consistent with the purpose of synchronous
grammar induction for SMT. In SMT, the goal of grammar induction is for translation rather
than synchronous parsing. Our source hypergraph corresponds to the potential translation
space during SMT decoding. Thus, we expect such approximation to be suitable for SMT.

3.3 Training Algorithm

Based on the synchronous hypergraph and source hypergraph introduced above, we optimize
L in an online style as shown in Algorithm 1. For each sentence pair, we first use cube-pruning
based biparsing (Sec. 4) to construct a synchronous hypergraph H1 (line 4). Rules are discov-
ered in the construction of hypergraph in H1. We then collect these learnt rules G(H1) in H1,
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Algorithm 1: Training({(sn, tn)}Nn=1)

1 G′ ← ∅ , λ← 0
2 for t = 0 to T do
3 for n= 0 to N do
4 H1 ← BIPARSE(s, t) ⊲ generate synchronous hypergraph
5 G′ ← G′ + G(H1) ⊲ collect grammars in H1
6 NG← NEIGHBOR(G′, H1)
7 H2 ← EXHAUSTIVEPARSE(NG, s) ⊲ generate neighbor source hypergraph
8 λ← λ + η × ∂ L

∂ λ
(H1, H2) ⊲ η is learning rate

9 return G′, λ

and store them in G′. After that, we create the neighbor source hypergraph H2 by exhaustive
bottom-up chart parsing using the neighbor grammar NG (line 6). Finally, we calculate the gra-
dient by these two hypergraphs and update the feature weights (line 8). When the algorithm
is complete, we learn a grammar G′ and also the feature weights λ of the model.

We implement an stochastic gradient descent (SGD) recommended by Bottou.1 We schedule
the learning rate η by an exponential decay (Tsuruoka et al., 2009). We set the regularization
strength, initial learning rate and the base of exponential decay as 1.0, 0.2, 0.9 respectively.
We choose these values by maximizing the translation performance measured by BLEU on the
NIST 2002 development set with a subset of our training data including 20k sentence pairs.

4 Cube Pruning-based Synchronous Parsing

The approximation makes the training algorithm tractable. However, there is still one problem:
how to efficiently construct the synchronous hypergraph? Exhaustive synchronous parsing
requires O(|s|3|t|3) time.2 To overcome this challenge, we propose a novel and efficient cube-
pruning based synchronous parsing algorithm. Given a sentence pair, this algorithm constructs
the synchronous hypergraph and discovers rules in the sentence pair.

Instead of enumerating all possible hyperedges, we only create k-best hyperedges for each
source span. This is achieved by exploiting the substructure in a hyperedge. For example, the
hyperedge in Figure 2(b) contains two substructures: alignment of source sub-span X0,2 and
alignment of the third source word s3. We maintain sorted candidate lists for every substruc-
ture, and create cubes that represent the potential combinations of these candidates (see Fig.
2(a)). In this way, we are able to create k-best hyperedges by cube pruning.

More specifically, we maintain charts for source words and source spans respectively:

• s-chart for each source word. The cell char t[s, i] in s-chart stores a list of candidate
alignments for the i-th source word. A candidate alignment is represented by a list of
target index. The vertical dimension in Figure 2(a) is an instance of char t[s, 3].

1http://leon.bottou.org/projects/sgd
2Dyer (2010) has shown that two monolingual parses can be more efficient than one synchronous parse, due to the

sparsity of pre-fixed translation rules. Such rules are extracted by the heuristic two-step pipeline. In contrast, there
are no pre-fixed translation rules in our case.
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Figure 2: Construct hyperedge from a cube. (a) Cube X0,2zhiyi3 for source span (0,3). The vertical
direction represents the candidate list of zhiyi3, while the horizontal direction is a list of nodes that share
the same source span (0,2). (b) the hyperedge corresponds to the gray grid in cube (a).

• X-chart for each source span. The cell char t[X , i, j] in X-chart stores a list of nodes of
the synchronous hypergraph. The nodes in char t[X , i, j] share the same source span
(i, j). The horizontal direction in Figure 2(a) is an instance of char t[X , 0, 2].

These two charts are created by cube-pruning from the bottom up. When processing a source
span, we infer all potential source parses and create cubes as shown in Figure 2(a) for every
source parses. A cube represents the space of hyperedges for a source parse, where each
dimension of a cube denotes the candidate list of a substructure for a hyperedge. Thus, the
point in a cube corresponds to a hyperedge (see Fig. 2(b)). Based on these cubes, we create
k-best hyperedges, store them into the chart, and then proceed to larger source spans.

4.1 Cube

Formally, a cube is a tuple of lists L = 〈L1, ..., Ld , ..., L|L|〉, where |L| is the dimension of the
cube and Ld is a list for the d-th dimension. Although |L| can be larger than 3 (a hypercube
is defined in that case), we still call it cube for consistency. Given a point p in the cube,
multiplication operator ⊗ constructs a hypothesis by L1[p1]⊗ ...⊗ L|L|[p|L|]. Particularly, there
are two types of cubes: word cube and span cube.

Word Cube A word cube represents the alignment space for a source word si , and is used to
create the items for char t[s, i]. A word cube has |t| dimensions. The d-th dimension list Ld
contains two elements: ǫ (null translation) and td (the d-th target word). The hypothesis of a
point p is a set of target words that aligns to the source word.

Span Cube A span cube represents the space of hyperedges for a source parse of source span
(i,j), and is used for creating char t[X , i, j]. As a span cube denotes a deduction of the source
span, it is represented by a source sequence of symbol γ, which is a mixture of words and
nonterminals. For example, the cube in Figure 2(a) is represented by X0,2zhiyi3. According to
γ, the d-th dimension Ld of a span cube L is defined according to γd :

Ld =
�

char t[s, i1] if γd = si1
char t[X , i1, j1] if γd = X i1 , j1

(7)

The hypothesis of a point p in a span cube corresponds to a hyperedge. The tail nodes of such
a hyperedge is the set of nodes {v|v ∈ {Ld[pd]}}, where {Ld[pd]} is the set of elements for
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Algorithm 2: BiParse(s, t)

1 for i ← 1, .., |s| do
2 for j ← 1, .., |t| do ⊲ create a |t|-dimension word cube
3 L j ← {ǫ, t j}
4 L ← 〈L1, ..., L|t |〉
5 char t[s, i]← MERGEPRODUCTS(L ,⊗) ⊲ create k-best alignments

6 for h← 1, .., |s| do ⊲ h is the size of span
7 forall the i, j s.t. j − i = h do
8 L ← ;
9 for γ inferable from char t do ⊲ create all inferable span cubes

10 L ← L + 〈char t[γ1], ..., char t[γ|γ|]〉
11 char t[X , i, j]← MERGEPRODUCTS(L ,⊗) ⊲ create k-best hyperedges

the point p in the cube. The head node of the hyperedge X i, j,k,l has a target span that is the
maximum target span covered by {Ld[pd]}. See the Figure 2(b), for point (0,0), since the
word “zhiyi3” aligns to “one1” and “of2”, and the tail node is X0,2,2,5, the max target coverage
is (0,5). Therefore the head node is X0,3,0,5.

However, for a point p in source cube, the elements in each dimension {Ld[pd]} may conflict
with each other. See Figure 2(a). Point (0,1) in the cube denotes two elements: an alignment
for “zhiyi3” to “few4” and a node X0,2,2,5. The target alignment of “zhiyi3” overlaps with the
target span of node X0,2,2,5. We say this is a conflict. Such a conflict denotes an inconsistent
alignment. Therefore, we skip those conflicting points in a cube when constructing hyperedge.

Notably, a point in a span cube clearly expresses the inside word alignments of a hyperedge,
allowing us to encode word level features for hyperedges.

4.2 Biparsing Algorithm

Algorithm 2 shows the main process of our cube-pruning based biparsing algorithm.

The algorithm begins with the construction of s-chart (lines 1-5). We first construct a |t|-
dimension word cube for every source word (lines 2-3). Secondly, by MERGEPRODUCTS function
as described in Chiang (2007), we create k-best alignments for every source word, and add
them to the char t[s, i] (line 5).

After that, we create each cell char t[X , i, j] for X-chart (lines 6-11) from the bottom up. For a
source span (i, j), all span cubes inferable from s-chart and X-chart are established. Every span
cube is a tuple of |γ|-lists according to Eq. (7), and is append to L (lines 9,10). After creating
all cubes, we construct k-best hyperedges and store them into char t[X , i, j] (line 11).

Obviously, hyperedges and nodes have been created during the construction of the two charts,
which means Algorithm 2 produces a synchronous hypergraph. As each hyperedge corresponds
to an SCFG rule, Algorithm 2 is also a procedure to discover SCFG rules. On the other hand,
the complexity of our biparsing algorithm is O(|s||t|+ |s|k log k+ |s|3+ |s|2k log k). Considering
k is prefixed and |t| is linear to |s| in reality, the complexity can be simplified into O(|s|3).
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4.3 Scoring Function and Future Cost
The hypothesis, that is created by the operator ⊗, corresponds to a hyperedge e and an SCFG
rule r. Suppose the head node of a hyperedge e is X i, j,k,l , we calculate the score of e by:

S(e) =
∑

i

λihi(r, t, s)+ F(i, j, k, l) (8)

The first part is the feature score, while the second part F() denotes the future cost. This
future cost is an approximation of the outside score of bispan [i, j, k, l], which denotes the cost
to generate strings outside the head node X[i, j, k, l]. We estimate the future cost by using
word level features as follows:

F(i, j, k, l) =
∑

g /∈(i, j)
argmax

h/∈(k,l)
S(sg , th) +
∑

h/∈(k,l)

argmax
g /∈(i, j)

S(sg , th) (9)

S(sg , th) calculates the score of features for a word pair. The future cost can be calculated
before inference.

Notably, a rule is not factorized into hypothesis in each dimension of a cube. Because rule
features are used in our model, the multiplication operator ⊗ is only approximately monotonic
under this scoring function. Thus, the MERGEPRODUCTS only produces approximate k-best
hypotheses.

4.4 Implementation
Here, we discuss some engineering details of our algorithm.

For efficiency, we only construct 30-best hyperedges for each cube. These hyperedges are
recombined, and the top-10 nodes are saved to the chart.

We prune the SCFG rules (corresponding to hyperedge) that are already discovered from syn-
chronous hypergraphs using two constraints. Firstly, we prune a hypergraph by viterbi pruning
with p = 1 (Huang, 2008). Secondly, we maintain a rule cache with size limit of 20M. When
the cache is full, we drop those rules containing nonterminals that are discovered in only one
sentence pair. For rules sharing the same source side, we retain the 50 most frequent ones.

Sometimes, a hyperedge produced by the cube corresponds to an illegal SCFG rule as defined
in Chiang (2007). For example, rules without source terminals, target terminals and ITG rules
(Dekai, 1997). We allow such edges to be added to the hypergraph, in order to make sure that
most sentences are reachable. By this setting, the failure of biparsing only occurs in less than
1% of the whole training corpus. However, due to the ambiguity of these rules, we do not use
them during end-to-end translation.

Overall, by these implementations, our synchronous algorithm (Alg. 2) runs in a speed of 0.41
second/sentece-pair.

5 Features
The log-linear model allows us to incorporate arbitrary features. In addition to the rules that
we are interested in, we also incorporate word-level information and translation boundary in-
formation, both of which have proved useful for SMT. Through these features, we can enhance
the ability of our model to predict whether a translation derivation is good or not. Notably,
previous work typically use such information in locally normalization, while we learn weights
of these features by globally normalization on the entire sentence structure.
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Rule features We associate each rule with a single feature. Each rule feature counts the
number of times that a rule appears in a derivation. In this way, we are able to learn a weight
for every rule by global normalization. This is quite different from traditional pipeline that
gives each rule with relative frequency that is locally normalized by rules with the same source
side or target side.

Word association features As shown in section 4, our inference algorithm also induces in-
side word alignments for each derivation. Thus, it is straightforward to introduce features that
contain word level information. Here, we associate each word pair with a fine-grained boolean
feature. We also include the two lexical weights as described by Koehn et al. (2003), estimated
by word translation probabilities output by GIZA++. We set the initial weight of these two lex-
ical weights as 1.0. The lexical weights enable our system to score and rank the hyperedges at
the beginning. Although word alignment features are used, our system is neither constrained
by prefixed word alignment nor requires heuristic alignment combination strategy.

Phrase Boundary features As shown in Figure 1(b), although the rule sequence of the
solid derivation and dotted derivation are exactly the same, only solid derivation produces
correct translation. They can be distinguished by taking into account boundary information
(Xiong et al., 2010; Dyer et al., 2011b). We design two feature templates here: BE:si + 1, s j
denotes the bigrams of beginning and ending source words. PS:si , s j+1 means the preceding
and succeeding source words. We do not use target word information, since this is non-local
for hypergraph, and will largely increase the size of hypergraph.

Length Feature Finally, we also integrate the length feature of target side that is used in
traditional SMT system.

6 Experiments

In this section, we present our experiments on Chinese-to-English translation tasks. The ex-
periments are aimed at measuring the quality and effectiveness of grammar induced by our
method. We present the performance of our unsupervised discriminate synchronous gram-
mar induction (UDSGI) using two groups of features during decoding. We test the translation
performance of UDSGI and the baseline on the same decoder.

Baseline The baseline system is an in-house implementation of hierarchical phrase-based
translation system(Chiang, 2007). The grammar is extracted from word-aligned corpus by tra-
ditional two-step pipeline. Symmetric word alignments were created by first running GIZA++
(Och and Ney, 2003) in both directions and then applying refinement rule “grow-diag-final-
and” (Koehn et al., 2003). The system uses 8 dense features including: forward and backward
translation probabilities; forward and backward lexical weights; language model; 3 penalties
for word count, extracted rule count, and glue rule count.

UDSGI Dense This configuration uses the same feature set as the baseline. Our log-linear
model for grammar induction does not contain the forward and backward translation prob-
abilities. However, we still compute the forward and backward translation probabilities for
UDSGI by normalizing the expectation Ep(d|t,s)[Hi] of a rule, when algorithm 1 is complete.
The normalization is similar to the traditional estimation of these two probabilities.
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|Source Words| |Target Words| Number of rules

Rule Type Baseline UDSGI Baseline UDSGI Baseline UDSGI

Phrase 3.16 2.39 3.97 2.59 2.0M 6.6M
One-NT 3.20 2.31 3.91 2.51 6.4M 2.9M

Two-NT-Mono 2.62 2.52 3.47 2.81 4.2M 2.7M
Two-NT-Swap 2.55 2.46 3.65 2.87 0.5M 0.8M

All Rule 2.89 2.40 3.77 2.63 13.2M 13.1M

Table 1: Comparison of grammars induced by Baseline and UDSGI. Phrase represents the
phrase rule. One-NT and two-NT denotes rules contain one or two nonterminals. Mono and
Swap means that the two nonterminals are monotone or swapping in the target side. |Source
Words| and |Target Words| denotes the average count of source and target terminals in a rule.

UDSGI Dense+Sparse Our global log-linear model encodes millions of sparse features in-
cluding rule, word pair and phrase boundary features. During decoding, we also enhance our
model by these sparse features. In order to optimize these sparse features with the dense fea-
tures by minimum error rate training (MERT), we group features of the same type into one
coarse "summary feature", and get three such features including: rule, word-pair and phrase-
boundary features. In this way, we rescale the weights of the three "summary features" with
the 8 dense features by MERT. Such approach is similar to Dyer et al. (2011b).

6.1 Data

We used the NIST evaluation set of 2002 (MT02) as our development set for MERT, and test the
translation performance on the NIST 2003-2005 (MT03-05) evaluation sets. Case-insensitive
NIST BLEU-4 (Papineni et al., 2002) is used to measure translation performance.

We used a bilingual corpus that contains 200K sentence pairs of up to length 40 from the LDC
data. 3 There are 8.8M words in the 200K data. We trained a 5-grams language model by the
SRILM toolkit (Stolcke, 2002). The monolingual data for language model training includes the
Xinhua portion of the GIGAWORD corpus and the English side of the entire LDC data, which
contains 432 million words.

We used MERT (Och, 2003) to optimize the feature weights for decoding by maximizing BLEU.
Since the instability of MERT has a substantial impact on results, we follow Clark et al. (2011)
to report the average scores of 3 independent runs.

6.2 Grammar Analysis and Oracle Results

The synchronous grammar generated by UDSGI has 13.1 millions rules. The number of these
rules is comparable with that of grammar extracted by the traditional pipeline, which has
13.2 millions rules. However, the two grammars are quite different as shown in Table 1. Our
grammar is more reusable than the baseline’s, because it contains less source words and less
target words. Interestingly, even we discard the rules which occur only once (See Sec. 4.4), we
still learn 60% more swapping rules with two nonterminals (Two-NT-Swap) than the baseline.

3The 200K data comes from the following corpus: LDC2002E18, LDC2003E07, LDC2003E14, LDC2004T07,
LDC2005T06 and Hansards portion of LDC2004T08 (part of).
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System MT03 MT04 MT05 Avg.

Baseline 64.96 69.48 65.45 66.63
UDSGI 73.37 77.13 74.29 74.93

Table 2: BLEU-4 scores of oracle translations generated by grammars of Baseline and UDSGI.
Avg. reports the average score on the three test set.

System |G′| MT03 MT04 MT05 Avg.

Moses-Chart 45.0M 32.93 34.73 31.24 32.97

Baseline 13.2M 32.36 34.51 31.86 32.91
Baseline-expand 46.2M 33.04 35.13 32.08 33.42

UDSGI Dense 13.1M 33.46 35.43 32.74 33.87
UDSGI Dense+Sparse 13.1M 33.58 36.27 33.05 34.30

Table 3: Evaluation of translation quality in terms of BLEU. Moses-Chart is the running of
hierarchical phrased-model in Moses. Baseline-expand uses a similar extraction constraint to
Moses-Chart and the same decoder as Baseline. The improvement of UDSGI over Baseline is
statistically significant (Koehn, 2004) (p < 0.01).

We can not directly evaluate the quality of grammar, since there is not a golden grammar.
However, as grammar is used to generate target translations, it’s reasonable to decide the
quality of a grammar by testing what best translations it can produce. Therefore, we compare
the oracle translation result of the grammar in baseline and the grammar in UDSGI, with four
reference translations given.4 As shown in Table 2, our grammar achieves a much higher
oracle BLEU (+8.3 BLEU points) than the baseline grammar. This suggests that the grammar
induced by our method is able to generate better translations than the grammar extracted by
the traditional two-step pipeline.

6.3 Translation Results

Table 3 compares the translation performance of our approach and the baseline on the test
sets. When extracting rules as Chiang (2007), the baseline produces an average BLEU of
32.91. We also run Moses-Chart, the implementation of hierarchical phrased-model in Moses
(Koehn et al., 2007), on our data with its default settings. As shown in the table, our Baseline
is comparable with Moses-Chart. However, Moses-Chart extracts much more rules, because
it uses a different extraction constraint from Chiang (2007). The differences mainly include
edges of initial phrases can be unaligned and minimum size of source part of sub-phrases is 2.

We also relax the Baseline by applying these two options, and call such setting as Baseline-
expand. Baseline-expand outperforms Baseline by +0.51 BLEU with 3.5 times of rules. As our
UDSGI method learns a similar size of rules with the Baseline’s, we only compare our method
with the Baseline in the following sections.

Using the same 8 dense features as used in the baseline system, we obtain an average improve-

4We calculate the oracle translation by the traditional decoder using sentence BLEU score as feature function. We
use add 0.1 smoothing for the ngram precision, and set the reference length for a source span (i,j) as ⌈ Lmin×( j−i)

|s| ⌉.
Here, Lmin is the shortest length of references for a sentence.
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System |G′| MT03 MT04 MT05 Avg.

Baseline 17.6M 33.83 35.94 33.23 34.33
UDSGI Dense+Sparse 13.5M 35.28 37.43 34.25 35.65

Table 4: Experiment results by integrating the entire LDC corpus.

ment of +0.96 BLEU score on the three test sets over the Baseline. As the difference between
Baseline and UDSGI Dense only lies in the grammar, the improvement indicates that the gram-
mar induced by UDSGI does outperform that extracted by the traditional two-step pipeline.
When we incorporate the sparse features learnt by our training algorithm, we achieve a fur-
ther improvement of +0.43 BLEU point. Therefore, our training algorithm is able to learn the
useful information encoded by the sparse features for translation.

6.4 Exploiting the Entire LDC Data

Since the previous experiment only runs on a medium-scale corpus, we want to know whether
the improvement only comes from poor word alignment performance in the baseline system.
Therefore, we want to verify the improvement on large-scale data set. Unfortunately, our
approach needs to store all rules in memory, which is impractical for large scale data. Instead
of directly training on LDC data (357M words), which is 40-times larger than the medium-scale
data, we try to explore these data in a different way.

The baseline still extracts rules from the 200K data, while our approach also learns grammar
on 200K data. However, we run GIZA++ on the entire LDC data. The word alignment per-
formance of the baseline is therefore enhanced by using all entire data. We used the word
translation probabilities of this large-scale trained GIZA++ to calculate lexical weights in our
model during training.

Table 4 shows the results. Not surprisingly, the performance of baseline significantly increases
by 1.4 points, due to the improvement of word alignment quality and the larger number of
extracted rules. Interestingly, our method also achieves similar improvements with enhanced
GIZA++. Still, our approach outperforms the baseline by +1.3 points, which is quite close to
the improvement in medium-scale corpus experiments. Furthermore, the grammar in UDSGI
is smaller than the grammar of the baseline (76.7%). Therefore, we believe that our improve-
ment comes from the theoretical advantage of our approach, and that such advantage does
exist even on large-scale data.

7 Related Work

Because of the great importance of synchronous grammars to SMT systems, researchers have
proposed various methods in order to improve the quality of grammars. In addition to the gen-
erative model introduced in Section 1, researchers also have made efforts on word alignment
and grammar rescoring.

The first effort is to improve word alignment by considering phrase/syntax information
(May and Knight, 2007; DeNero and Klein, 2010; Pauls et al., 2010; Burkett et al., 2010;
Riesa et al., 2011). Such approaches also use discriminative framework to combine word align-
ment and syntactic alignment information. In this way, they prefer word alignments that are
consistent with syntactic structure alignments. However, labeled word alignment data are
required in order to learn the discriminative model.
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Researchers also try to rescore the weights of translation rules. They rescore the weights of
rules extracted from the two-step pipeline, by using the similar latent log-linear model as us
(Blunsom et al., 2008; Kääriäinen, 2009), or incorporating various features using labeled data
(Huang and Xiang, 2010). Such methods still need to run the heuristic two-step pipeline to
extract the grammar, while our method can directly learn the grammar and correspondent
weights.

Our work also has a connection to the research direction that exploits resources-rich languages
to construct similar tools for resource-poor languages. This can be done with parallel data
(Pauls et al., 2010) or without parallel data (Cohen et al., 2011).

Saers et al. (2009) also propose a cubic biparsing algorithm based on beam pruning. They
apply this algorithm for generative model-based ITG grammar induction.

Conclusion and Future Work

We have presented a global log-linear model for synchronous grammar induction, and have
also proposed efficient training and inference algorithms. In addition to the theoretical advan-
tage, we also achieve significant improvements over the traditional heuristic two-stage pipeline
on both medium-scale and large-scale training data.

In the future, we hope to find efficient algorithms that are capable of incorporating contex-
tual features, especially language model and context-based translation model, and optimizing
parameters by maximizing BLEU. Because our proposed model is quite general, we are also
interested in applying this method to linguistically syntax-based SMT.
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