
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 499–506,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Unsupervised Analysis for Decipherment Problems

Kevin Knight, Anish Nair, Nishit Rathod
Information Sciences Institute

and Computer Science Department
University of Southern California

knight@isi.edu, {anair,nrathod}@usc.edu

Kenji Yamada
Language Weaver, Inc.

4640 Admiralty Way, Suite 1210
Marina del Rey, CA 90292

kyamada@languageweaver.com

Abstract
We study a number of natural language deci-
pherment problems using unsupervised learn-
ing. These include letter substitution ciphers,
character code conversion, phonetic decipher-
ment, and word-based ciphers with relevance
to machine translation. Straightforward unsu-
pervised learning techniques most often fail on
the first try, so we describe techniques for un-
derstanding errors and significantly increasing
performance.

1 Introduction
Unsupervised learning holds great promise for break-
throughs in natural language processing. In cases like
(Yarowsky, 1995), unsupervised methods offer accu-
racy results than rival supervised methods (Yarowsky,
1994) while requiring only a fraction of the data prepa-
ration effort. Such methods have also been a key
driver of progress in statistical machine translation,
which depends heavily on unsupervised word align-
ments (Brown et al., 1993).

There are also interesting problems for which super-
vised learning is not an option. These include deci-
phering unknown writing systems, such as the Easter
Island rongorongo script and the 20,000-word Voynich
manuscript. Deciphering animal language is another
case. Machine translation of human languages is an-
other, when we consider language pairs where little or
no parallel text is available. Ultimately, unsupervised
learning also holds promise for scientific discovery in
linguistics. At some point, our programs will begin
finding novel, publishable regularities in vast amounts
of linguistic data.

2 Decipherment
In this paper, we look at a particular type of unsuper-
vised analysis problem in which we face a ciphertext
stream and try to uncover the plaintext that lies behind
it. We will investigate several applications that can be
profitably analyzed this way. We will also apply the
same technical solution these different problems.

The method follows the well-known noisy-channel
framework. At the top level, we want to find the plain-
text that maximizes the probability P(plaintext

�
cipher-

text). We first build a probabilistic model P(p) of the
plaintext source. We then build probabilistic channel
model P(c

�
p) that explains how plaintext sequences

(like p) become ciphertext sequences (like c). Some of
the parameters in these models can be estimated with
supervised training, but most cannot.

When we face a new ciphertext sequence c, we first
use expectation-maximization (EM) (Dempster, Laird,
and Rubin, 1977) to set all free parameters to maximize
P(c), which is the same (by Bayes Rule) as maximiz-
ing the sum over all p of P(p) � P(c

�
p). We then use

the Viterbi algorithm to choose the p maximizing P(p)
� P(c

�
p), which is the same (by Bayes Rule) as our

original goal of maximizing P(p
�
c), or plaintext given

ciphertext.
Figures 1 and 2 show standard EM algorithms

(Knight, 1999) for the case in which we have a bi-
gram P(p) model (driven by a two-dimensional b ta-
ble of bigram probabilities) and a one-for-one P(c

�
p)

model (driven by a two-dimensional s table of substi-
tution probabilities). This case covers Section 3, while
more complex models are employed in later sections.

3 English Letter Substitution

An informal substitution cipher (Smith, 1943) dis-
guises a text by substituting code letters for normal
letters. This system is usually exclusive, meaning that
each plaintext letter maps to only one ciphertext letter,
and vice versa. There is surprisingly little published
on this problem, e.g., (Peleg and Rosenfeld, 1979), be-
cause fast computers led to public-key cryptography
before much computer analysis was done on such old-
style ciphers. We study this problem first because it re-
sembles many of the other problems we are interested
in, and we can generate arbitrary amounts of test data.

We estimate unsmoothed parameter values for an
English letter-bigram P(p) from news data. This is a
27x27 table that includes the space character. We then
set up a uniform P(c | p), which also happens to be a

499

(a) ingcmpnqsnwf cv fpn owoktvcv hu ihgzsnwfv rqcffnw cw owgcnwf kowazoanv...
(b) wecitherkent is the analysis of wocoments pritten in ancient buncquges...
(c) decipherment is the analysis of documents written in ancient languages...

Figure 3: Letter substitution decipherment. (a) is the ciphertext, (b) is an automatic decipherment, and (c) is an
improved decipherment.

Given a ciphertext c of length � , a plaintext vocabulary
of � tokens, and a plaintext bigram model b:

1. set a s(��� �) substitution table initially to be uniform
2. for several iterations do:

a. set up a count table count(� , �) with zero entries
b. P(c) = 0
c. for all possible plaintexts �	��
�

����

(each ��� drawn from plaintext vocabulary)
compute P(p) = b(�	��� boundary)
 b(boundary �����)

�� ������ b(����� ����� �)
compute P(c � p) = � �� � � s(� � � � �)
P(c) += P(p)
 P(c � p)

d. for all plaintexts p of length �
compute P(p � c) � P(p)
 P(c � p)

P(c)
for � = 1 to �

count(� � , � �) += P(p � c)
e. normalize count(� , �) table to create a revised s(��� �)

Figure 1: A naive application of the EM algorithm to
break a substitution cipher. It runs in O("!�#) time.

27x27 table. We set P(space | SPACE) = 1.0, and all
other values to 1/26. We create our ciphertext by en-
crypting an out-of-domain encyclopedia article. This
article contains 417 letters, some of which are shown
in Figure 3(a).

The decipherment yielded by EM/Viterbi contains
68 errors—see Figure 3(b).

Can we do better? First, we are not taking advantage
of the fact that the cipher system is exclusive. But, as
we observe in the rest of this paper, most natural deci-
pherment problems do not have this feature, so we do
not take advantage of it in this case (and it is hard to
model!).

We can certainly acquire vastly more data for esti-
mating P(p). Using a 1.5-million character data set in-
stead of a 70,000-character data set reduces the number
of errors from 68 to 64. Next, we apply fixed-lambda
interpolation smoothing to P(p). This reduces errors
further to 62.

Next, we adjust our Viterbi search to maximize P(p)
� P(c | p) $ rather than P(p) � P(c | p). This cubing con-
cept was introduced in another context by (Knight and
Yamada, 1999). It serves to stretch out the P(c | p)
probabilities, which tend to be too bunched up. This
bunching is caused by incompatibilities between the n-
gram frequencies used to train P(p) and the n-gram fre-
quencies found in the correct decipherment of c. We
find this technique extremely useful across decipher-
ment applications. Here it reduces errors from 62 down
to 42.

We also gain by using letter trigrams instead of bi-

Given a ciphertext c of length � , a plaintext vocabulary
of � tokens, and a plaintext bigram model b:

1. set the s(��� �) substitution table initially to be uniform
2. for several iterations do:

a. set up a count(� , �) table with zero entries
b. for % = 1 to �

Q[% ,1] = b(� � � boundary)
c. for � = 2 to �

for % = 1 to �
Q[% ,�] = 0
for & = 1 to �

Q[% ,�] += Q[& ,�('*)]
 b(� � � ��+)
 s(� � � �,� ��+)
d. for % = 1 to �

R[% , �] = b(boundary ��� �)
e. for � = �-'.) to 1

for % = 1 to �
R[% ,�] = 0
for & = 1 to �

R[% ,�] += R[& ,�0/1)]
 b(� + � � �)
 s(� ��2 �3� � +)
f. for � = 1 to �

for % = 1 to �
count(� � , � �) += Q[% ,�]
 R[% ,�]
 P(� � � � �)

g. normalize count(� , �) table to create a revised s(��� �)

Figure 2: An efficient O(4!�5) algorithm that accom-
plishes the same thing as Figure 1.

grams. This reduces error from the original 68 to 57
(small source data) or 32 (large source data). Combin-
ing trigrams with cubing the channel probabilities re-
duces error to 15, which source-model smoothing fur-
ther reduces to 10 (or 2.4%), as in Figure 3(c).

So far we have glossed over the number of EM it-
erations used. From the EM’s point of view, the more
iterations, the better, as these improve P(c). How-
ever, the decipherment error rate may jump around as
iterations proceed. Figure 4 shows the effect of EM it-
erations on error rate. With the worse source models, it
is better to stop the EM early. EM initially locks onto
the correct theory, but task performance degrades as it
tries to make the ciphertext decoding fit the expected
bigram frequencies. Better source models do not suffer
much.

If we give the system more knowledge about English
vocabulary and grammar, it will further improve. We
have also been able to get perfect performance by using
the best-so-far decipherment in Figure 3 to pull down
related English texts from the web, and using these to
retrain P(p) to fuel a second decipherment. However,
we only present the simple substitution cipher as a pro-
totype of the kinds of applications we are really inter-
ested in, which we present in the following sections.

The experiments we have presented so far should
not be viewed as tuning parameters for performance—

500

Figure 4: Decipherment error on letter substitution.

indeed, it is not correct to measure accuracy on a tun-
ing/development data set. Rather, we have demon-
strated some general strategies and observations (more
data, larger n-grams, stability of good language mod-
els) that we can apply to other real decipherment situ-
ations. In many such situations, there is only a test set,
and tuning is impossible even in principle—fortunately,
we observe that the general strategies work robustly
across a number of decipherment domains.

4 Character Code Conversion
Many human languages are straightforwardly repre-
sented at the character level by some widely-adopted
standard (e.g., ASCII). In dealing with other languages
(like Arabic), we must be equally prepared to process
a few different standards. Documents in yet other lan-
guages (like Hindi) are found spread across the web in
dozens if not hundreds of specialized encodings. These
come with downloadable fonts for viewing. However,
they are difficult to handle by computer, for example,
to build a full-coverage Hindi web-search engine, or to
pool Hindi corpora for training machine translation or
speech recognition.

Character conversion tools exist for many pairs of
major encoding systems, but it has been the experi-
ence of many researchers that these tools are flawed,
despite the amount of work that goes into them. 100%
accuracy is not to be found. Furthermore, nothing ex-
ists for most pairs. We believe that mild annotation
techniques allow people to generate conversion tables
quite quickly (and we show some results on this), but
we follow here an unsupervised approach, as would
be required to automatically generate a consistently-
encoded Hindi web.

Our ciphertext c is a stream of bytes in an unknown

encoding, with space separators; we use integers to rep-
resent these bytes, as in Figure 5(a). Our plaintext is a
large collection of UTF8 standard Hindi. UTF8 builds
complex Hindi character “chunks” out of up to 3 simple
and combining characters. A Hindi word is a sequence
of chunks, and words are separated by spaces.

We know that c is Hindi—we imagine that it was
once UTF8, but that it somehow got enciphered.

Modeling is more complex than in the previous sec-
tion. First, we have to decide what our plaintext tokens
will be. Our first approach was to use chunks. Chunk
boundaries are essentially those where we could draw
a vertical line in written Hindi without disturbing any
characters. We could then set up a model of how UTF8
is “encoded” to the mystery sequence in the putative
channel—namely, we let each source chunk map to a
particular target byte sequence. (By analogy, we would
divide up English text into mostly letters, but would
chunk ligatures like “fi” together. In fact, in extracting
English text from pdf, we often find “fi” encoded by
a single byte). This model is quite general and holds
up across the encodings we have dealt with. However,
there are over 900 chunks to contend with, and vast
numbers of target byte sequences, so that the P(c | p)
table is nearly unmanageable.

Therefore, we use a simpler model. We divide p into
individual characters, and we set up a channel in which
plaintext characters can map into either one or two ci-
phertext bytes. Instead of a table like P(c c | p), we
set up two tables: P(f | p) for character fertility, and
P(c | p) for character-to-byte substitution. This is sim-
ilar to Model 3 of (Brown et al., 1993), but without
null-generated elements or re-ordering.

Our actual ciphertext is an out-of-domain web page
with 11,917 words of song lyrics in Hindi, in an id-
iosyncratic encoding. There is no known tool to con-
vert from this encoding. In order to report error rates,
we had to manually annotate a portion of this web page
with correct UTF8. This was quite difficult. We were
completely unable to do this manually by relying only
on the ciphertext byte sequence—even though this is
what we are asking our machine to do! But as Hindi
readers, we also have access to the web-site rendering
in Hindi glyphs, which helps us identify which byte se-
quences correspond to which Hindi glyphs, and then
to UTF8. The labeled portion of our ciphertext con-
sists of 59 running words (281 ciphertext bytes and 201
UTF8 characters).

Because the machine decipherment rarely consists of
exactly 201 UTF8 characters, we report edit distance
instead of error rate. An edit distance of 0 is perfect,
while the edit distance for long incorrect decipherments
may be greater than 201. With a source character bi-
gram model, and the above channel, we obtain an edit
distance of 161. With a trigram model, we get 127.

Now we introduce another idea that has worked
across several decipherment problems. We use a fixed,
uniform fertility model and allow EM only to manip-

501

(a) ... 13 5 14 . 16 2 25 26 2 25 . 17 2 13 . 15 2 8 . 7 2 4 2 9 2 2 ...
(b) ... 6 35 . 12 28 49 10 28 . 3 4 6 . 1 10 3 . 29 4 8 20 4 ...
(c) ... 6 35 24 . 12 28 21 4 . 11 6 . 12 25 . 29 8 22 4 ...
(d) ... 6/35/24 . 12/28 21/28 . 3/4 6 . 1/25 . 29 8 20/4 ... *

Figure 5: Hindi character code decipherment. (a) is the Hindi ciphertext byte sequence, (b) is an EM decipherment
using a UTF8 trigram source model, (c) is a decipherment using a UTF8 word frequency model, and (d) is correct
UTF8 (chunks joined with slash). Periods denote spaces between words; * denotes the correct answer.

P(13 | 6) = 0.66 * P(8|24) = 0.48
P(32 | 6) = 0.19 P(14|24) = 0.33 *
P(2 | 6) = 0.13 P(17|24) = 0.14
P(16 | 6) = 0.02 P(25|24) = 0.04

P(5 | 35) = 0.61 * P(16|12) = 0.58 *
P(14 | 35) = 0.25 P(2|12) = 0.32 *
P(2 | 35) = 0.15 P(31|12) = 0.03

Figure 6: A portion of the learned P(c | p) substitution
probabilities for Hindi decipherment. Correct map-
pings are marked with *.

ulate substitution probabilities. This prevents the al-
gorithm from locking onto bad solutions. This gives an
improved solution edit distance of 93, as in Figure 5(b),
which can be compared to the correct decipherment in
5(d). Figure 6 shows a portion of the learned P(c | p)
substitution table, with * indicating correct mappings.

15 out of 59 test words are deciphered exactly cor-
rectly. Another 16 out of 59 are perfect except for the
addition of one extra UTF8 character (always “4” or
“25”). Ours are the first results we know of with unsu-
pervised techniques.

We also experimented with using a word-based
source model in place of the character n-gram model.
We built a word-unigram P(p) model out of only the
top 5000 UTF8 words in our source corpus—it assigns
probability zero to any word not in this list. This is
a harsh model, considering that 16 out of 59 words in
our UTF8-annotated test corpus do not even occur in
the list, and are thus unreachable. On the plus side, EM
considers only decipherments consisting of sequences
of real Hindi words, and the Viterbi decoder only gen-
erates genuine Hindi words. The resulting decipher-
ment edit distance is encouraging at 92, with the result
shown in Figure 5(c). This model correctly deciphers
25 out of 59 words, with only some overlap to the pre-
vious 15 correct out of 59—one or other of the models
is able to perfectly decipher 31 out of 59 words already,
making a combination promising.

Our machine is also able to learn in a semi-
supervised manner by aligning a cipher corpus with
a manually-done translation into UTF8. EM searches
for the parameter settings that maximize P(c | p), and
a Viterbi alignment is a by-product. For the intuition,
see Figure 5(a and d), in which plaintext character “6”
occurs twice and may be guessed to correspond with
ciphertext byte “13”. EM does this perfectly, except

for some regions where re-ordering indeed happens.
We are able to move back to our chunk-based model
in semi-supervised mode, which avoids the re-ordering
problem, and we obtain near-perfect decipherment ta-
bles when we asked a human to re-type a few hundred
words of mystery-encoded text in a UTF8 editor.

5 Phonetic Decipherment

This section expands previous work on phonetic de-
cipherment (Knight and Yamada, 1999). Archaeol-
ogists are often faced with an unknown writing sys-
tem that is believed to represent a known spoken lan-
guage. That is, the written characters encode phonetic
sequences (sometimes individual phonemes, and some-
times whole words), and the relationship between text
and sound is to be discovered, followed by the mean-
ing. Viewing text as a code for speech was radical
some years ago. It is now the standard view of writ-
ing systems, and many even view written Chinese as a
straightforward syllabary, albeit one that is much larger
and complex than, say, Japanese kana. Both Linear
B and Mayan writing were deciphered by viewing the
observed text as a code/cipher for an approximately-
known spoken language (Chadwick, 1958; Coe, 1993).

We follow (Knight and Yamada, 1999) in using
Spanish as an example. The ciphertext is a 6980-
character passage from Don Quixote, as in Figure 7(a).
The plaintext is a very large out-of-domain Span-
ish phoneme sequence from which we compute only
phoneme n-gram probabilities. We try deciphering
without detailed knowledge of spoken Spanish words
and grammar. The goal is for the decipherment to be
understandable by modern Spanish speakers.

First, it is necessary to settle on the basic inventory
of sounds and characters. Characters are easy; we sim-
ply tabulate the distinct ones observed in ciphertext.
For sounds, we use a Spanish-relevant subset of the
International Phonetic Alphabet (IPA), which seeks to
capture all sounds in all languages; the implementation
is SAMPA (Speech Assessment Methods Phonetic Al-
phabet). Here we show the sound and character inven-
tories:

Sounds:

B, D, G, J (ny as in canyon), L (y as
in yarn), T (th as in thin), a, b, d,
e, f, g, i, k, l, m, n, o, p, r,
rr (trilled), s, t, tS (ch as in chin),
u, x (h as in hat)

502

(a) primera parte del ingenioso hidalgo don quijote de la mancha

(b) primera parte des intenioso liDasto don fuiLote de la manTia
(c) primera parte del inGenioso biDalGo don fuiLote de la manTia
(d) primera parte del inxenioso iDalGo don kixote de la manSa *

Figure 7: Phonetic decipherment. (a) is written Spanish ciphertext, (b) is an initial decipherment, (c) is an improved
decipherment, and (d) is the correct phonetic transcription.

Characters: ñ, á, é, í, ó, ú, a, b, c, d, e, f, g, h, i, j, k, l,
m, n, o, p, q, r, s, t, u, v, w, x, y, z

The correct decipherment (Figure 7(d)) is a sequence
of 6759 phonemes (here in SAMPA IPA).

We use a P(c | p) model that substitutes a single let-
ter for each phoneme throughout the sequence. This
considerably violates the rules of written Spanish (e.g.,
the K sound is often written with two letters q u, and
the two K S sounds are often written x), so we do not
expect a perfect decipherment. We do not enforce ex-
clusivity; for example, the S sound may be written as c
or s.

An unsmoothed phonetic bigram model gives an edit
distance (error) of 805, as in Figure 7(b). Here we
study smoothing techniques. A fixed-lambda interpo-
lation smoothing yields 684 errors, while giving each
phoneme its own trainable lambda yields a further re-
duction to 621. The corresponding edit distances for
a trigram source model are 595, 703, and 492, the lat-
ter shown in Figure 7(c), an error of 7%. (This result
is equivalent to Knight & Yamada [1999]’s 4% error,
which did not count extra incorrect phonemes produced
by decipherment, such as pronunciations of silent let-
ters). Quality smoothing yields the best results. While
even the best decipherment is flawed, it is perfectly un-
derstandable when synthesized, and it is very good with
respect to the structure of the channel model.

6 Universal Phonetic Decipherment

What if the language behind the script is unknown?
The next two sections address this question in two dif-
ferent ways.

One idea is to look for universal constraints on
phoneme sequences. If we somehow know that P(K
AE N UW L IY) is high, while P(R T M K T K)
is low, that we may be able to exploit such knowl-
edge in deciphering an alphabetic writing system. In
fact, many universal constraints have been proposed by
linguists. Two major camps include syllable theorists
(who say that words are composed of syllables, and syl-
lables have internal regular structure (Blevins, 1995))
and anti-syllable theorists (who say that words are com-
posed of phonemes that often constrain each other even
across putative syllable boundaries (Steriade, 1998)).

We use the same Don Quixote ciphertext as in the
previous section. While the ultimate goal is to la-
bel each letter with a phoneme, we first attack a more
tractable problem, that of labeling each letter as C (con-
sonant) or V (vowel). Once we know which letters

stand for consonant sounds, we can break them down
further.

Our first approach is knowledge-free. We put to-
gether a fully-connected, uniform trigram source model
P(p) over the tokens C, V, and SPACE. Our channel
model P(c | p) is also fully-connected and uniform.
We allow source as well as channel probabilities to
float during training. This almost works, as shown in
Figure 8(b). It correctly clusters letters into vowels
and consonants, but assigns exactly the wrong labels!
A complex cluster analysis (Finch and Chater, 1991)
yields similar results.

Our second approach uses syllable theory. Our
source model generates each source word in three
phases. First, we probabilistically select the number
of syllables to generate. Second, we probabilistically
fill each slot with a syllable type. Every human lan-
guage has a clear inventory of allowed syllable types,
and many languages share the same inventory. Some
examplars are (1995):

V CV CVC VC CCV CCVC CVCC VCC CCVCC
Hua 6
Cayuvava 6 6
Cairene 6 6
Mazateco 6 6 6
Mokilese 6 6 6 6
Sedang 6 6 6 6
Klamath 6 6 6
Spanish 6 6 6 6 6 6
Finnish 6 6 6 6 6 6
Totonac 6 6 6 6 6 6
English 6 6 6 6 6 6 6 6 6

For our purposes, we allow generation of V, VC, VCC,
CV, CVC, CCV, CVCC, CCVC, or CCVCC. Elements
of the syllable type sequence are chosen independently
of each other, except that we disallow vowel-initial syl-
lables following consonant-final syllables, following
the phonetic universal tendency to “maximize the on-
set” (the initial consonant cluster of a syllable). Third,
we spell out the chosen syllable types, so that the whole
source model yields sequences over the tokens C, V,
and SPACE, as before. This spelling-out is determinis-
tic, except that we may turn a V into either one or two
Vs, to account for dipthongs. The channel model again
maps {C, V} onto {a, b, c, . . . }, and we again run EM
to learn both source and channel probabilities.

Figure 8(c) shows that this almost works. To make
it work, 8(d), we force the number of syllables per
word in the model to be fixed and uniform, rather than
learned. This prevents the system from making analy-
ses that are too short. We also execute several EM runs
with randomly initialized P(c | p), and choose the run
with the highest resulting P(c).

503

(a) primera parte del ingenioso hidalgo don quijote de la mancha

(b) VVCVCVC VCVVC VCV CVVCVVCVC VCVCVVC VCV VCVVCVC VC VC VCVVVC
(c) CCV.CV.CV CVC.CV CVC VC.CVC.CV.CV CV.CVC.CV CVC CVC.CV.CV CV CV CVC.CCV
(d) CCV.CV.CV CVC.CV CVC VC.CV.CV.V.CV CV.CVC.CV CVC CV.V.CV.CV CV CV CVC.CCV
(e) NSV.NV.NV NVS.NV NVS VS.NV.SV.V.NV NV.NVS.NV NVS NV.V.NV.NV NV NV NVS.NSV

Figure 8: Universal phonetic decipherment. The ciphertext (a) is the same as in the previous figure. (b) is an
unsupervised consonant-vowel decipherment, (c) is a decipherment informed by syllable structure, (d) is an im-
proved decipherment, and (e) is a decipherment that also attempts to distinguish sonorous (S) and non-sonorous
(N) consonants.

We see that the Spanish letters are accurately divided
into consonants and vowels, and it is also straight-
forward to ask about the learned syllable generation
probabilities—they are CV (0.50), CVC (0.20), V
(0.16), VC (0.11), CCV (0.02), CCVC (0.0002).

As a sanity check, we manually remove all P(c | p)
parameters that match C with Spanish vowel-letters (a,
e, i, o, u, y, and accented versions) and V with Spanish
consonant-letters (b, c, d, etc), then re-run the same EM
learning. We obtain the same P(c).

Exactly the same method works for Latin. Inter-
estingly, the fully-connected P(c | p) model leads to
a higher P(c) than the “correctly” constrained chan-
nel. We find that in the former, the letter i is some-
times treated as a vowel and other times as a consonant.
The word “omnium” is analyzed by EM as VC.CV.VC,
while “iurium” is analyzed as CVC.CVC.

We went a step further to see if EM could iden-
tify which letters encode sonorous versus non-sonorous
consonants. Sonorous consonants are taken to be per-
ceptually louder, and include n, m, l, and r. Addition-
ally, vowels are more sonorous than consonants. A uni-
versal tendency (the sonority hierarchy) is that sylla-
bles have a sonority peak in the middle, which falls off
to the left and right. This captures why the syllable G
R A R G sounds more typical than R G A G R. There
are exceptions, but the tendency is strong.

We modify our source model to generate S (sonorous
consonant), N (non-sonorous consonant), V, and
SPACE. We do this by changing the spell-out to prob-
abilistically transform CCVC, for example, into either
N S V S or N S V N, both of which respect the sonority
hierarchy. The result is imperfect, with the EM hijack-
ing the extra symbols. However, if we first run our C, V,
SPACE model and feed the learned model to the S, N,
V, SPACE model, then it works fairly well, as shown in
Figure 8(e). Learned vowels include (in order of gen-
eration probability): e, a, o, u, i, y. Learned sonorous
consonants include: n, s, r, l, m. Learned non-sonorous
consonants include: d, c, t, l, b, m, p, q. The model
bootstrapping is good for dealing with too many pa-
rameters; we see a similar approach in Brown et al’s
(1993) march from Model 1 to Model 5.

There are many other constraints to explore. For ex-
ample, physiological constraints make some phonetic
combinations more unlikely. AE N T and AE M P
work because the second sound leaves the mouth well-

prepared to make the third sound, while AE N P does
not. These and other constraints complement the model
by also working across syllable boundaries. There are
also constraints on phoneme inventory (no voiced con-
sonant like B without its unvoiced partner like P) and
syllable inventory (no CCV without CV).

7 Brute-Force Phonetic Decipherment
Another approach to universal phonetic decipherment
is to build phoneme n-gram databases for all human
languages, then fully decipher with respect to each in
turn. At the end, we need an automatic procedure for
evaluating which source language has the best fit.

There do not seem to be sizeable phoneme-sequence
corpora for many languages. Therefore, we used
source character models as a stand in, decoding as in
Section 3. We built 80 different source models from
sequences we downloaded from the UN Universal Dec-
laration of Human Rights website.1

Suppose our ciphertext starts “cevzren cnegr qry...”
as in Figure 9(a). We decipher it against all 80 source
language models, and the results are shown in Fig-
ure 9(b-f), ordered by post-training P(c). The sys-
tem believes 9(a) is enciphered Spanish, but if not,
then Galician, Portuguese, or Kurdish. Spanish is ac-
tually the correct answer, as the ciphertext is again
Don Quixote (put through a simple letter substitution to
show the problem from the computer’s point of view).
Similarly, EM detects that “fpn owoktvcv hu ihgzsnwfv
rqcffnw cw...” is actually English, and deciphers it as
“the analysis of wocuments pritten in...”

Many writing systems do not write vowel sounds.
We can also do a brute force decipherment of vowel-
less writing by extending our channel model: first, we
deterministically remove vowel sounds (or letters, in
the above case), then we probabilistically substitute let-
ters according to P(c | p). For the ciphertext “ceze ceg
qy...”, EM still proposes Spanish as the best source lan-
guage, with decipherment “prmr prt dl...”

8 Word-Based Decoding
Letter-based substitution/transposition schemes are
technically called ciphers, while systems that make
whole-word substitutions are called codes. As an ex-
ample code, one might write “I will bring the parrot to

1www.un.org/Overview/right.html

504

(a) cevzren cnegr qry vatravbfb uvqnytb qba dhvwbgr qr yn znapun

P(c) proposed final
perplexity source edit-dist best P(p | c) decipherment

(b) 166.28 spanish 434 primera parte del ingenioso hidalgo don quijote de la mancha
(c) 168.75 galician 741 primera palte der ingenioso cidalgo don quixote de da mancca
(d) 169.07 portug. 1487 privera porte dal ingenioso didalgo dom quivote de ho concda
(e) 169.33 kurdish 4041 xwelawe berga mas estaneini hemestu min jieziga ma se lerdhe

...
(f) 179.19 english 4116 wizaris asive bec uitedundl pubsctl bly whualve be ks asequs

Figure 9: Brute-force phonetic decipherment. (a) is ciphertext in an unknown source language, while (b-f) show
the best decipherments obtained for some of the 80 candidate source languages, automatically sorted by P(c).

Canada” instead of “I will bring the money to John”—
or, one might encode every word in a message. Ma-
chine translation has code-like characteristics, and in-
deed, the initial models of (Brown et al., 1993) took a
word-substitution/transposition approach, trained on a
parallel text.

Because parallel text is scarce, it would be very good
to extend unsupervised letter-substitution techniques to
word-substitution in MT. Success to date has been lim-
ited, however. Here we execute a small-scale example,
but completely from scratch.

In this experiment, we know the Arabic cipher names
of seven countries: m!lyzy!, !lmksyk, knd!, bryT!ny!,
frns!, !str!ly!, and !ndwnysy!. We also know a set of
English equivalents, here in no particular order: Mex-
ico, Canada, Malaysia, Britain, Australia, France, and
Indonesia. Using non-parallel corpora, can we figure
out which word is a translation of which? We use nei-
ther spelling information nor exclusivity, since these
are not exploitable in the general MT problem.

To create a ciphertext, we add phrases X Y and Y
X to the ciphertext whenever X and Y co-occur in the
same sentence in the Arabic corpus. Sorting by fre-
quency, this ciphertext looks like:

3385 frns! bryT!ny!
3385 bryT!ny! frns!
450 knd! bryT!ny!
450 bryT!ny! knd!
410 knd! frns!
410 frns! knd!
386 knd! !str!ly!
386 !str!ly! knd!
331 frns! !str!ly!
331 !str!ly! frns!

etc.

We create an English training corpus using the same
method on English text, from which we build a bigram
P(p) model:

511 France/French Britain/British
511 Britain/British France/French
362 Canada/Canadian Britain/British
362 Britain/British Canada/Canadian
182 France/French Canada/Canadian
182 Canada/Canadian France/French
140 Britain/British Australia/Australian
140 Australia/Australian Britain/British
133 Canada/Canadian Australia/Australian
133 Australia/Australian Canada/Canadian

etc.

Each corpus induces a kind of world map, with high
frequency indicating closeness. The task is to figure
out how elements of the two world maps correspond.

We train a source English bigram model P(p) on the
plaintext, then set up a uniform P(c | p) channel with
7x7=49 parameters. Our initial result is not good: EM
locks up after two iterations, and every English word
learns the same distribution. When we choose a ran-
dom initialization for P(c | p), we get a better result, as
4 out of 7 English words correctly map to their Arabic
equivalents. With 5 random restarts, we achieve 5 cor-
rect, and with 40 or more random restarts, all 7 assign-
ments are always correct. (From among the restarts, we
select the one with the best post-EM P(c), not the best
accuracy on the task.) The learned P(c | p) dictionary is
shown here (correct mappings are marked with *).
P(!str!ly! | Australia/Australian) = 0.93 *
P(!ndwnysy! | Australia/Australian) = 0.03
P(m!lyzy! | Australia/Australian) = 0.02
P(!mksyk | Australia/Australian) = 0.01

P(bryT!ny! | Britain/British) = 0.98 *
P(!ndwnysy! | Britain/British) = 0.01
P(!str!ly! | Britain/British) = 0.01

P(knd! | Canada/Canadian) = 0.57 *
P(frns! | Canada/Canadian) = 0.33
P(m!lyzy! | Canada/Canadian) = 0.06
P(!ndwnysy! | Canada/Canadian) = 0.04

P(frns! | France/French) = 1.00 *

P(!ndwnysy! | Indonesia/Indonesian) = 1.00 *

P(m!lyzy! | Malaysia/Malaysian) = 0.93 *
P(!lmksyk | Malaysia/Malaysian) = 0.07

P(!lmksyk | Mexico/Mexican) = 0.91 *
P(m!lyzy! | Mexico/Mexican) = 0.07

9 Conclusion

We have discussed several decipherment problems and
shown that they can all be attacked by the same basic

505

method. Our primary contribution is a collection of first
empirical results on a number of new problems. We
also studied the following techniques in action:

7 executing random restarts

7 cubing learned channel probabilities before de-
coding

7 using uniform probabilities for parameters of less
interest

7 checking learned P(c) against the P(c) of a “cor-
rect” model

7 using a well-smoothed source model P(p)

7 bootstrapping larger-parameter models with
smaller ones

7 appealing to linguistic universals to constrain
models

Results on all of our applications were substantially im-
proved using these techniques, and a secondary contri-
bution is to show that they lead to robust improvements
across a range of decipherment problems.

All of the experiments in this paper were carried
out with the Carmel finite-state toolkit, (Graehl, 1997),
which supports forward-backward EM with epsilon
transitions and loops, parameter tying, and random
restarts. It also composes two or more transducers
while keeping their transitions separate (and separately
trainable) in the composed model. Work described in
this paper strongly influenced the toolkit’s design.

Acknowledgements
We would like to thank Kie Zuraw and Cynthia
Hagstrom for conversations about phonetic universals,
and Jonathan Graehl for work on Carmel. This work
was funded in part by NSF Grant 759635.

References
Blevins, J. 1995. The syllable in phonological theory. In

J. Goldsmith, editor, Handbook of Phonological Theory.
Basil Blackwell, London.

Brown, P., S. Della Pietra, V. Della Pietra, and R. Mercer.
1993. The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics, 19(2).

Chadwick, J. 1958. The Decipherment of Linear B. Cam-
bridge University Press, Cambridge.

Coe, M. 1993. Breaking the Maya Code. Thames and Hud-
son, New York.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Max-
imum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, 39(B).

Finch, S. and N. Chater. 1991. A hybrid approach to the
automatic learning of linguistic categories. Artificial In-
telligence and Simulated Behaviour Quarterly, 78.

Graehl, Jonathan. 1997. Carmel finite-state toolkit.
http://www.isi.edu/licensed-sw/carmel/.

Knight, K. 1999. Decoding complexity in word-replacement
translation models. Computational Linguistics, 25(4).

Knight, K. and K. Yamada. 1999. A computational approach
to deciphering unknown scripts. In ACL Workshop on Un-
supervised Learning in Natural Language Processing.

Peleg, S. and A. Rosenfeld. 1979. Breaking substitution ci-
phers using a relaxation algorithm. Communications of the
ACM, 22(11).

Smith, L. 1943. Cryptography. Dover Publications, NY.

Steriade, D. 1998. Alternatives to syllable-based accounts of
consonantal phonotactics. In Proc. of Conf. on Linguistic
and Phonetics (LP’98).

Yarowsky, D. 1994. Decision lists for lexical ambiguity res-
olution: Application to accent restoration in Spanish and
French. In Proc. ACL.

Yarowsky, D. 1995. Unsupervised word sense disambigua-
tion rivaling supervised methods. In Proc. ACL.

506

