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Abstract

Word Sense Disambiguation (WSD) is a significant problemaitural Language Pro-
cessing (NLP). Current NLP research employs WSD to aid taskd as Machine
Translation, Information Retrieval, Content Analysist$tag and Speech Processing.

Semantic Similarity using lexical taxonomies is investégh producing specialised
WSD algorithms for the disambiguation of related noun gy creating semantic
similarity measures based on notions of the “shape” of Wet@Nexical taxonomy
(SBSMs) containing only layman terms, results are produbatl significantly out-
perform existing state-of-the-art similarity measureswo tasks; firstly in matching
human judgements, and secondly for disambiguating relaed-groupings. In the
human judgement experiment, results are evaluated usargéteand Spearman corre-
lation coefficients. The best SBSM almost reaches the elgmvauman performance
producing coefficients of 0.90 and 0.86 respectively.

A WSD system is presented for disambiguating related nowmgpg, producing
88% precision and 90% recall for labelling a subset of Worgtbnwith equivalent
WordNet senses. These results improve those produced akargative similarity
measures, and when compared to the Wordsmyth experimersitd WordNet.

The SBSMs are used as part of a WSD system for disambigugtieng-texts. The
proposed WSD system makes use of partial-taggers to rednsesat different stages
of WSD. A final statistical component is investigated, usangew linguistically based
definition of context. The SBSMs are used to match words adaagito similarity. Ex-
periments with 11 highly polysemous words give promisirgutes at 37.7% precision
and recall for all words with an average polysemy of 22.1 eenand 56.4% precision
and recall for nouns with an average polysemy of 6 sensesigldssmaller test set of
ambiguous contexts containing only test words producefi%5recision and recall
for all words. This WSD is also used to reduce the costs of rakagging of words,
showing that a potential 60% reduction in cost is possible.



“There is no need to do more than mention the obvious fact that a
multiplicity of languages impedes cultural interchange between the
peoples of the earth, and is a serious deterrent to international
understanding.” (Weaver, 1949)
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Chapter 1
Overview

This chapter summarises the work presented in this thesrstlyi-the motivations
behind this work are presented, followed by a simple exarofilee kind of ambiguity
of interest in language studied throughout the thesis Iy astlescription of the overall
organisation of the thesis is given.

1.1 Motivation

The most popular approaches in current machine translatis@arch are based on
the exploitation of statistical information from bilinguaorpora (Brown et al., 1990;
Hutchins, 1995; Berger et al., 1996; Turcato et al., 1999). cBIculating statistical
information about the translation of these texts, tramsiasystems are able to deter-
mine the most likely translation of new sentences. A sigaifigoroblem with such an
approach is that it is currently only possible to build systefor a small number of
languages due to the lack of available resources. The isituigteven worse when a
language does not have any resources at all or even an ategjiten form, such as
the various sign languages in the world (Veale et al., 1993)rder to be able to trans-
late between such languages, it is necessary to take a dempuldferent approach.
The aim of this thesis is to investigate two natural languagetasks which could
be used as part of a larger linguistically based translaystem, such as is shown in
figure 1.1. In such an approach, a number of techniques aliedpp the source text
in order to remove all language specific facets, thus produan interlingua represen-
tation of the original source text. This intermediate repreation is used to create a



1.2 Example of Lexical Ambiguity

representation of the concepts expressed in the text irathettlanguage.

(4%

Target Languag

Source Languag}e—» Interlingua Representatign

Figure 1.1: Framework for a General Translation System

The focus of concern for this thesis is the investigationoolg for measuring se-
mantic similarity and performing word sense disambiguatla combination with fur-
ther natural language processing (NLP) tools, such as apageech recognition tool,
a syntactic parser and discourse reference structureaenea system can be built to
generate an interlingua representation from which a tadiiosl of the original text can
be produced. By considering the semantic similarity of vgptdchniques can be devel-
oped to disambiguate semantically related word-groupgmgsiding tools for linking
different lexical resources and to allow words to be matctmdantically. Matching
words using semantic similarity allows the potential foatistical Word Sense Dis-
ambiguation (WSD) systems to gather adequate informatan the existing limited
resources, by making use of information from similar worasnicrease the amount
of information available to disambiguate individual wordghis also allows statisti-
cal WSD systems to disambiguate words or word senses forhwincinformation
was available in the resources available. WSD in turn allimwghe disambiguation of
concepts, and is especially important for translation asethre rarely one-to-one map-
pings from words to word senses between different languablesrefore knowledge
of the conceptual meaning of a word permits the correct &xerm to be selected for
the translated text.

1.2 Example of Lexical Ambiguity

There are many different forms of ambiguity found in natlemaguages that pose prob-
lems to NLP tasks. Of these ambiguities, this thesis is @agrly focused on ambigu-
ities concerned with the semantic definitions of words,ipaldrly of nouns. If one is
to consider the definitions of a word within varying contextss easy to find instances
of uses of different word senses:

John deposited his money in the bank

2



1.3 Organisation of Thesis

He was near the river bank
| went to the bank

In the first example, “bank” refers to a financial institutdnilst in the second example
it refers to a slope. The last example remains ambiguousreqdres either further
information for accurate disambiguation or, in the absesfdarther information, as-
sumption of the most prominent sense for the word. The pmeldédisambiguation
is typically more extreme as even in the case of “bank” one foah many further
sense distinctions, for instance the lexical resource Wetd..6 (Miller et al., 1990;
Fellbaum, 1998) cites 17 sense distinctions.

This thesis presents a study of lexical ambiguity, firstipaerned with the disam-
biguation of semantically related words, and then movintipéomore general problem
of disambiguating the senses of words in open texts.

1.3 Organisation of Thesis

This thesis is organised into six further chapters, groupedfour general sections as
follows:

1. Description of important resources and tools used fordgkearch.

Chapter 2 introduces a number of tools that were used as siedfdhe research
and that are referred to throughout the thesis.

2. Research into measuring semantic similarity.

Chapter 3 introduces some terminology and resources, auwlibes a number
of the better known existing similarity measures. Finadlyshort discussion is
given about measuring similarity between verbs, and whytineent techniques
applied to nouns may not be as suitable for verbs. Chaptesctisises the diffi-
culties posed by use of WordNet for similarity measuresinglyn the informa-

tion contained within its lexical taxonomy. Given thesdidiflties, a number of
axioms are defined to support discussion of the use of WoislNical taxon-

omy for similarity between noun senses. From these axiomet af hypotheses
are formulated describing how WordNet's lexical taxonorag be used to mea-
sure similarity leading to the definition of a number of nemisarity measures.
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These measures are then evaluated against human judgemdrgsmantically
related groups of nouns. Results show that some of the nee&ted measures
significantly outperform existing state-of-the-art sianity measures.

3. Research into a new approach for Word Sense Disambiguatio

Chapter 5 introduces the field of WSD. The chapter starts bysty the in-
terest that different sub-fields of NLP have for WSD in ordeiirhprove the
results within those fields. This is followed by a brief sunmynaf the history
of important developments for WSD from early work in NLP. Alesgion of
recent influential techniques is given. The chapter coreduuny describing the
gold-standard evaluation techniques for WSD. Chapter éudises a new ap-
proach for WSD using a number of partial-taggers. The redwiof the chapter
concentrates on the development of statistical classfiier®/SD based on the
maximum entropy framework. This statistical approach wsesw definition
of local context for words based-on the syntactic relatgos between words
in a sentence. A new set of maximum entropy features are &foed using
this definition of local context, and utilising the most sessful similarity mea-
sure from chapter 4 to match words and word senses given siersamnilarity,
instead of matching words using their word-form.

4. Conclusions.

Finally, chapter 7 reviews the work presented in this theststhe results for the
systems evaluated. This is followed by a description of ipbsfuture work. The
chapter concludes by listing the contribution the work a$ thesis has made to
the NLP field.



Chapter 2
Tools and Resources

A variety of tools and resources are introduced which arel us@ number of differ-
ent examples of systems described throughout this thexisthat have been used to
develop the similarity measures and Word Sense Disambigu@l/SD) systems de-
scribed in chapters 4 and 6 respectively. Each tool prowsgesific functions for the
systems produced for the work presented in this thesis:

e Machine Readable Dictionary (MRD) — WordNet
e Sense Annotated Corpus — Semcor
e Parser — Carnegie Mellon University’s (CMU) Link Grammargea

e Custom Natural Language Processing (NLP) application

2.1 WordNet

WordNet (Miller et al., 1990) is a psycholinguistic lexicandely used in a number
of contemporary NLP systems. A psycholinguistic lexicormikexicon that models
information in accordance with principles believed to goMiie human lexicon mem-
ory. WordNet’s growing influence in the field of WSD has beepapnt over the last
decade, and is now used for WSD almost to the exclusion oftaéiradictionaries.
Its organisation of semantic information gives reseaclogre of the most compact
and rich sources of information for such tasks as measurimgl wimilarity, and in
some cases has been used for full WSD of texts without thefdigrther resources.



2.1 WordNet

Fellbaum (1998) presents a full description of WordNet adlkection of papers de-
scribing some of the research performed using WordNet.

The major difference between WordNet and other lexical ueses is the way
in which lexical information is organised. As with most ddctaries, information is
grouped into different grammatical categories (nounshsieadjectives and adverbs),
however rather than organising information primarily & #Word-form level, WordNet
organises information at the conceptual level. Each cdneeferred to as a synset
(set of synonyms) (Spark Jones, 1978), is then related t&r atbncepts via a num-
ber of psycholinguistic relationships. Table 2.1 sumnearithe information available
in WordNet 1.6. Note that in table 2.1, the figures for “Unidsteings” include both

. Average Polysemy

(F)F?gs?f Speech sz?r'i?]‘;‘: Synsets (Excluding

Monosemos Words

Noun 94474| 66025 2.73

Verb 10319| 12127 3.57

Adjectives 20170 17915 2.80

Adverbs 4546| 3575 2.50
Total 121962 99642

Table 2.1: WordNet v1.6 Summary

single words and word collocations contained in WordNeter€fore, an entry like
“breach of trust with fraudulent intent” counts as a uniqtrang.

Although a number of relationships are shared across diffegrammatical cat-
egories, the relationships available are different betwbe grammatical categories,
supporting the importance humans show in distinguishiriggeen different relation-
ships for different grammatical categories. The relatmps available per category are
as follows:

e General (Shared by all POS)
— Synonymy
— Antonymy

— Familiarity
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e Nouns
— Hypernymy
— Hyponymy
— Co-ordinate terms
— Meronymy
— Holonymy
e \erbs
— Hypernymy
— Troponymy
— Entailment

— Causality

— Sentence Frames
e Adjectives

— “Value of”
— Pertainym

e Adverbs

— Pertainym

The remainder of this section briefly discusses the mearfingah of the relation-
ships above.

2.1.1 Synonymy

Synonymy is the most important relation for WordNet. The dveynonym is derived
from the Greek word “syn-onoma” meaning “similar name”, aeférs to the relation-
ship between words with the same meaning. In general, thes\aiat synonyms of a
word can substitute for each other without changing the ingaof a phrase.
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2.1.2 Hypernymy (is-a)

Hypernymy, coming from the Greek words “hyper” and “onomaganing “super
name” or “general name”, is a directional relationship dedifbetween two concepts.
A concept,a, is the hypernym of another concefptjf b “is an” a. That is to sayg is

a more general form df, for instance a “cat” is a “feline”. In general, most concept
have at most one hypernym, although examples can be founcevebecepts have
more than one hypernym, such as a “person” is both a “life f@an a “causal agent”
according to WordNet 1.6.

Throughout this thesis, references to noun hypernym taxigs) or structures,
shall be made. Hypernym taxonomies represent tree-liketsires that are linked up-
wards. Each arc in the structure represents an asymmdaioreship, where travers-
ing up the tree reflects traversing up hypernym relationguré 2.1 shows the hyper-
nym taxonomy for person sense 1 according to WordNet. Netethk convention that
is used throughout this thesis of referring to a particuéanrse of a word by using the
notation<word>#<sense-.

entity#1

/\

life form#1 causal agent#1

= ==

person#1l

Figure 2.1: Multiple Hypernym Example

2.1.3 Hyponymy (kind-of)

Hyponymy is the inverse relation of hypernymy for nounsyéf@e a concepty, is

the hyponym of another concept,if a “is @’ b, in other words ifa is a more specific
form of b, or a “kind-of” b. In hypernym taxonomies, traversing down the arcs in the
taxonomy is equivalent to traversing down hyponym relation
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2.1.4 Troponymy (way-of)

Troponymy is, similarly to hyponymy, the inverse relationhypernymy, but in this

case for verbs. The meaning of troponymy can also be seereim#anings of the
juxtaposed Greek words “tropos” and “onoma”, meaning a “wayne” or “manner

name”, and is used to describe a particular way or manner iofyjckomething. For
instance, to sprint is to run in a certain manner, therefepift” is a troponym of

“run”. Troponyms also reflect a type of entailment, as anaaictiannot be performed
in a certain mannewithout also performing the original action.

2.1.5 Antonymy (opposite-of)

Antonyms, derived from “anti” and “onoma” in Greek meanirgpposite name”, are
two words that can mean the opposite of each other, such &’ “and “false”, or
“night” and “day”, however some care must be taken in itsriptetation. It does not
always follow that for two words; andb, if a is an antonym ob, then note means.
Consider the antonyms “rich” and “poor”, or “black” and “vi&i. If someone is not
rich, this does not automatically mean they are poor, andrifething is not black, it
does not mean that it is necessarily white, yet both pairsastlevare still antonyms of
each other.

2.1.6 Co-ordinate terms

Co-ordinate terms are concepts that share a common hypdoymxample the co-
ordinate terms for “car#1” in WordNet, meaning a 4-wheelastanvehicle, are other
motor vehicles such as “motorcycle” or “truck”.

2.1.7 Meronymy (part-of)

The term meronym is derived from the Greek “meros” and “onbmaaning “part
name”. A meronym of a concept, is something that is “part ofi. For example,
“engine” is a meronym of “car” because cars have engines;@erdon” is a meronym
of “people” because people consist of persons.
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2.1.8 Holonymy

Holonymy is the inverse relation to meronymy. A concetas a holonynd, if a is
part ofb. The term is derived from the Greek “holo” and “onoma” meagniwhole
name”.

2.1.9 Entaillment

Entailment relations exist between verbs, such as “snortlils “sleep” meaning that
without sleep there would be no snoring. WordNet does ndudectroponyms in its
entailment relations.

2.1.10 Causality

The causality relations describe, as it suggests, thettbstiin action, or verb, causes,
such as “give” causes “have”.

2.1.11 Sentence Frames

WordNet assigns at least one of 35 generic sentence framesctoverb sense, indi-
cating the required verbal arguments and prepositiona@gas, along with some basic
semantic information about these arguments. In practieejriformation available is
very limited. FrameNet (Baker et al., 1998) is a project thadl as an initial goal
the task of producing more complex sentence frames for \thevsthose provided by
WordNet. Work is still currently being undertaken and semsgpings for entries are
no longer one-to-one with WordNet.

2.1.12 Value of

The “value of” relation for adjectives links adjectives toums for which they can be
a value. For instance the adjective “rich” can be a valuerneig to some kind of
“financial condition”, and “fast” is a value of “speed”.

10
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2.1.13 Pertainym

Pertainyms relate adjectives and adverbs to word sensggdnin or relate to. For
instance the adjective “rural#2” pertains to the noun “dog#b”.

2.1.14 Familiarity

The familiarity index of a word indicates its familiarity ishay to day speech. Words
that are more familiar are more likely to be found in exampikatterances or texts.
In previous versions of WordNet, other lexicons were usethtoulate the familiarity

index for words. However, version 1.6 of WordNet simply ddess the polysemy of

a word as its familiarity index. This follows the largely apted theory in linguis-

tics that the more polysemous a word is, the more likely ibibeé used (Zipf, 1945;

Jastrezembski and Stanners, 1975; Jastrezembski, 1981).

2.2 Semcor

The Semcor corpus (Miller et al., 1994; Fellbaum, 1998) vedescied to provide train-
ing and testing data for the purposes of the work on WSD pteden chapter 6. The
corpus has been hand-annotated with word senses accoodidgrtiNet and contains
POS tags produced by the Brill POS-tagger (Brill, 1992). Téhes contained in the
corpus are a subset of the Brown-corpus (Kucera and Frat@@s; Francis, 1980;
Francis and Kucera, 1982), and are split into 3 groups suiseathin Table 2.2.

Group Name| Group Contents What is tagged?
brownl 103 documents from the Brown Corpu#\ll Content Words
brown2 86 documents from the Brown Corpus All Content Words
brownv 166 documents from the Brown Corpu®©nly Verbs

Table 2.2: Summary of Semcor Texts

The Brown corpus consists of a number of texts from a rangep€s and genres,
therefore it can be assumed that the Semcor corpus alse \auiess a number of
domains and genres. An earlier version of Semcor where wanelsagged against
WordNet 1.5 senses, as described in (Landes et al., 1998)sed the 103 document

11
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collection from the Brown Corpus, together with a complet@hnotated version of
Stephen Crane’s novella “The Red Badge of Courage”. Therlakt is not contained
in the latest version of Semcor tagged with WordNet 1.6 sense

Annotation of the Semcor corpus was assisted with a to@d&lonText. ConText
allows users to view the senses of polysemous words and seleppropriate sense
for each word. In order to ensure reliable tags are assigneaich word, the annotation
process was performed over a number of iterations. In thier€irs a highly trained
human annotator assigned senses to each polysemous wbedaafrpus. The annota-
tor could also leave notes when an adequate sense did nbirewerdNet. A second
annotator verified the senses assigned, and made any mgcelsaages. The notes
about missing senses were later examined by lexicographersnade changes, when
necessary, to WordNet’s information. ConText was used omm@ by an annotator to
assign senses to the leftover untagged words, thus comgplét iterative process. To
ensure consistency, each Brown file was completely taggeshéyagger.

In order to ensure the quality of the annotations in Semdter ¢he corpus was
annotated, every ¥1semantically tagged word was examined. If mistakes wenedou
they were corrected. A list of particularly difficult words created during the quality
control phase, and each instance of the difficult words was th-checked to ensure
correctness. Finally, every 12tagged word was re-examined to give a new error rate,
again correcting each mistake found.

The summary for the version of Semcor used with the WSD syskesaribed in
chapter 6 is given in the Table 2.3. A patrticularly usefulcgief information that

Group Name
Category brownl| brown2| brownv Total
unique noun senses 11399| 9546 0| 20945
unique verb senses 5334| 4790| 6520| 16644
unique adjective senses 1754 1463 0 3217
unique adverb senses 1455 1377 0 2832
unique adjective satellite senses 3451 3051 0 6502
Total unique senses 23393| 20227| 6520| 50140
Total tagged words 107118 86255| 41607| 234980

Table 2.3: Semcor Summary
is unfortunately not available for Semcor is the inter-aatar agreement. Such a

12
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statistic would allow for an upper-bound to be set for coreptiased WSD systems.
A possible source for such information can be calculateshfoonsidering matching
documents in the DSO corpus (Ng and Lee, 1996) which also aisesset of the
Brown corpus. Because information about the individualeators, such as age and
social background, is not provided, it is not possible toudedvhat the reason for any
disagreement could be. The inter-annotator agreementbetthe two corpora is 57%
(Kilgarriff, 1998a).

2.3 CMU Link Grammar Parser

The Carnegie Mellon University (CMU) link grammar parseeifiperley, 1999) is
used to annotate and determine the context for the WSD sydseanibed in chapter 6.
The parser is used due to its flexibility, as words and rulesbsaadded and changed
as required. WordNet could be used to provide the basis aftepdary for the parser,
although this is not done for the work presented here as itdvoe an ambitious task
by itself. The parser is also robust, returning partialctrices when not all necessary
constraints are satisfied for the words in the sentence amilihg unknown words to
some extent.

The CMU link grammar parser produces grammatical strustbetween words
in a way related to dependency grammars. Each word is assdadth directional
connectors of different types to its left and right. A linkt\ween two words is formed
if a left connector of one word can connect with the right cactor of another word.

Ds

the.DET man.NOUN

Figure 2.2: CMU Link Example

In total, there are 107 different link-types, with a numbérfurther subscripts.
For example, the previous example shows a determiner lifkb@&ween the words
“the” and “man”. The link’s subscript “s” means that the libktween the words is
for a singular relation. If the word had been “men”, the suipsof the link would

be “m*” for plural (where “*” can be replaced with “c” or “u” talistinguish between

13
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countable or mass nouns). A sentence is valid if all its wamdsconnected in some
way satisfying the required word rules and certain globEsuWord rules, specified
in the parser’s dictionary, describe the combinations oheators possible for words,
while global rules control the way words and links are lirdit&wo examples of global
rules are the “crossing-link” rule and the “connectivityle. The “crossing-link” rule
does not allow for links to cross each other, therefore thieslin Figure 2.3 would be
invalid.

cat horse dog fish

Figure 2.3: Example of Invalid Links Given the 'Crossingiki Rule

The “connectivity” rule ensures that a valid sentence masehall of its words
connected, therefore the links in Figure 2.4 would be imkali

[ ]

cat horse dog fish

Figure 2.4: Example of Invalid Links Given the 'ConnectyiRule

The global rules are defined in the parser’'s knowledge filee fal structure
produced for an entire sentence is referred to as a linkagee Bbmplex sentences are
likely to produce a large number of alternative linkages.

Whilst the linkage structures do not obviously look like thgically known Chom-
skian parse trees, they can be used to produce traditiont@ns® structures. Version
4.0 of the CMU link grammar parser now has a feature to geaesath structures
automatically.

2.4 NLP application

During the course of this work, an application has been dpesl to assist in the devel-
opment of the similarity measures and WSD systems produtld.application was

14
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created using the Microsoft Foundation Classes (MFC) amdlea NLP documents
containing information about sentences, grammaticattras and semantic informa-
tion in the form of sense labels from WordNet. The applicatonsists of a number
of ActiveX components wrapping the various tools descriakdve. A further set of
experimental tools have been incorporated within the apptin, written in either Pro-
log or C++. Figure 2.5 shows all the tools used in the NLP aapilon. The additional

WordNet CMU Parser
WordNet CMU Parser
ActiveX ActiveX

Component Component

NLP
Application
Collocation POS Linkage Local
Detector checker checker Context
Extractor

Figure 2.5: NLP Application Tools

tools are provided to assist users in reducing syntactiodliguity before producing
information for the WSD system:

e POS checker

This tool reports to the user ambiguities, if they exists,thee POS of words in
the sentence contained in the set of adequate linkagesa&lopessible ambigu-
ous POS, the checker also returns the frequency of the PGSewviriequency is
defined as the number of linkages for which the word is taggii the POS.

The user can then systematically select the correct POSaébr word and thus
reduce the number of linkages considered for a sentence.

15
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e Linkage checker

This tool is similar to the POS checker, however it returdieimation about the
ambiguous links available in the linkages, along with tfreiquencies according
to the linkages. Again, this information can be used to assiseducing the

ambiguity of the linkages produced by the CMU parser.

e Local Context Extractor

This tool extracts the local contexts for all words in a teed@ding to the defini-
tion of context given in chapter 6. The local contexts areaeted from the first
valid linkage for each sentence the CMU parser returns, evtrer first linkage
is most likely to be correct. This information forms the Isasf the corpus for
the WSD system also described in chapter 6.

e Collocation Detector

The collocation detector examines multi-word terms in aesgte to determine
if they are treated as collocations according to WordNety éombinations of
words detected to be potential collocations are reportéidetaiser, therefore the
phrase “breach of trust with fraudulent intent” can be ipteted as consisting of
the terms “breach trust fraudulent intent”, “breaahtrust fraudulent intent” or
“breachof_trustwith_fraudulentintent” according to WordNet.

Each of the “checkers” above are used to maximum efficientheituser validates
or invalidates the most frequent POS or Linkages first. Tlaig, whe largest number of
linkages can be potentially reduced. The following list soamises the features of the
application:

e Sentence linkages can be viewed graphically, rather tre®8CIl based dia-
grams or relational structures produced by the CMU parset,ravigated via
toolbar buttons. Linkages can also be manually invalidagdg this graphical
interface.

e Linkages can be reduced rapidly using a number of available.t These changes
are shown in the resulting linkage diagrams for the sengraseinvalid links are
identified.

e The application handles multiple sentences and documents.

16
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¢ All linguistic information about the text handled within aclment is saved and
loaded together with the text.

e The application can perform WSD for noun groups (See 4.5.2).

At this current stage, the WSD system developed for opets-tiexnot yet used
directly by the NLP application, although the frameworkdiggsuch that the system
can be attached with ease and minimal additional work. Eigu shows a screenshot
of the NLP application.

NLP Editor - NLF1

John gave Mary some Flowers

w_ L
NLF13 061
“John' has the lemma: [ John.NQUN ], “'gave" has the lemma: [ give.VERB ], "Mary" has the lemma: [ Mary.NOUN |, “some" has no content meaning according to WordNet 1.6,
"Flowers" has the lemma: [ flower. NOUN |

Sentence 1:

Links from Words:

The links from LEFT-WALL are unambiguous
The links from John are unambiguous

The links from gave are unambiguous

The links from Mary are unambiguous

The links from some are unambiguous
Flowers has 0 different combinations of links

| Word List: [[{0, LEFT-WALL, , LW}, {1, John, John, NOUN}, {2, gave, give, VERB}, {3, Mary, Mary, NOUN}, {4, some, , DET}, {5, Flowers, flower, NOUN}]]
Linkage List : [[{m. 1, 0, Wd, Wd. Wd, 1}, {{}. 6. 0, RW, RW%. RW, 6}, {m, 1, 1, 8s, 5%, 5, 2}, {m. 1, 2, 0, Os, Os, 3}, {m, 3, 2, 0*n, Osn, 0s, 5}. {m. 1, 4, D, D, D, 5}]]

bl

%Found Noun - {1, John, John, NOUN}

%[{m. 1, 0, Wd, Wd, Wd, 1}, {m. 1, 1, Ss, Ss, 5, 2}]
noun_contex( 5833, 708, "John', 'John' ).

%Found Noun - {3, Mary, Mary, NOUN}
%[{m, 1, 2, 0, Os, Os, 3}]

noun_context( 5834, 708, "Mary', ‘"Mary' ).

link_semantics( 'give’, _Sense, '0", 'Mary", _Sense, 5834 ).

%Found Noun - {5, Flowers, flower, NOUN}

%[{m, 3, 2, 0*n, Osn, Os, 5}, {m, 1, 4, D, D, D, §}]
noun_context( 5835, 708, 'Flowers', 'flower' ).

link_semantics( 'some’, 0, ‘D", 'flower’, Sense, 5835 .
link_semantics( 'give’, _Sense, '0(d)", ‘flower’, _Sense, 5835 ).

Figure 2.6: Natural Language Processing Application
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Chapter 3
Introduction to Semantic Similarity

Semantic similarity has a long history in the field of artdicintelligence and natural
language processing. Many of the ideas currently explaiteariginally derived from
the field of psychology, where similarity is believed to llese to the core of cognition.
As William James states “This sense of sameness is the vehahkd backbone of our
thinking” (James, 1950). In general, the aim of the work isreate a measure accept-
ing two or more terms as input (where a term is a word, concepbod sense) and to
return as output some classification of their similarity. dderes of general similarity
(i.e. visual or semantic similarity) can be split into fowsyghological models:

e Geometric — Stimuli are represented in terms of their vaturedifferent dimen-
sions.

e Feature-based — Stimuli are represented in terms of themeesor absence of
weighted features.

e Alignment-based — Stimuli are represented in terms of atignt processes over
structural representations.

e Transformational — Stimuli are represented in terms ofsf@mnation processes
on sensory input to match with predetermined subconscigeas.r Of the best-
known transformation models is Chomsky'’s Transformati@rammar for mod-
elling the human process of understanding syntax (Chonig&y, 1965) (al-
though Chomsky himself never claimed that his theoriesgmesl a psycholog-
ical model).

18
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Prior to creating such similarity measures, the type of lsirty being measured must
be defined.

This chapter introduces the field of semantic similaritthaligh discussion is re-
stricted to techniques determining similarity betweennsuSection 3.1 introduces
some basic terminology, explaining the details of différgpes of measure between
words. Section 3.2 gives details of different represeomatiused when distinguish-
ing similarity between terms. Section 3.3 discusses theréifiit resources typically
used for measuring semantic similarity. Section 3.4 intce a number of the cur-
rent well-known, state-of-the-art techniques used focwaking semantic similarity.
Finally, section 3.5 briefly discusses verb similarity.

3.1 Terminology

The term ‘similarity’ when applied to lexical informationust be clearly understood.
Three main distinctions of how word and word sense simylazdan be defined are
typically found in literature (Budanitsky, 1999):

e Semantic Relatedness
e Semantic Similarity
e Semantic Distance

This section defines the above distinctions.

3.1.1 Semantic Relatedness

Semantic relatedness between words makes use of inform@ttier than pure lexical
semantics of concepts or words, and therefore measuresmaindie relatedness re-
quire additional information than that found in WordNeégsilcal taxonomy. This extra
information may be of a particularly subjective form unigaendividuals, such as in-
formation about their personal view of the world. Considhertivo words “strawberry”
and “tennis”. Some people would associate some relationdsst the two words be-
cause strawberries are typically found at some tennis gatdesever it is difficult
to see how any information in their semantic definitions douik the two. Other
examples of such associative relations would include:
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e “tennis” and “scone”

e “ice cream” and “summer”
e “car” and “journey”

e “car” and “petrol”

e “train” and “passenger”

Of the three common definitions of lexical similarity, thdgeds of associations
are the least explored area, mainly due to difficulties imdpoing adequate knowledge
resources from which to define measures. It is also difficufjive a clear definition
of semantic relatedness due to its inherently subjectiverea However, statistical
techniques based on Latent Semantic Analysis (LSA) (Laedaind Dumais, 1997) or
Context Vectors (Chen and You, 2002) are able to implicidgtare some of this type
of relatedness if given enough training examples.

3.1.2 Semantic Similarity

Semantic similarity is a more restricted notion than semaelatedness. It charac-
terises similarity only in terms of the lexical semanticsyafrds or word senses. Such
a definition of similarity would assign low similarity for &previous word pair associ-
ations, as each word-pair shares little semantic infoirnati

The increase in publicly available machine-readable alietries and semantic net-
works has stimulated the development of a large number tintguaes to calculate
semantic similarity. These techniques typically assigoades value denoting the sim-
ilarity of two words or word senses according to a semankortamy. Prior to these
more recent techniques, other techniques were developlddgnase of thesauri (Mor-
ris and Hirst, 1991; Okumura and Honda, 1994), relying orstfreantic relations im-
plied by the thesaurus entries to give a more coarse graimeldusty distinction.

3.1.3 Semantic Distance

Semantic distance describes how different two words ar@byimg how far apart they
are semantically. Since only semantic information is takém account, a measure of
this type can be considered as the inverse of semantic sityildhe more “distant”
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two words or senses are, the less similar they are. Indeest, ieent semantic simi-
larity approaches use semantic distance in order to datersgmantic similarity.

3.2 Representations of Similarity

The choice of representation for similarity varies with tagk for which the similarity
measures are intended. Techniques generally use one alliweihg representations
for similarity:

e Boolean judgements

Given the limitations of earlier knowledge sources, eaytems typically gave
results merely in terms of “similar” or “not similar” (Bud#asky, 1999). Whilst
the techniques developed in the next chapter are designmeddoce numerical
values, later work in chapter 6 only considers boolean tefam the techniques
developed.

e Enumerated judgements

Later techniques, such as thesaurus based measures (iodridirst, 1991;
Jarmasz and Szpakowicz, 2001a,b, 2003), use improved kdgelsources al-
lowing for a coarse but more refined representation of sitylacompared with
simple boolean judgements. Such a representation ggnpratluced an answer
from a predefined set of possibilities.

e Scalar judgements

The goal of most modern techniques (Rada et al., 1989; KoamdaFurugori,
1993; Sussna, 1993, 1997; Wu and Palmer, 1994; St-Onge; H35 and St-
Onge, 1998; Richardson and Smeaton, 1995; Agirre and Rib2@5, 1996;
Resnik, 1995a,b, 1999; Jiang and Conrath, 1997; Lin, 199984,b,c; Lea-
cock and Chodorow, 1998) is to assign numerical values afagiity to words.
Whilst, in practice, the notion of assigning a numericaligatan be deemed as
an abstract task compared with human cognition, it allowsffiner distinction
of similarity between different pairs of words. This repgeation is typically of
greater use for a number of applications as it may be usecdttupe finer dis-
tinctions of similarity according to some target applioats requirements. It is
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3.3 Resources for Calculating Semantic Similarity

also often useful to normalise the final results so that atbvpairs are measured
within a pre-set range of values.

3.3 Resources for Calculating Semantic Similarity

The resources used for calculation of semantic similatdy p fundamental role in a
similarity measures. Such a resource must contain thenrd#bon necessary to cal-
culate similarity. Apart from a small number of exceptiorsng hand-tailored or
specialised lexicons, the majority of well-known simitgrmeasures make use of, or
have been adapted to make use of, one of the following macbauable dictionaries:

e Roget's Thesaurus

Prior to the public availability of structured machine-daale dictionaries, a
large body of similarity measure work made use of variousieas of Roget’s
Thesaurus. Although information is generally insufficientalculate scalar val-
ues of similarity, the structure is sufficient to produce anber of different
classes of similarity (Jarmasz and Szpakowicz, 2003). &ekers make use
of the format of information within entries, such as the wafprmation within
entries is separated by punctuation marks, to produce suie® or groups of
words. Some versions of Roget’s thesaurus group entriesnmre general
classes, allowing the exploitation of a simple hierarchieen words as a fur-
ther source of information.

e Longman’s Dictionary of Concise English

Probably the most widely used resource in earlier work witlchine read-
able dictionaries (Guthrie et al., 1996), and also the firsiahary to be pub-
licly available to researchers (Budanitsky, 1999), is tledgman’s Dictionary
of Concise English (LDOCE) (Procter, 1978). The most sigaiit influence
that LDOCE has had on semantic similarity measures was thesoon of some
structure between words, although this structure is nargas explicitly or to
the same level of detail as in WordNet. Information is orgadiinto domains
using subiject fields, and box codes are used to hierarchioedlanise words.
Further to the organisation of words within the LDOCE, thengman Defining
Vocabulary (LDV) was developed to give LDOCE a controllectabulary for

22
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its headword definition. The collection of words was selettased upon results
from West's (West, 1953) work about restricted vocabulprgducing a collec-
tion of 2,851 words in the LDV. All headword definitions in LOZE are defined
in terms of the LDV collection of words.

o \WordNet

WordNet (Miller et al., 1990; Fellbaum, 1998) was the firstgisolinguistic dic-
tionary available in a machine-readable form and has prextremely influ-
ential in the field of similarity measurement. Details foistimachine-readable
dictionary are given in chapter 2. Currently, the majorityn@rk concentrates
on measuring similarity between nouns, almost exclusiueigg hypernym rela-
tions. The most likely reason for this may lie in the shapéhefrioun taxonomy.
Compared to other parts of speech, the noun hypernym taxpobwordNet is
deep, rather than wide, resulting in longer path lengthe/éen nodes. Whilst
the structure of the verb taxonomy is still fairly large aretadled, it seems that
little positive work has emerged to this point making use ajréilNet alone.
Given the way people distinguish the similarity betweerbseverb argument
structure is essential for measuring such similarity, amidunately WordNet
is weak in this area. The taxonomies for adjectives and ad\are far less devel-
oped than those for nouns and verbs, making them less suif@btalculating
similarity without additional information.

3.4 Existing Technigques

The most common techniques for measuring semantic sityileain be split into the
following general classes:

e Thesaurus techniques
e Taxonomic techniques
e Statistical techniques

e Hybrid techniques

Most recent techniques follow the geometric tradition ofitarity; where word simi-
larity is a metric of distance measured according to lexiekdtions (Tversky, 1977).
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As standard, such geometric techniques assume the fotiowonditions (Tversky,
1977):

e Minimality: dist(A, B) > dist(A, A) =0
e Symmetry:dist(A, B) = dist(B, A)
e Triangle Inequalitydist(A, B) + dist(B,C) > dist(A, C)

Even though Tversky criticises the properties above, maslem techniques still
abide by these properties. The next section introducestotbst recent well-known
techniques according to the classification above.

3.4.1 Similarity Calculated from Thesaurus information

Some of the earliest techniques for the calculation of sirtyl between words made
use of thesauri as the main knowledge source. Morris and Kie91) used Ro-
get’s Thesaurus (Chapman, 1977) and Okumura and Honda)(188d an equiva-
lent Japanese thesaurus called Bunrui Goi Hyo (Shuppar)136iven the limited
information available in thesauri for calculating semastmilarity, the results of such
techniques are typically presented using boolean or eratetbvalues, for instance the
similarity between two words might be classified as eithéwse” or “not close” (Bu-
danitsky, 1999). Another aspect of these techniques isgikiah the wide variety of
related words within a single thesaurus entry, such tectasidend to detect semantic
relatedness, rather than semantic similarity. As suclsetbechniques do not produce
scalar values for similarity and are of limited use for mapplacations.

More recently, techniques have appeared using thesauarsnation to produce
similarity measures with more detailed distinctions ofitanity. Whilst in many cases
results from such techniques are given as numbers, thesbansmstill represent a
ranked set of enumerations. Jarmasz and Szpakowicz (20@D83) present a tech-
nique using Roget’s Thesaurus of English Words and Phr&sdgaétrick, 1998) to
measure semantic distance. Distances between two wordslaoted according to the
organisation of information in the thesaurus. Distancessatected according to the
following criteria relating two words:

e Length 0 — The same semicolon group of the thesaurus entry.
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e Length 2 — The same paragraph of the thesaurus entry.

Length 4 — The same part of speech entry in the thesaurus entry

Length 6 — The same head.

Length 8 — The same head group.

Length 10 — The same thesaurus sub-section.

Length 12 — The same thesaurus section.

Length 14 — The same thesaurus class.
e Length 16 — Both words are in the thesaurus.

Similarity is calculated by subtracting the path lengthnirthe maximum path length,
therefore:

SemanticDistance = L (3.1)

SemanticSimilarity = 16 — L (3.2)

3.4.2 Similarity Measures Based on Taxonomies from a Machax
readable Dictionary

A much more widely researched approach is to use the retdtips between words
contained in modern machine-readable dictionaries (MRDR)e premise of such
techniques is that considering lexical relations as edg&eeés gives a way to measure
the geometric distance between two words or word senseb. &8canceptual distance
measured from path lengths can be used to calculate howasithé two words are.
Rada et al. (1989) present one of the earliest path lengtinitgees. Given the inherent
simplicity of such approaches, a number of different teghas have been developed
over a relatively short period of time that can all be applisthg WordNet'’s lexical
taxonomy.
Rada et al. (1989) implemented a technique for measuringithigarity of two

concepts solely considering the path-lengths between @mmarding to a semantic
network. Using the Medical Subject Headings (MeSH) know&edource (MeSH,
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1995), a semantic network consisting of medical terms, Radh show that semantic
distance can be calculated simply from the shortest edgendis between two nodes
in the semantic network. Rada et al. also show that such dgragth alone is enough
to satisfy Tversky’s properties of a distance metric (Tkgrd977). The edges used in
MeSH conform closely to WordNet’s hypernym taxonomy, hogrethey occasionally

reflect holonym (part-of) information. Semantic distaregiven as:

dist gaqa(c1, c2) = minimum number of edges from to ¢, (3.3)

wherec; andc, are terms or concepts in a semantic network or taxonomy. 'Rada
algorithm can be adapted to measure similarity with theofaithg changes:

SIMRada(C1, C2) = 1/dist Raga(c1, C2) (3.4)

Resnik (1995a,b, 1999) gives a more refined approach to megsimilarity using
such a distance metric, along with an algorithm specifidalilpred to work with pol-
ysemous words:

SIM Resnik (W1, Wa) = 2dae — min  len(cy, ¢o) (3.5)
c1€senses(wi),

cap€senses(wz)

wherew; andw, are words¢; andc, are senses af; andw, respectively and,,,,. is
the maximum depth of the taxonomy.

Whilst Rada’s simple approach takes into account diffezeme the semantic infor-
mation of two words, it makes no attempt to use informatiomewn to both words or
concepts, and the technique also assumes that all edges serantic network have
equal distances. Whilst this technique works well with theSW knowledge source,
Richardson and Smeaton (1995) found that the inherentulagtes of a taxonomy
such as WordNet have a negative impact on Rada’s approach.

Sussna (1993, 1997) addresses the issue of non-uniforendest between nodes
in WordNet using a depth-relative scaling technique. Takes$ into account different
weights for WordNet'’s various semantic relationships, eodsiders depth in order to
assign shorter distances to relationships of nodes fouapaiten taxonomies. Firstly,
each relationr, is assigned a minimum and maximum weight as shown in Talile 3.
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The actual weight for the relationship between two directipmnected nodes is given

Relation ) | min
Synonymy
Hypernymy
Hyponymy
Holonymy
Meronymy
Antonymy 2

max.

3

R RFPRFPPFPO
aONNNNO

Table 3.1: Sussna’s Lexical Relation Weights

in equation 3.6.
max, — min,

n,(cy)
wheren,(c;) is the number of arcs of relation connected ta:;. Note that given
the above definition, the weight of a relationship betweem tades is dependant on
the direction in which the relationship is used. Taking “maen#2” as an example,
the weight assigned from “hammer#2” to “hand tool#1” via gé&snymy relation is
calculated using; = “hammer#2”,c, = “hand tool#1”,r = “hypernymy”, min, = 1,
max, = 2 andn,. = 1 according to WordNet 1.6, resulting in a weight of 1.

The actual distance between two directly connected nodeadslated as the av-
erage weights of the relationship in both directions. Sasdso adjusts the distance of
two nodes using the depth where the relationship occurgitattonomy. The resulting
distance measure is shown in 3.7.

w(cp — o) = mazx, —
.

(3.6)

w(er — ¢2) +w(ez — 1)
T T

2d

diStSussna(Cla 62) = (37)

wherer’ is the inverse of relation, a relation connecting, andc,, andd is the depth of
the relationship, that is if is a hypernym relation; is the hyponym relation between
¢, andc;. Using the depth of the relationship in such a way ensuresstimaller
distances are assigned between nodes found deeper in timotay. For the previous
example with “hammer#2” and “hand tool#1”,= “hyponymy” giving w(c, — c) =
1.97, and this in turn givedists,ssna(c1, c2) = 0.19 wherel = 8, according to K/VordNet
1.6. Using this definition of distance between two adjacemteas, the total distance
between any two arbitrary nodes is calculated as the sunedfitances of the nodes
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along the path connecting both nodes, as with Rada et atfsitgue. Similarity is
calculated from the distance using a similar approach tafRadl. (1989).

Wu and Palmer (1994) introduce a metric for measuring shityldetween two
concepts that, whilst assuming equal distance for allicgiatin a taxonomy, makes
use of information common to these concepts. The genenal édithe metric, shown
in equation 3.8, measures the ratio of semantic informat@nmon to both concepts
to the amount of total semantic information.

common informatiofr;, ¢,)
total informatioricy, cz)

(3.8)

sim(cy, c3) =

Similarity is measured using the path length between nadasonceptual hierarchy,
for instance consider Figure 3.1. In this figure,and ¢ represent two arbitrary con-

A
v
n3
vV VY
C3
ni ny
Cl C2

Figure 3.1: An Example of a Conceptual Hierarchy

cepts, g represents the deepest concept common to boémad ¢, and n, n, and 3
are path lengths within the taxonomy. For hypernym taxomesmg is referred to as
the most informative subsumer (MIS) of bothand ¢ in later discussions. The path
from the root of the taxonomy to the MIS denotes the semantarmation common
to the two concepts being compared, and the nodes below tBadpresent semantic
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information distinct to ¢ and ¢. The path lengths from those parts of the taxonomy
are used to measure similarity as in equation 3.9.

2ds

Siqu&Palmer(Clyc2) - di+d (39)
1 2

whered;, d, andds are the depths af;, c; andc; respectively. Considering the two
word senses “hammer#2” and “drill#1”, the MIS is “tool#1;, = 8, d, = 9 andds; = 6,
giving a total similarity of 0.71 according to WordNet 1.608Wu and Palmer (1994).

St-Onge (1995) and Hirst and St-Onge (1998) introduce a uneasrefully de-
signed to make use of further relations in WordNet, othen #rad including hypernym
relations. The main intention behind this work was to usedkas developed by Mor-
ris and Hirst (1991), which used Roget’s thesaurus, withdMat. St-Onge defines 3
types of relations according to WordNet:

1. Extra-Strong — This only occurs if both words are ideritica
2. Strong — This occurs if one of the following conditionsagisfied:

e The two words can be synonyms of each other.

e The two words or concepts are related by a horizontal linkO&ge defines
a horizontal link as one of antonymy, similarity and “seeoaleelations
from WordNet.

e One word is a compound word or phrase that contains the otbwet, \and
the two words are connected via a link in WordNet.

3. Medium-Strong — A number of allowable relational patteane defined. Any
configuration of relationships up to a path length of 5 thatvith the allow-
able patterns are said to constitute a medium-strongoelaBuch patterns were
carefully selected whilst considering the psycholingaisglationships they rep-
resent in order to ensure their validity. In general, altgrais containing no more
that one change in direction are allowed. Full details aiadible and disallowed
patterns are given in (St-Onge, 1995; Hirst and St-Onge3)199

Given this framework, Hirst and St. Onge calculate sinjeais follows:

e If w; andw, are related via an extra-strong relation i, ste.stonge (W1, wa) =
3C
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e If wy andw, are related via a strong relatiofiyn g, stestonge (W1, w2) = 2C

e If w; andw, are related via a medium-strong relation,
SUM iy st&eStonge (W1, Wa) = C' — dist gega (w1, wo) — (k X 6),
whereC' andk are constants) is the number of direction changes in the path
from wy to wsy, anddist geq. (w1, w2) is the path length fronw; to w,.

A further similarity measure using path length in WordNétigoernym structure
is given by Leacock and Chodorow (1998). Again, this meamaikes use of a se-
mantic distance between two concepts similar to Rada’s. édewy the final value is
normalised against the maximum depth of the taxonomy. Thesare presented takes
words as input, rather than word senses or concepts, as shagnation 3.10.

min  len(cy, o)
ci1€senses(wi),

ca€senses(wa)

2 dmam

(3.10)

SimLeacock&Chodorow (wla w2) - - 1Og

whered,,... is the maximum depth of the taxonomy aha(c;, c) is the number of
nodes connecting, andc,, rather than the number of edges between the nodes, there-
fore synonyms are assigned a length of 1 apart. According\ibkeiNet 1.6 with a
maximum hypernym taxonomy depth of 17, Leacock and Choderswilarity mea-

sure will range from O to almost 5.1 (usifig;,). Considering the two words “hammer”
and “drill”, min len(c1, co) = 4 over all senses of “hammer” and “drill”, giving a simi-
larity of 3.09 according to WordNet 1.6 and Leacock and Chnoa1998).

A number of other measures appear in recent publicationsdthaot explicitly
publish sufficient details in order to be reproduced, sucRiakardson and Smeaton
(1995) and Agirre and Rigau (1995, 1996). The latter tealmmigmploys a different
approach to the use of a semantic network for the calculati@emantic similarity.
Their approach was to develop a measure sensitive to tleiold) conditions:

e The shortest length of any path connecting two concepts.

e The depth of concepts in a taxonomy in order to assign highelesity to deeper
concepts.

e The conceptual density of the taxonomy, such that sensesnised taxonomies
are deemed closer than those in sparser taxonomies.
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A metric for the conceptual density of a hierarchy for use gasuring semantic sim-
ilarity is given. However, no explicit formula for the calation of similarity is given.
The definition of conceptual density is given in equatiorilzahd 3.12.

m—1

> nhypd?

i X 3.11
CD(c,m) descendants(c) o

h—1
descendants(c) = Znhypi (3.12)
i=0

wherec is the top most node of a sub-hierarchy containing the cdsaeper consid-
eration,nhyp is the average number of hyponyms containedsrsub-hierarchy;n is
the number of concepts under consideration witfarsub-hierarchy and is the height
of ¢’s sub-hierarchy. The value 0.2 used in the formula was s&dezxperimentally in
order to fine-tune the algorithm. The techniques introdunechapter 4 show some
similarity with Agirre and Rigau’s approach, although tiaek of published results,
a complete similarity measure and details of hows selected means that no direct
comparison is possible.

3.4.3 Similarity Calculated using Statistical Information

Kozima and Furugori (1993) automatically generate a seimanetwork called
Paradigme using entries from LDOCE whose headwords bettigetLDV. The ex-
tracted sub-dictionary, referred to as Glosseme, conaBsl entries from LDOCE
containing 101,861 words. The network, referred to as Pgmaal is generated from
Glosseme by creating a node for each headword, and creguisgletween each head-
word node and all other nodes for headwords contained inithielary entry’s defini-
tion. Given this technique for generating the semantic ndtythe links of the network
are defined as one of two types:

e Référant links - Where a node, is linked to another nodg, because contains
a word contained in the definition af

o Référe links - Where a node, is linked to another node, because: contains
a word contained in the definition gf

Each link in turn is also assigned a ‘thickness’ calculateanfthe frequency of its
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headword in Glosseme and other sources. The result is a Bggiglsemantic network
related via 295,914 unnamed weighted links.

Using the semantic network produced, Kozima and Furug893) calculate sim-
ilarity by analysing the spreading activation of the netwoAn activation value, de-
noted byav,,, is associated with each node of the network, and equatid@calculates
for each iteratior?’, av, (T + 1).

R, (T) + R, (T)
2

avy (T +1) = ¢ ( + en(T)) (3.13)

whereT' is the current iteration of activityz,,(7") and R, (7") are the composite activ-

ities of the référants and réféerésroht timeT'. ¢ is a function normalising the values
of av, to lie within the rangd0, 1] (see Kozima and Furugori (1993)). The similarity
of wordsw;, andw; is calculated as follows:

1. The activity for all nodes in Paradigme is reset.

2. Nodek, associated with wordy, is activated with strength, = s(wy). The
terms(wy) is the significance ofy,, calculated using the normalised information
content value according to the 5,487,056-word West cordest, 1953). The
normalised information content value is calculated usimgggion 3.14.

_ log(freg(w))
s(w) = Tlog(1/C) (3.14)

where(C' is the word count of the entire corpus.

3. The activation pattern for the network is calculated du@iterations.

4. Similarity is calculated using equation 3.15.

SimKozz'ma&Furugori(wka wl) - S(wl) X Oé(P(’UJk), wl) (315)

wherea(P(wy), w;) is the activation value fow; in the pattern produced hy;,
in the activation patter#(wy,) produced by Paradigme.

This gives a way of measuring the similarity between any tvaods from the LDV
collection. However, the LDV words only account for 5% of théal words contained
in LDOCE.
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In order to extend the measure to any word of LDOCE, KozimaFamrdgori adapt
their algorithm to use of the definitions of words from LDOCg&iaput for the simi-
larity measure. Using the words in the definitions of one efttho words, any words
also contained in the LDV set are activated with strengthgiequation 3.16.

SimKozz'ma&Furugori(VVu Wl) = w ( Z S(UJ/) X OZ(P(W),U/)> (316)

w'eW’

whereP (W) is the pattern produced using all the words in thelBet

3.4.4 Hybrid Approaches

Some of the most accurate techniques developed recentigenidexical taxonomies
with statistical information. The augmented informatiaigds to reduce problems pro-
duced by irregularities found in practical lexical taxonem(Resnik, 1995a,b, 1999).
The earliest technique to do this using WordNet's lexicabteomy is Resnik’s Infor-
mation Content similarity measure (Resnik, 1995a,b, 198®8snik’s approach is to
add the informatiom(c) to each synset in WordNet, whepé) is defined in terms of
concept frequencies, as given in equation 3.17.

freq(c) = Z count(n) (3.17)

newords(c)

wherewords(c) is the set of words subsumed by the synseindcount(c) is calcu-
lated from a corpus. In Resnik’s work with WordNet, the sesulbsumers of a concept
is given as the hypernyms of the concept.

plo) = L4l

(3.18)

whereN is the total number of nouns contained in the given corpusnReauses the
Brown Corpus of American English (Kucera and Francis, 188&ncis, 1980; Francis
and Kucera, 1982) containing 1,014,232 words of text frorargge of genres. Simi-
larity is calculated from the information content (Ross7@Pof the most informative
subsumer (MIS) of the two words, quantified using the negdtig likelihood of the
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synset, as shown in equation 3.19.

SiMgesnik (€1, c2) = max (—logp(c)) (3.19)
ceS(c1,c2)

whereS(c1, c2) is the set of concepts common to both conceptandc,. Only the
deepest node for the concept in the Sét;, c,), the MIS, is used as this node will
have the largest negative log-likelihood. Notice that nhfer information about the
taxonomy is used in the calculation of similarity. Again,dR&’s work only uses
hypernym relations from WordNet’s lexical taxonomy.

The similarity between two words is deemed to be the maximomiagity between
any two senses of the words, and is calculated in equatidh 3.2

SimResnik(wh w2) - clesg}i};(wl) (SimResmk(Cla C2)> (320)

co€senses(wa)

A number of criticisms have been made about Resnik’s apprdécstly, similarity
is not assigned in a standard normalised scale across widnidsis most noticeable in
the similarity of synonyms, and even the similarity of a waiith itself, as similarity in
these situations varies across words where one might assshwuld not. This leads
to “exaggerations” in the content values, depending on kiage of the taxonomies
used in the calculation of similarity (Richardson et al949Richardson and Smeaton,
1995). Further criticism is made that such a similarity nueasnakes no further use of
WordNet’s lexical taxonomy'’s structure and relationshigosd therefore any concepts
sharing the same most informative subsumer will be assiggadl similarity.

Jiang and Conrath (1997) refine the notion of similarity nue@s using informa-
tion content, making use of further information from thausture of the lexical taxon-
omy. The technique measures semantic distance betweendvas wonsidering the
information content of both the most informative subsunfetwm concepts and the
information content of the concepts of the words themselVdss way the measure
considers both common information and disjoint informati@tween two words.

diStJiang&Conrath(cb 62) =2 logp(mis(cl, 02)) - (lng(Cl) + logp(CQ)) (321)

wheremis(cy, ¢2) is the MIS ofc; andes.
Lin (1997, 1998a,b,c) gives a further information contgupraach, this time also
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addressing the problem of normalised similarity value®semwords. The technique
is related to Wu and Palmer’s approach (Wu and Palmer, 199%pt it measures the
ratio of information shared by two concepts against thesjaiit information. This is
shown by equation 3.22.

21 ;
distpon(cr, o) = 2208 P(mis(er,¢2)) (3.22)

~ logp(c1) + log p(ca)

All these hybrid techniques solely make use of WordNet'sdmggm relation. Such
techniques could be improved further by considering furtiedations to calculate
semantic similarity. Some work, such as (Richardson etl@94; Richardson and
Smeaton, 1995), examine the possibility of using furthé&atiens, although work is
still ongoing.

3.5 Discussion of Verb Similarity

Whilst most of the current state-of-the-art similarity rmeses making use of Word-
Net's taxonomy are restricted to nouns, finding equivalessisnres for measuring sim-
ilarity between verbs is not easy. This may be because Wdisitd®onomy lends itself
well for similarity measures using path length as the nonoriamy is deep meaning
that a reasonable variation in distance exists between senses. The same cannot
be said in WordNet for words belonging to other gramaticassés. Resnik and Diab
(2000) is the most notable work currently available using et to evaluate verb
similarity. They adapt Resnik’s earlier information camt@pproach from (Resnik,
1995a,b, 1999) to evaluate the similarity of verbs. Experital results showed that
results are poorer for verbs compared with nouns, and teatwérage inter-agreement
rate for human evaluation of the similarity of verb pairslsodower, suggesting that
“word similarity is harder for subjects to quantify for varthan for nouns”. All other
path length based similarity measures can also be used voitdNét’s verb taxonomy,
however current research chooses not to present resultsrtos. This suggests, along
with the fact that WordNet's verb taxonomy is far shallowsaut its noun taxonomy,
that the type of information present in WordNet is less sufta directly measuring
similarity amongst verbs.

35



Chapter 4

Using Lexical Taxonomies for
Measuring Semantic Similarity

The previous chapter defined semantic similarity, and sivéhe various techniques
that have been created to automatically calculate the aittyilor distance between
two word senses. This chapter introduces a number of newitpaos for calculating
semantic similarity between nouns. In order to improve @xdirrent body of work, a
number of difficulties are considered and strategies arpga®d to tackle these diffi-
culties. The work presented here was first presented by Slmat al. (2001). A copy
of the seven page version of the paper is included in appehdix

The first section discusses the difficulties arising for teghes making use of
WordNet’s lexical taxonomy for calculating the similarity two concepts. Section
4.2 re-visits the question of what constitutes similaritg antroduces a number of ax-
ioms which characterise desirable qualities for the resofittechniques making use
of WordNet's lexical taxonomy. These axioms are introduath a description fol-
lowed by a logical representation of the axiom. Section AtBduces a number of
hypotheses about WordNet'’s taxonomy that form the basiee&imilarity measures
introduced in section 4.4. Section 4.4 presents severalsimailarity measures based
upon variations of the ideas introduced in section 4.2 ad 8ection 4.5 evaluates
the quality of the results from the measures introduced atiee 4.4. Finally, sec-
tion 4.6 describes further work arising from the ideas pneesst here, and section 4.7
summarises the chapter.
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4.1 Problems with Current Techniques

4.1 Problems with Current Techniques

The most widely recognised issue in assessing similartiyéxn words or word senses
using WordNet's taxonomy arises from irregularities witkts taxonomy (Richardson
et al., 1994; Resnik, 1995a,b, 1999; Leacock and Chodor®@8)1 Inspection of
different parts of the taxonomy reveals aspects that arelpfii in trying to replicate
human judgement about similarity, for instance:

e There is no uniform way in which senses are split into subseghypernyms,
making some sub-hierarchies more developed than others.

There are missing word senses.

The taxonomy includes terms that are not in most peopleslaeyocabulary,
such as technical terminology.

Some relations that seem natural between words do not exist.

Some words have more than one definition, where the extraititwis seem
superfluous. This is partly due to the fine-grained nature @fdNet.

4.1.1 Different Levels of Sub-hierarchy Development

Figure 4.1 shows how sub-hierarchies of WordNet’s nounniaroy can show large
differences in how detailed and developed they are. Sudsetaof “animal#1” illus-
trate a highly developed taxonomy, including detailed slassifications of different
types of animals. This can be seen in the detail of the taxgnostween “cat” and
“animal” in Figure 4.1a. Typically, a path length of over 4pggynyms is used to sub-
classify different biological classes of animals, thus mgkhese structures reasonably
deep. In contrast, the sub-hierarchy for “person#1” tendsetvery shallow, and does
not contain the detailed sub-classifications found in theahsub-hierarchy.

Techniques that only make use of hypernym relations to Gkesimilarity and as-
sume that hypernym relations always express the same legeheralisation fall foul
of such irregularities. Many animal nouns, such as cat, ddgetc. .. have alternative
meanings relating to different types of people. The follogviist shows the senses and
glosses of the words “cat” and “dog” that refer to a type ofsper Note that in some
cases a synonym of “cat” or “dog” is used in the glosses:
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entity

T

life form

T

animal

T

chordate

T

vertebrate

T

mammal

T

placental

T

. entity
carnivore

feline life form causal agent

T \/’

cat person

(a) (b)
Figure 4.1: Hypernym Taxonomy for “cat#1” (a) and for “pangd” (b)

cat#2 — (an informal term for a youth or man; “a nice guy”; “the gugsly doing it
for some doll”)

cat#3 — (a spiteful woman gossip; “what a cat she is!”)

dog#2 — (a dull unattractive unpleasant girl or woman; “she got utation as a
frump”; “she’s a real dog”)

dog#3 — (informal term for a man: “you lucky dog”)

dog#4 — (someone who is morally reprehensible; “you dirty dog”)
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As a result, when considering two polysemous nouns that albymefer to animals, but
contain senses referring to types of people, their “peogéihitions will be assigned
much higher similarity values when path length alone is us®ed measure. This is
clearly an undesirable situation for all path length basedlarity measures, but one
that occurs often in WordNet.

4.1.2 Missing Word Senses

The previous examples show that WordNet is a huge lexicalures giving fine-
grained distinctions between definitions. However, sonezyelay word meanings are
still missing, for instance:

e The word “chip” has no reference to its equivalent Britishami@g, as in “fish
and chips”.

e The word “Greece” has no reference to ancient Greece, nar\doedNet con-
tain an entry for “ancient Greece”.

e The word “fiducial” is missing a sense for when it is used asfaremce or
comparison “a fiducial mark”.

e There is no entry in WordNet for “viva”, not for its examinati meaning or any
of its other alternatives.

4.1.3 Terminology in Hypernym Structures

A number of the highly developed substructures within Waetli¢late to a large num-
ber of scientific, or domain specific terms. Such terms shalidferred to as non-

layman terms. Comparing two different hypernym structusesh as Figure 4.1a and
4.1b, it can be seen that an algorithm based on path lengthklwgenerally assign

a greater similarity to pairs of senses with less technigpkelnym structures. When
people make decisions about similarity in such situatitresscientific terms included
in Figure 4.1a would not normally be taken into account. Muzsiple would not even

consider such terms, even if they are known, as these teemwamally only used to

group things into abstract families.
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4.1.4 Missing Relations

The relation that an “animal cub” is a “young mammal” is maxgleitly in WordNet.
However, there is no relation to the fact that a “young manimsadlso a “mammal’.
This makes “animal” the most informative subsumer (MISWae=n a kind of “young
mammal” and elder equivalent. It would seem natural that ibype of an animak
being a younger version of an animalthatx also be a; such as is the case between
“young mammal” and “mammal”. This is also the case for all tryyms of “cub”,
including “bear cub”, “lion cub” and “tiger cub” where no digt relation is made
between the cub and the class of animal that the cub belon§sith situations extend
to other WordNet relations such as meronymy.

entity

T

life form

T

animal

T

young

T

young mammal

T

cub

T

bear cub

Figure 4.2: Hypernym Taxonomy for “bear cub#1”

4.1.5 Unnecessary Additional Word Senses

Examples can be found within WordNet of words that contaimssalistinctions that
may be considered overly fine-grained for calculating saimaimilarity, such as the
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word carnivore:

carnivore#1 — (terrestrial or aquatic flesh-eating mammal; terrest@ahivores have
four or five clawed digits on each limb)

carnivore#2 — (any animal that feeds on flesh: “Tyrannosaurus Rex wagja tarni-

vore”; “insectivorous plants are considered carnivores”)

This brings about undesirable situations in the assessofi@rdrd similarity, as it can

produce situations where senses of other words are relatedly one of the very

closely related senses of a word. For instance, a “canin@¥#®’member of the canine
family, such as “dog#1”) is related via hypernymy to “caome#1” above but not

related to “carnivore#2”. However, a “canine#2” is an anithat feeds on flesh.

4.1.6 Problems for Hybrid Similarity Measure Techniques

Hybrid methods try to avoid some of the problems above by ntakse of statistical
information. However, they fall foul of other problems. Tim@st common problem for
such hybrid statistical approaches is due to the lexicaliadgpn bottleneck problem
(Gale et al., 1993), where insufficient examples of words ordisenses are available
to train classifiers that generalise well to new exampless Tauses these statistical
techniques to overly prefer senses within particular dosaf meanings due to bias
introduced by their training data.

Some of the hybrid methods also do not make use of the infetomabntained
within the intermediate structures between the two meartiegng tested and the MIS.
Techniques, such as Resnik’s information content apprcaessign equal values to a
large number of meanings when there is an obvious, evenyfslight, difference in
their similarities. The consequence of this is that sintyatistinctions are coarser and
bias may be present within sub-hierarchies for which mota daavailable.

4.2 What Constitutes Similarity in a Lexical Taxonomy?

Before creating a similarity measure, it helps to revis# pinoblem of word similarity
and define what aspects of a lexical taxonomy help in asgessmlarity between
terms. The approach taken here is to define semantic sitpilsiween two terms in
a similar approach to that taken by Lin (1997). Lin makes a lpemof assumptions
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4.2 What Constitutes Similarity in a Lexical Taxonomy?

in order to define similarity according to WordNet. Lin themg@uces a measure that
is “proven” by ensuring it satisfies the initial assumptiomsde about similarity. The

following axioms introduce a new general definition of semily calculated using a

lexical taxonomy. To assist in understanding the logicptesentation given for each
of the axioms, each axiom is introduced with an informal deson.

4.2.1 Axiom 1: Synonymy

It is clear that synonyms represent terms with the exact saganing, therefore syn-
onymy represents the closest form of similarity betweemse(see 2.1.1). Thus it
seems natural that a similarity measure should assign gymoan upper bound value,
as no two words can be any more similar than two synonyms. é\his$ is an advan-
tage, development of the measures is not restrained torgearthis condition as long
as synonymy is still treated as the most similar state betweg two distinct terms.
Vx,y : sense -
x € synonyms(y) A
s = sim(x,y) =

Vz : sense -

<s
Szm( z)<s
wheresynonyms(w) is the set of synonyms for a word sense

4.2.2 Axiom 2: Hypernymy

The hypernyms of any sense are closely related to the otigamse. The similarity
represented by this relation is related to the distance Biomnord sense to one of its
inherited hypernyms along a hypernym tree. The closer a wenge is to one of its
inherited hypernyms, the higher the similarity shared leyttto senses.
Vr,y,z: sense -
y € hypernyms(x) A
z € hypernyms(x) A
distance(z,y) < distance(z,z) =
sim(x,y) >0 A
sim(x,z) >0 A

sim(x,y) > sim(x, 2)
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wherehypernyms(z) is the set of all hypernyms of a word sensanddistance(z, y)
is the path distance betweerandy.

4.2.3 Axiom 3: Depth of the Most Informative Subsumer in the
Taxonomy

Senses that are common to the hypernym structures of two withre senses can be
used to determine the information common to the two word eeng\ssuming two
separate pairs of word senses, both with equal path distzeteeen each other, the
pair that shares the deepest MIS in the taxonomy should beetkas more similar, as
this pair shares more common information.
VYa,b,c,z,y,z : sense -

z=MIS(z,y) A

c=MIS(a,b) A

distance(x,y) = distance(a, b) A

depth(z) > depth(c) =

sim(z,y) > sim(a,b)

wheredepth(a) is the depth of a sensein a given hypernym structure add /.S (a, b)
is the MIS for two sensesg, andb.

4.2.4 Axiom 4: Meronymy/Holonymy

The use of meronymy/holonymy relations to calculate thelanty between two senses
needs to be handled with care. In general, it is agreed tichtralations contribute to-
ward similarity (Budanitsky, 1999; Budanitsky and Hirsb04). However, it has been
difficult to define effective similarity measures that takivantage of these relations.
Considered here is a fairly restricted use of meronymy. Tewsses,r andy, share
some similarity ifz is an inherited meronym of or vice versa, even if andy share

no common subsumer in their hypernym structures.
Vz,y : sense -
(x € inherited_meronyms(y) V y € inherited_meronyms(zx)) =
sim(x,y) > 0
whereinherited_meronyms(x) is the set of all meronyms af, including the meronyms
of meronyms.
As holonymy is the inverse of meronymy, it is implicitly hded in the above
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definition. For the purposes of this work and due to the dilfies of using meronym
relations in similarity measures, not all the new measuredyced are guaranteed to
follow this axiom. This will allow the usefulness of this axn to be tested.

4.2.5 Axiom 5: Co-ordinate terms

Co-ordinate terms are already deemed to be similar acaptdithe previous axioms.
However, it helps to give this relation a special status.tReipurposes of this work, the
definition of co-ordinate terms will be extended to includases that share a common
hypernym that are “generalised” by the hypernym by a simalaount (see 4.3.2).
Terms sharing a similar level of “generalisation” from thMIS are deemed to be

more similar than words at different levels of “generaiisatt.
Vr,y,z,m: sense -

m=MIS(x,y) = MIS(x,z) A\
(|Gen(x,m) — Gen(y,m)| < |Gen(x,m) — Gen(z,m)|) =
sim(x,y) > sim(x, z)
whereGen(a, b) is the generalisation dfto its hyponymu.

4.3 Towards a Better Similarity Measure

In addition to the new axioms introduced earlier in the chgpthe following new
hypotheses are introduced regarding the use of taxonoméssess similarity between
words and word senses.

4.3.1 Hypothesis 1: Hyponym Branching Information AdjustsHy-
pernym Path Lengths

Within a hypernym hierarchy, sub-hierarchies differ in ¢manularity of development.
The number of hyponyms a word sense has can be seen to inflilniengerceived dis-
tance between the word sense and its hyponyms. The hypoikdkat word senses
with fewer hyponyms have a closer relation to their hyponyamsl as such, the hy-
pernym distance between a word sense and its hypernym teddtathe number of
hyponyms it has.

Figure 4.3, shows three examples of word senses and theiatsd hypernyms.

44



4.3 Towards a Better Similarity Measure

mentor#1 (1) equine#1 (6) person#1 (203)
t t t
Extermely Close Relatively Close Far
| | |
guru#1 (0) horse#1 (26) adult#1 (22)
(a) (b) (©)

Figure 4.3: Hyponym Branching Adjusted Hypernym Distangarples

To the right of each word sense is a label showing the numbéaypényms it has.

This number can be used to calculate how close hyponym arerimym relations are
as it gives an indication of the level of abstraction or gahtsation between a word
sense and its hyponyms. Figure 4.3a shows a close relatitive asly hyponym of

“‘mentor#l” is “guru#1” and differences between “mentor#tid “guru#1” are min-

imal; Figure 4.3b shows a relatively close hypernym retati@tween “equine#l”

and “horse#1”. However, it is not as close as the relatioveen “mentor#1” and

“guru#l” as “horse#1” is only one instance of a hyponym oftieg#1” out of a pos-

sible 6 different hyponyms; Figure 4.3c shows a distant hyypa relation between

“person#1” and “adult#1” due to the large number of hyponyraseath “person#1”.

This large distance does not necessarily mean that theresudbstantial difference
between “person#1” and “adult#1”. It does, however, recagthat there are a sub-
stantial number of semantic features that differentiaée203 different hyponyms of
“person#1”, therefore the relation is deemed to be morergétigan for the previous

examples. This brings about rules 4.1 and 4.2 about hyponstande.

Vx,y : sense -
y € direct_hyponyms(z) A (4.1)
hyponym _distance(x,y) = f(#(direct_hyponyms(x)))

Vr,y,a,b: sense -
y € direct_hyponyms(x)
b € direct_hyponyms(a

A
A (4.2)
< #(direct_hyponyms(a)) <

<

)
#(direct_hyponyms(x))
hyponym _distance(x,y) < hyponym_distance(a, b)
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wheredirect_hyponyms(z) is the set of word senses that have a hyponym path length
of 1 to termz, and f(x) is a function of the value.

Normally, the hypernym distance is the relation of intesgsen assessing word
similarity. As hyponym relations are the inverse of hypenmelations, equation 4.3
shows the definition of hypernym distance used.

hypernym_distance(y, x) = hyponym_distance(x,y) = #(direct_hyponyms(z))
(4.3)

This approach adjusts the hypernym path distances to caafeefor differences in the
degrees of refinement of sub-hierarchies of a lexical tawgn&Vider structures, such
as for the term “adult#1”, are thus penalised by being assigonger path lengths to
the hypernym relation between word senses. Longer, thisumesstructures, such as
for “horse#1”, are conversely assigned short distancesashMies using this approach
are less sensitive to differences in degrees of sub-higyatevelopment.

4.3.2 Hypothesis 2: A Different Word Similarity Approach other
than Using Edge Distances or Statistical Augmentation

All similarity measure techniques described in the pregicuapter, with the exception
of (Agirre and Rigau, 1995, 1996; Rigau et al., 1997), areebalely on the hyper-
nym relations of WordNet's taxonomy. Hypothesis 2 externdsitiea of co-ordinate
terms to start considering the use of further relations imdiMet’s taxonomy of use for
improving similarity measures. Whilst the resulting sianity measures are still based
in essence on WordNet’s hypernym taxonomy, they differificantly in the approach
of existing techniques.

Axiom 5 states that co-ordinate terms have a special relédi@ach other in addi-
tion to being members of the hyponym set of a word sense. Ebatman of different
senses in a lexical taxonomy reveals that the hypernym eidtgndes between some
word senses are distant, but the senses may still be coadittebe semantically close.
It also follows that such word senses can be more similar éoamother than their hy-
pernyms would be, thus showing that path-distance may sor@eproduce inaccurate
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evaluations of similarity. For example, consider when ihgsion in 4.4 is true:

dx,y, 2z : sense -
hypernym_path_distance(x,y) < hypernym_path_distance(z, z) N (4.4)

sim(x, z) > sim(x,y)

where hypernym_path_distance(a, b) is the number of arcs in a hypernym tree be-
tween two word senses,andb.

An alternative approach to using edge distance to calcti&teimilarity of two
word senses is to assess the difference in abstraction fioutheir hypernym struc-
tures to a hypernym common to both word senses. This can levadhwhen consid-
ering the number of hyponyms directly below each word sefiseclearly show this
alternative method, consider a taxonomy where all sen$es ttan terminal senses
have exactly two hyponymes, illustrated by the binary treacttire in Figure 4.4. In

Root Level
Level 1
Level 2

Level 3

Level 4

Figure 4.4: Binary Tree Example

the binary tree, each node represents a word sense, ancctheepresent hypernym
relations between the senses. By definition, all word senghsa common direct hy-
pernym are co-ordinate terms. Also of interest are all tinsae that share a common
hypernym at the same amount of generalisation. For exantptegasy to see that
words denoting feline animals are semantically similar thueo-ordinate term rela-
tionship. However, the words “cat” and “dog” are normallyhe@ered similar to some
lesser extent. Furthermore, people would associate “cat"“@anine” less strongly
than they would associate “cat” and “dog”, even though thgeedistance between
“cat” and “canine” is smaller. This situation is analogoasd¢at” and “dog” being at
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mammal

N

feline canine

1]

cat dog

Figure 4.5: Binary Taxonomy Example for “Cat” and “Dog”

approximately the same level of generalisation from sommmaon node (in this ex-

ample this node is “mammal”) in a binary tree, as they areastimilar depths in the

taxonomy, as shown in Figure 4.5. In a real world lexical teoray, such as WordNet,

depth alone is not a reliable source of information for meagithe generalisation be-
tween two word senses on a particular hypernym path. Annatine way to calculate

this difference in the amount of generalisation that aveédigng on such word senses
being at the same depth is to use information about the biragnolithe hypernym sub-

trees of word senses. This branching information will bemefd to as the “shape” of
the hypernym structure for a word sense, where the struofurgerest goes from the
word sense to a hypernym that is common to some other gived semrse. Given the
shape information for two word senses, the ratio of gersafaiin between two word
senses is given in equation 4.5.

shape(x)

shape(y) (45

Generalisation Ratio =
Given that “shape” is a function of the hyponym branchingngla hypernym path,
two methods of calculating the “shape” of a hypernym striecture given by 4.6, or by
4.7 if a sensen is not known.

1 ifw=m
{ #((Mw))) <OP> shape(w(w),m) : otherwise
shape(w) = shape(w,root(w)) 4.7)

shape(w,m) =

wherew andm are word sensesy is a hypernym ofw (normally the MIS between
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w and another word sense)(z) is the set of hyponyms for a word senseA(z) is
a hypernym of a word sense <OP> can be either or x, #s is the number of
element in a set androot(w) is the root of the hypernym structure for. The term
#(¢(M(w))) can be thought of as the number of hyponyms for the hypernywoaod
senseaw.

The two different arithmetic operators give different npietations of the notion of
“shape”. Using ther operator, shape will measure the pure hyponym branchingalo
the path, that is to say the number of nodes that branch offfytpernyms of a particular
structure. This is referred to as shap&he x operator gives an estimate of the total
number of senses in a substructure of the hypernym structuire only an estimate
because nodes outside the hypernym structure are unlikdédgahch to a comparable
degree. This is referred to as shap€onsider the hypernym structure in figure 4.6. In

entity

T

life form

T

animal

Figure 4.6: Hypernym Taxonomy for “animal#1”

order for either shapeor shape to be calculated, the number of direct hyponyms for
each inherited hypernym of “animal#1” must be known, in tase 36 hyponyms for
“life form#1” and 14 hyponyms for “entity#1”. Whilst assung a virtual root above
“entity#1”, shape; (“animal#l”) = 36 + 14 + 1 = 51 and shape (“animal#l”) =

36 x 14 = 1 = 504, where in both caseot(“animal#1”) is the virtual root.

Such a definition for the ratio of generalisation becomegssary with WordNet’s
taxonomy in order to create similarity measures that are $essitive to differences
in path length between a word sense and its hypernym. Faanost consider the
following two noun senses:

e “mammal#1” sense 1 has 5 direct hyponyms;

e “man#l” sense 1 has 45 direct hyponyms.
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As “mammal#1” has fewer immediate hyponyms than “man#1&sthhyponyms are
deemed to be more closely related to “mammal#1” than the iyps of “man#1”
are to “man#1”. In other words, the hyponyms of “mammal#16wla smaller level
of specialisation and are therefore only slightly more gfeclasses of “mammal#1”,
whereas the hyponyms of “man#1” show a larger level of sgieat#éon and are there-
fore more specific sub-classes of “man#1”. Path distancesldheflect this level of
specialisation, or generalisation if considering hypempath distance, so the path dis-
tance from “mammal#1” to one of its hyponyms is closer that thetween “man#1”
to one of its hyponyms.

4.3.3 Hypothesis 3: Collapsing WordNets Taxonomy to Includ
Only Layman Terms

WordNet's taxonomy has a large number of domain specific st are not used
in day to day conversation, or even known by many people. pkesrof such words
include scientific terms used to sub-classify animal nouliesms such as “placental
mammal” are not often considered by people when they assessmilarity of terms
like “dog” and “cow”. Such terms artificially increase hypgm path distances be-
tween senses thus making them seem less similar.

Work has been previously performed to reduce the hypernguntsires to include
only layman terms. Tengi (1998) makes use of WordNet 1.5isilfarity index to
detect non-layman terms in hypernym structures. The wogkusad to reduce terms in
WordNet's taxonomy to closer match what Tengi refers to asriental lexicon” using
psycholinguistic principles. For WordNet 1.5, the faniliya index is not based on
occurrence frequencies taken from corpora, as such fregseewould be inadequate
for a lexicon as large as WordNet due to the lexical bottler@oblem. Instead, an
alternative method is used, based upon the correlationdagtwwccurrence frequency
and polysemy (Zipf, 1945; Jastrezembski and Stanners,; 1Ri8frezembski, 1981).
Every word in WordNet 1.5 has a familiarity index calculafenin the polysemy of
the word according the Collins online dictionary. Giverstfamiliarity index, Tengi’s
approach is then to remove all words with an index less thagoal to 1.

Figure 4.7, taken from (Tengi, 1998), shows the words of hyya structure for
“bronco#1” and their associated familiarity index accaglto WordNet 1.5. The ef-
fectiveness of using the familiarity index to reduce hygemnnstructures to layman
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hypernym structures is seen clearly in this simple example.

entity (3)

A

organism (2)
A

animal (4)
A

chordate (1)
A

vertebrate (1)
A

mammal (1)
A entity (3)
placental T
mammal (0) organism (2)
f f
ungulflte (0) Reduces To anlmTaI (4)
—_—
odd-toed horse (14)
ungulate (0) T
t pony (5)
equine (0) t
4 bronco (1)
horse (14)
A
pony (5)
A

mustang (1)
A

bronco (1)

Figure 4.7: “Bronco#1” Hypernym Structure Reduction froferigi, 1998)

Version 1.6 of WordNet no longer calculates familiarity é@xes from an alterna-
tive dictionary, but from the polysemy counts within WordNiself. As a result, the
frequency indexes between WordNet 1.5 and 1.6 differ sicantly and can no longer
be applied to Tengi’s technique for reducing hypernym s$tnes. Taking the initial
hypernym structure in Figure 4.7, the frequency indexeghfemords bronco to entity
in WordNet 1.6 using Tengi’s approach are:

1,1,5,6,1,1,1,1,1,1,1,1,2,1
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The main difference with Tengi’'s example is that “animaltdentity” are lost in the
layman structure. Another issue is that the most common wokfordNet 1.6 for
each sense in the hypernym structure of “bronco#1” is nos#ime as those given in
the example. The most common word for the synset of “orgahianthe example
is “life form” which has a polysemy count of 1. Therefore amat term would be
lost if an automatic system is based upon using the most canwoeod of a WordNet
synset. This produces a problem regarding which word for adWet synset should
be selected to calculate the polysemy count automatically.

entity#1 (1)
life form#1 (1.5)

animal#1 (1.833)

f

chordate#1 (1)

f

vertebrate#1 (1)

T life form#1 (1.5)
mammal#1 (1) 1

t animal#1 (1.833)

pIacentTaI#1 (M Reduces To T
e

horse#1 (3.5)
ungulate#1 (1) 1

t pony (5)
odd-toed T
ungulate#1 (1) bronco (1)

f

equine#1 (1)

f

horse#1 (3.5)

f

pony (5)

!

mustang (1)

f

bronco (1)

Figure 4.8: “Bronco#1” Hypernym Structure Reduction Ushkhgw Approach

A new approach to reducing WordNet 1.6 hypernym structisgsesented here,
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which takes into account the polysemy of all words in a givenset. Once their
polysemy is established, the average polysemy for all thelsvim the synset can be
used as an alternative familiarity index for a synset. Simiésults to those produced
by Tengi’s proposal are possible with this alternative apph. For instance, applying
this technique to the “bronco” hypernym structure givesrgmults shown in Figure
4.8. Now the only difference with the example using WordNé&t i$ that “entity” is
lost.

Using Layman Hypernym Structures with Similarity Measures

Reduced hypernym structures can be readily used with sitgilmeasures that only
consider path distance between two senses. As such measei@sy adding a value
to an ongoing distance, if a term is a layman term the distamaecreased, other-
wise it remains unchanged. For the similarity measuregusiape, more thought is
necessary.

When multiplying the hyponym branching of senses, the sihag&sure estimates
the number of nodes beneath a sense in some given hypernystraature, therefore
ignoring technical terms may lose vital information. Aslsutere are two possibilities
to be considered:

¢ Ignore the hypernym branching for non-layman word sensagr{lan Hypernym
Structure).

e Retain the branching information of non-layman word sengatst disregard-
ing the nodes for the non-layman word senses. This is aathieyexdding the
sum of the hypernym branching of non-layman word sensesedtanching
of the next layman word sense. This corresponds to flattethi@gnon-layman
terms to the same level as layman terms in a hypernym steustuthat their
information is not lost. This is only applicable for shap@&lattened Hypernym
Layman Hypernym Structure). If this were applied to shaphlis would pro-
duce approximately the same results as when consideringntire hypernym
structure.
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4.3 Towards a Better Similarity Measure

4.3.4 Hypothesis 4: Handling Hypernym Trees with Multiple Paths
from Sense to Root Sense

A complete definition of a similarity measure based uponrmfation contained in a
hypernym taxonomy requires a decision regarding how atem paths are handled
when calculating the final similarity. For instance, whishsidering hypernym rela-
tions, there are a number of concepts in WordNet, such as/#dre that have multiple

alternative hypernym paths.

The approach taken here is similar to the approaches inquework (Rada and
Bicknell, 1989; Rada et al., 1989; Lee et al., 1993; ResriR5h,b, 1999). Where mul-
tiple paths are available from a synset to the root of a hypernee, the shortest path
including the MIS between two senses in the hypernym stradtuused. For instance,
Figure 4.9 shows the complete hypernym structure for “bééw#ach synset in the
structure has been additionally labelled with its deptlatred to a virtual root node
above “entity#1”. In practice, the depth of “brew#1” will l@ependant on the word
sense it will be compared to. Normally a depth of 7 will be g@sed to “brew#1”. How-
ever, should the MIS to “brew#1” and another synset by eitth@d#1” or “liquid#1”,
its depth becomes 8 as the hypernym path being considereéaim®an extra edge.

entity#1 (1)

T

object#1 (2)
substance#1 (3) artifact#1 (3)
/ fluid#1 (4) T
food#1 (4) 4 drug#1 (4)

\ﬂgﬁ (5)

beverage#1 (5) drug of

<\/abuss#1 ®)

alcohol#1 (6)

T

brew#1 (7)

Figure 4.9: “Brew#1” Hypernyms
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Such a criterion has been followed in previous work in ordenaiximise the simi-
larities assigned to words when using path distances toleadcsimilarity. When con-
sidering layman hypernym structures, following the sanitea will produce equiv-
alent results, however the resulting MIS will be likely toarige. Such a technique
for selecting a unique path may not generate the best pessibilarity when using
generalisation ratios to calculate similarity.

4.4 Shape-Based Similarity Measures (SBSMs)

Following the “shape” definition given in hypothesis 2, a rbhenof new similarity

measures, referred to as SBSMs, have been implementedvasiigg approaches to
assign similarity measures to word sense pairs. Work anidiavan of SBSMs was
first published by Dionisio et al. (2001).

4.4.1 Similarity Measures based on Hypernym Structure Shag

The first of the new SBSMs, shown in equation 4.8, is a sim@e déthe ratio of
generalisation between two senses and forms the basisioéflBBSMs.

;

shape(c) . Lf shape(ci) < shape(ca)/A
shape(e2) " o) L MIS ANy # MIS
Simspsui(C1,€2) = 4 shape(en) . of shape(cr) > shape(ea) N\ (4.8)
shape(e) ") L MIS Ay # MIS
1 : otherwise

\

wherec; andc, share at least one common subsumer in their hypernym stesctu

Such a measure is intended to demonstrate behaviour desdribaxioms 1, 2
(although different depths for the MIS are not considerdnd hypotheses 1 and 2.
In order to tackle structures with multiple paths, the sbstrstructure containing the
MIS is selected in accordance with hypothesis 4.

This measure makes no provisions for handling informat@nmon to two senses,
as stated in axiom 3. The following SBSMs adjust values fi®mspzs,/1, referred
to simply asS BS M, with a multiplier calculated from information containedthe
hypernym taxonomy above the MIS, where the multiplier datees a value for the
amount of common information between two word senses.
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4.4.2 Similarity Measures based on Hypernym Structure Sha@
Adjusted by a Common Information Multiplier

There are a number of ways in which information in a hypernymacsure above the
MIS of two senses can be used to calculate similarity:

1. Path distance from the MIS to the root of the taxonomy. ghies a measure of
how deep in the taxonomy the MIS occurs.

2. Shape from the MIS to the root of the taxonomy. This givegstimate of the
amount of common information that is expressed above the MIS

3. Average hyponym branching of nodes from the MIS to the obtite taxonomy.
This gives an estimate of the overall abstraction the rostéktive to the MIS.

These notions give a means of measuring information thabrsnoon to two word
senses which can be used to adjust measures by considermygaroinformation.
This produces three further SBSMs, shown in equations 419,a@nd 4.11.

Simgpsma(c1,c2) = Simgpsan(cr, ca) X d(cs) (4.9)
Simspsms(cr, ) = Simgpsui(ci, c2) X shape(cs) (4.10)
Simgpsma(ci,c2) = Simgpsan(cr, ca) X 5(cs) (4.11)

where in each casg andc, share a common subsumey,is the MIS ofc; andc,,
d(c) is the depth of sensés hypernym structure an@d(c) is the average hyponym
branching of a word senge

As S BS M, will always produce values within the ran@e< Simgspgsai(ci, c2) <
1, the common information multipliers (CIMs) 8BS M,, SBSMs; andSBSM, can
overly influence the final result. In order to reduce the infes the measures of
common information have on the final SBSM, they can be nosadlito be within
the ranged < CIM < 1. This guarantees that the CIMs will not be the overall-
determining factor of similarity. In order to restrict thenge of values, the CIMs are
normalised as shown in equation 4.12.

L GfCIM >1

R
normalisecrn (CIM) = { C”‘é . otherwise (4.12)
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wherek is a constant for each SBSM. This constant is used so that ad€IMor
less will not produce undesirable results. For instanabegfCIM is 1, the normalised
multiplier would be O therefore producing a similarity meeesof O which is clearly
inappropriate as some similarity has been found in the taxgn A small enough
value fork was selected experimentally for each measure:

e k=0.1for SBSM,
e k£ =0.00001 for SBSMj;

e £ =0.05for SBSM,

The last value of: is contentious, as when the values of the average hyponymeiora
ing of a structure lie between 1 and 1/0.95, the value pradibbgethe normalisation
function will produce values smaller than 0.05. This is émaked due to the unlikely
event of such values being encountered.

Given these new common information multipliers, anothee¢hSBSMs are pro-
duced as shown by 4.13, 4.14, 4.15.

Simspsms(c1,c2) = Simgpsui(ci, c2) X normalisecyy(d(cs)) (4.13)
Simspsme(c1,c2) = Simgpsyi(ci, c2) X normalisecyy (shape(cs)) (4.14)
Simspsmr(c1,c2) = Simgpsui(ci, c2) X normalisecry(5(c3)) (4.15)

where in each casg andc, share a common subsumey,is the MIS ofc; and s,
d(c) is the depth of sensés hypernym structure an@(c) is the average hyponym
branching of a word senge

4.4.3 Similarity Measures based on Hybrid Versions of Hypemym
Structure Shape

The new SBSMs described thus far consider similarity as etiom of the ratio of gen-
eralisation between two hypernym structures, with somedddjustment given by a
function of the information common to the two structureseviRsus work has mostly
been based upon path distances, so it would be useful tondatelf the shape function
could improve results from such measures. The Wu and Paliéd{ similarity mea-
sure can be readily adaptable to make use of these ideasfateetwo further hybrid
SBSMs are also considered.
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The simplest hybrid form for a SBSM would be to use the prod@itivo measures,
as shown by equation 4.16, therefore making use of the distating aspects of both
measures. The final value from such an approach will be a conmipe from the values
of the individual measures used.

Sitmgspsms(ci, c2) = SiMwugpaimer(C1, C2) X Simgpsar(c1, c2) (4.16)

Only SBSMs assigning values between the range of 0 and 1 evilsled so that overall
neither term can overly bias results of the similarity measu

Wu and Palmer (1994) uses an approach that measures theenliiés and sim-
ilarity between two measures in order to calculate the fimallarity value. Such a
similarity measure can be easily adapted to make use of shapaer to assign differ-
ent weights to different hypernym edges, as shown in equdtib7.

2shape(cs)

4.17
shape(cy) + shape(cy) ( :

Simgspsmo(ci, c2) =

wherec; is the MIS ofc; andes.

Using shape, it is unlikely that the above function will produce wellstlibuted
similarity values immediately. This is mainly due to thefeiénce in magnitude for
values of shape. Results can be improved by post-procebsmgsults from the shape
function, for instance considering logarithms of the shaphis is possible as each
of the different SBSMs are designed to make use of WordNexgal taxonomy in
different ways. However, fine-tuning of the distribution imilarity values across
differing levels of similarity is left open to further inviéggation. Given the design of the
SBSMs, it is natural that some measures may assign highs/éduevord-pairs with
low similarity. However, it is expected that the relativedering of different word-
pairs according to the similarity values assigned by the 8%ill be reasonable.
Post-processing values from the SBSMs presented heresgdeoed only to a limited
extent during the evaluation.

58
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4.4.4 Calculating the Average Hyponym Branching of the Hype
nym Structure
Some of the SBSMs use the average hyponym branching of awgucThis value

is calculated given the shape and depth of the hypernymtsteubelow some word
senseg. For shape, an accurate measure of the average branching is given 8y 4.1

_ shape.(z)
For shape, an approximation of the average branching is given by 4.19.
B(x) = shapey(z) 4 (4.19)

445 SBSM Parameters

In their current state, the SBSMs implement ideas from agidm2, 3 and 5, and
from hypothesis 1, 2 and 4. In order to test the remainingragi@and hypothesis,
parameters in the form of flags will be used that change sontkeotharacteristics
of the measures. Each different combination of parameteesacan be thought of
as producing a different similarity measure, although gitleat the parameters only
slightly modify the behaviour of the SBSMs they need not basodered as such.
Indeed, one of the main aims of this work is to determine th& bembination of
parameters for measuring similarity. The parameters ®SBSMs are:

e Use of layman structures (from hypothesis 3)

e Use of flattened layman structures (from hypothesis 3)

e Consider the meronym/holonym terms of the senses beiregtéfsom axiom 4)
¢ Normalisation of results so that values fit into a standaadies@xiom 1)

The latter parameter follows from axiom 1 so that an uppemdotalue is assigned
when synonyms are tested. F9B.SM; and.SBS M, this is not an issue, as all syn-
onym pairs will be assigned values of 1, aB®#S My is dependant on the SBSM
chosen to work with the Wu and Palmer measure. The other SBSdgever, assign

different similarity values to different synonym pairs. i3ls a situation that seems
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undesirable because if two terms represent the same idedy there is no way they
can be anymore similar to each other. Further, it seems uraidb say that two pairs
of identical terms differ in their magnitude of similaritBSMs 2 to 7 assign differ-
ent values to synonym pairs depending on their depth in tkentamy, therefore it is
these measures that must be normalised so that final vakiesjaal for all synonym
pairs. Currently, this normalisation has been implemefbeds BSM; to SBS M-
using equation 4.21 and 4.22.

v(cr,e2) = max(CIM(¢y), CIM(cy)) (4.20)
Slency) = { 1—1/v(eq,c2) if V(Cl,lcg) > 1 (4.21)
¢ : otherwise

Sim c1,C
SimnormalisedSBSM(Cla 02) - SBSM( ! 2) (422)
90(017 02)

wherec; andc, are word senses;(c;, ¢;) is the normalisation factor, an@d/ M (c) is
the CIM calculation for a given SBSM applied using a word sensSuch a normali-
sation technique is used with all results so that they fitwithe range of O to 1, where
1 signifies perfect synonymy.

4.5 Evaluating Similarity Measures

The question of what constitutes an adequate evaluatiohaddor similarity mea-
sures remains open. Previous work on objectively evalgaimilarity measures has
proven difficult as similarity measures differ in the taskvidhich they are used, indeed
quite often no formal evaluation is performed on the sintyaneasures in isolation of
the task for which they are created. Where similarity measare evaluated, the most
common approach is to compare these with results from mesgirhuman judge-
ments on a set of word-pairs, such as the Rubenstein and Gaagle (1965) or Miller
and Charles (1991) word-pairs. More recently, Finkelstétial. (2002) made available
a larger set of human judgements consisting of similarilggments for 353 word-
pairs, although this is not used to evaluate the measumeslurded in this chapter as it
became available too late. Some work, for instance (Lin,719%ove that their mea-
sures possess certain desirable qualities, such as therpesspecified by the axioms
and hypotheses introduced earlier in this chapter. Othek,wor example (Resnik,
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1995a,b, 1999; Budanitsky, 1999; Budanitsky and Hirst,120@8evelop more rigor-
ous application-orientated tests rather than collectiegdata required for comparison
against human judgements. Resnik (1995a,b, 1999) testsilarsiy measure against
the senses of semantically related word groups collected fhesauri entries and from
known collections of noun groupings in order to have an @ggilbn-oriented evalua-
tion. However, human judgements are still required for thal#valuation. The results
from the similarity measures are used to disambiguate thrdsvagainst each other,
given the senses available in WordNet. Budanitsky (199€)Budanitsky and Hirst
(2001) set about the problem of evaluation with an alteveaipplication-orientated
approach, this time automatic detection of malapropismsxts. Malapropisms are
spelling mistakes that occur due to confusions made betweents that sound similar,
such as “diary” and “dairy”. Such errors prove difficult totelet, as the spelling of
the mistake is itself correct for another word and is alseroftyntactically appropri-
ate. The evaluation involved adding artificial malapromsnto a corpus, by replacing
words with variations that appear in WordNet. Budanitsk§9@) and Budanitsky and
Hirst (2001) used 500 documents from the Wall Street Jowmgdus, with 1408 arti-
ficially created malapropisms as in Hirst and St-Onge’sinabexperiment (Hirst and
St-Onge, 1998). The results of the similarity measures washaced to boolean values,
related or unrelated, by analysing the scatter graphs peatlby the measures given
the Rubenstein-Goodenough word-pairs. For example, idEmining Figure 4.10,
the chart for the Rubenstein-Goodenough human judgememap is seen between
the similarity values assigned to “magician-oracle” angfe-implement”. Given this
information, similarity values from human judgements ab8were deemed as being
meaning that two words are similar. The similarity measweee also used to detect
malapropisms by testing nouns with other nouns within ai@aer context window.
A noun with no senses related to the senses of words in itewling context win-
dow became a suspected malapropism. If a spelling variafitime suspect word was
found to be related to any of the words in the context windowyas diagnosed as a
malapropism. The results of the evaluation were given msawf precision, recall and
f-measure.

Two tests are performed to evaluate the performance of tweSBSMs with two
different tasks:

e Comparing similarity values against human judgements.
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Rubenstein-Goodenough Human Test Results

Human Similarity Judgement

Word Pair

Figure 4.10: Scatter Chart of Rubenstein and GoodenoughadBimilarity Judge-
ments

The similarity measures are used to produce similarityesfor the word-pairs
from Rubenstein and Goodenough (1965), Miller and Chatl@91) and Resnik
(1999). The results are compared against human judgem&ntsRearson’s and
Spearman’s correlation techniques.

e Disambiguation words against thesaurus entries.

Simple Word Sense Disambiguation (WSD) techniques usingjlegity mea-
sures are used to disambiguate thesaurus entries in orgmrfiarm a more
application-orientated evaluation. Disambiguating hegs entries seems a nat-
ural use for such similarity measures as words in thesaumtugs are already se-
mantically related, therefore considering only semamticrimation should yield
highly precise results. The simple WSD techniques use strgimilarity be-
tween words to assign a sense to each word in a thesaurus ditteysense
assigned is deemed to be an adequate sense for the wordlatet te the whole
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thesaurus entry. The results of the WSD systems are thenareohfp a gold-set
of human classifications for each word.

4.5.1 Human Judgement Comparison

Commonly, researchers have assessed the accuracy ofrgynmiaasures by compar-
ison with results from human judgements. In such evaluafibnman judgements are
taken as a gold standard established by human intuitiontaeooantic similarity, al-
though arguments can be made against such an assumptiartusately there are no
large data sets of human judgements publicly availableMauating semantic similar-
ity measures. The two most commonly used sets are the Refreastd Goodenough
(1965) set, containing 65 word-pairs, and the Miller and i&sa(1991) set, a subset
of 30 word-pairs from the Rubenstein and Goodenough wondhgtar A further set
of human judgements for the Miller and Charles word-pairs lsa found in (Resnik,
1999), although word-pairs with “woodland” were removee da a lack of training
data for the Resnik similarity measure. As these data sets eatlected using peo-
ple with different social backgrounds and at different pési of time, all three sets of
human judgement data are used in the evaluation presenteis ichapter in order to
reduce any unwanted bias that may be present. The wordgraitsted in Appendix
B together with their respective human judgements.

It is interesting to note how the method of collecting dataHoman judgements
differs between the different approaches. Rubenstein amdléhough used 51 under-
graduates split into two groups. Each individual was givehuaiffled deck of 65 slips
of paper with a pair of words on each slip. They were then askexdtder the pieces
of paper from least similar pair to most similar pair. Oncis thas completed, the in-
dividuals assigned similarity values from 0 (no similayity 4 (perfect synonymy) to
each of the word-pairs on the slips of paper. The averageeddithilarity value given
for each word by the human test subjects was then taken teseptrthe human judge-
ment of similarity for the word-pair. Such an approach fertiee individuals to make
definitive choices even when they may be uncertain abowgréifices, and by initially
ordering the word-pairs, some bias may have been introdwctte similarity values
assigned to the word-pairs. The Miller and Charles data astproduced by carefully
selecting 30 of the word-pairs from the Rubenstein-Goodghaollection that repre-
sented word-pairs with high, medium and low levels of sinitja 38 undergraduates
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were then given the word-pairs and asked to give each paitug vapresenting the
similarity of meaning, again within the range of 0 to 4. Therage of the given sim-
ilarities assigned was once again taken as the human judgemesnik approaches
the experiment in a similar way to Miller and Charles using §ame word-pair set
with entries containing “woodland” removed. A group of 1Qrguuter science stu-
dents, both undergraduate and postgraduate, gave judteatsut the similarity of

the word-pairs. Half of the candidates were given the wamispin a random order,

and the other half were given the word-pairs in descendmgagiity order, according

to the similarity judgements giving by Miller and Charlesheltwo tests did not force
people to order the word-pairs before assigning a simyiangasure to them, and this
may have influenced the results.

The evaluation of the SBSMs introduced in this chapter m@slcalculating word-
pair similarity using each of the SBSMs with each of the vasiparameters where
applicable. The final word-pair similarity is defined simijato the Resnik (1995a,
1999) approach, as given by equation 4.23.

WordPairSim(A, B) = max Sim(x,y) (4.23)

z€senses(A),
yEsenses(B)

Using the results produced by each similarity measure, gpaoson is made against
each of the human judgement sets to see how well the resuftdate. This compar-
ison will be made using two different correlation coeffidgnboth giving measures
between -1 (perfect negative correlation), 0 (no correfgtiand 1 (perfect positive
correlation):

e Pearson’s Coefficient

Also known as the product-moment correlation coefficieegmBon’s correlation
coefficient is the most commonly used correlation coefficieFhe coefficient
measures the strength of the linear association betweersatgoof data, and
not the relative ranking of the values within the datasets aAresult, some
correlation tests may look misleadingly low between twatet data sets if their
relationship is not linear, for instance when the distitnubetween the values
is different. Given two data setX andY’, with elementse; € X andy; € Y
where: = 1,..., N, Pearson’s coefficient is estimated using 4.24.
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> (ar — 7)(us — 9)
T ST [P

(4.24)

e Spearman’s Rank Coefficient

This is an example of a non-parametric correlation coefitcieeasure. Such a
coefficient makes no assumption about the relationshipderwalues, such as
distribution, other than the rank of the values within a dsgaa This is often a
better coefficient to consider as it gives a clearer impogssf the possible re-
lationship between two data sets, without allowing theritigtion of the values
to introduce noise into the coefficient. The final functiosiisilar to Pearson’s
coefficient, but uses the relative ranking between valudsahthe values them-
selves. Eachly; € X is used to calculat®;, the rank ofz; within the data set.
For situations where more than one element is allocatedaime sank, a mid-
rank' value is assigned to each instance. The same is done foryeach” to
calculateS;. The resulting function is the linear correlation betwelea tanks,
calculated using 4.25.

S (R~ R)(S; — 5)
r= : — — (4.25)
@(RZ- - RW;(&- —5)2

Some sources use an alternative form of Spearman’s coorglas shown in
4.26
6> (R; — S;)*

=T (4.26)

r=1-—

Given the difficulty of collecting accurate metric valuediimman tests, it may be more
sensible to consider relative ranking of word-pairs, astlaé interest is the accuracy
to which similarity measures order the similarity betweeasravpairs. This latter task
seems natural for a human to perform. However, for a humassigma a similarity

value seems unnatural and forced. Pearson’s coefficiene\evgives a reasonable
estimate of how good the values of the similarity measuresaard this may be of use

IMid-rank = the average of the ranks that would be assignedrémge of values that are equal in
some data set.
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in evaluating their usefulness in further applications.

Previous work has used correlation values between humaeiuents to define an
upper target for the expected performance of a computetesdahique. Resnik (1999)
uses the average correlation over his 10 subjects agairistr Mind Charles results,
ending with an upper target of = 0.88 (only for Pearson’s coefficient). For the
evaluation presented here individual human judgements wer available, therefore
the lowest coefficient between the different human judgedrnests will be used as an
upper target. Using table 4.1, a Pearson’s coefficient aedr@pan’s coefficient of 0.9

Goodenough’| Goodenough'| Miller’
vs. Miller’ vs. Resnik | vs. Resnik
Pearson's 0.968 0.896 0.955
Product-Moment
Spearman’s Rank 0.891 0.944 0.937

Table 4.1: Inter Human Judgement Data Set Correlation

is taken as an upper target for the machine based similaggsnores in this evaluation,
by rounding the lowest results in table 4.1 up to one signififigure.

Pearson and Spearman correlation coefficients are cadulat each similarity
measure and parameter combination tested. These resusimmarised in Figures
4.11,4.12 and 4.13 and more detailed results are presenfgependix B. The charts
show the results for each similarity measure separatedéydtical lines. Note that
for SBS Mg, SBSM, is used with the Wu and Palmer measure for the evaluation. For
each measure, six results are given:

1. Basic use of the similarity measure, denoted usiig “

2. Basic use of the similarity measure, but with normalis=siilts, denoted using

o
3. Layman structures used, denoted usili.

4. Layman structures used with normalised results, dengtieg) “Sk”.
5. Flattened layman structures used, denoted ugig “

6. Flattened layman structures used with normalised iegignoted usingsk”.
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In order to save space, results considering meronyms teawes ot been given, as
they do not affect the result for any of the word-pairs, as modapair from the hu-
man judgement data sets is associated via inherited mesowytmn WordNet. Each
correlation coefficient is statistically significant with< 0.01. These charts show the
effect of using shape(the first 9 SBSM results), and of using shaythe last 9 SBSM
results). In order to evaluate the effect of normalising own information multipliers
(SBSMs; to SBSM-), the normalised results have been arranged next to thai no
normalised counterparts. The charts also show two resarlisaich similarity measure
and parameter combination; Pearson’s coefficients arersioblue and Spearman’s
coefficients are shown in red.

Rubenstein & Goodenough Data—Set Result Summary
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Figure 4.11: Pearson’s and Spearman’s Coefficients for Raibm and Goodenough
(1965) Word-Pairs
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Miller & Charles Data—Set Result Summary
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Figure 4.12: Pearson’s and Spearman’s Coefficients foreMdhd Charles (1991)
Word-Pairs

Overall Measure Performance

Tables 4.2, 4.3 and 4.4 give the ranks in ascending orden, frto 16, of the best result

for each measure, without considering any parameterssastage. From these tables
it is possible to see which measures give the best results edrapared to each other.
The tables show that linear correlation techniques, suéteasson’s coefficient, may

not present the most reliable evaluation for objectivelynparing the performance of

similarity measures. Pearson’s correlation coefficieati$eto discounting measures
that produce improved ordering of similarity between wpairs. The results show

that shape produces better values for SBSMs based on the ratio of gesstian be-
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Resnik Data—Set Result Summary
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Figure 4.13: Pearson’s and Spearman’s Coefficients foriR€s899) Word-Pairs

tween two senses than using shape a statistical significance of< 0.01, measured
using Wilcoxon’s matched-pairs signed-ranks test. Howevee SBSMs produce
interesting results when only considering the relativeeardy of word-pairs. For in-
stance, inherent in the design 8855 is the fact that the shape measure of infor-
mation common to two word senses has a large influence in thlenfiéasure, and that
the distribution of the similarity values is likely to be ¢gidramatic. It is interesting
to see that this type of similarity measure consistentlydpoes a good ordering of

word-pairs.

The effect of normalising the multipliers &fBSM,, SBSM; and SBSM, sees
an improvement in most cases. This implies that measteSMN,, SBSM; and
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Rubenstein Pearson’s Spearman’s
& Correlation Correlation

Goodenough Rank | Coefficient| Rank | Coefficient
SBSMy 12 0.69 18 0.70
SBSMy2 6 0.82 13 0.78
SBSMys 17 0.35 7 0.80
SBSMy4 10 0.77 17 0.73
SBSMs 2 0.87 8 0.80
SBSMe 8 0.81 9 0.80
SBSMy7 7 0.82 14 0.77
SBSMys 1 0.87 11 0.78
SBSMyg 11 0.70 6 0.80
SBSMq 16 0.52 16 0.73
SBSMo 9 0.80 12 0.78
SBSM3 15 0.64 15 0.76
SBSM 4 18 0.38 10 0.79
SBSMs 5 0.83 4 0.81
SBSM¢ 14 0.66 1 0.81
SBSM, 7 13 0.67 3 0.81
SBSM,g 3 0.85 5 0.81
SBSM g 4 0.84 2 0.81

Table 4.2: SBSM Summary of Evaluation using Rubenstein amoldénough (1965)
Data Set

Miller & Pearsop’s Spearmgn’s
Charles Correlation Correlation
Rank | Coefficient| Rank | Coefficient
SBSMy1 11 0.73 18 0.68
SBSMyo 5 0.85 10 0.79
SBSMys 17 0.47 5 0.80
SBSMyy 10 0.80 16 0.75
SBSMys 2 0.87 9 0.79
SBSMyg 6 0.85 1 0.84
SBSM~; 4 0.85 15 0.77
SBSMysg 1 0.88 13 0.79
SBSMyg 15 0.67 8 0.80
SBSM 16 0.52 17 0.73
SBSM o 8 0.82 12 0.79
SBSM3 14 0.70 6 0.80
SBSM 4 18 0.47 11 0.79
SBSMs5 9 0.82 14 0.78
SBSM ¢ 12 0.71 2 0.83
SBSM 13 0.70 4 0.82
SBSM,g 3 0.86 7 0.80
SBSMg 7 0.84 3 0.82

Table 4.3: SBSM Summary of Evaluation using Miller and Césu(1991) Data Set
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Pearson’s Spearman’s
Resnik Correlation Correlation

Rank | Coefficient| Rank | Coefficient
SBSMy1 11 0.75 17 0.78
SBSMyo 3 0.90 11 0.85
SBSMys 17 0.53 3 0.87
SBSMy4 10 0.78 18 0.77
SBSMys 2 0.91 8 0.86
SBSMyg 4 0.88 1 0.89
SBSMy~ 5 0.88 5 0.86
SBSMysg 1 0.91 7 0.86
SBSMyg 15 0.70 12 0.84
SBSM 4 16 0.58 16 0.80
SBSMo 7 0.84 15 0.83
SBSMys 12 0.73 14 0.83
SBSM 4 18 0.52 4 0.87
SBSMys5 9 0.82 9 0.85
SBSM¢ 13 0.71 2 0.88
SBSM~; 14 0.70 6 0.86
SBSMg 6 0.87 10 0.85
SBSM g 8 0.84 13 0.84

Table 4.4: SBSM Summary of Evaluation using Resnik (1993p[3et

SBSM, need no longer be considered as they are consistently irgitows BS Ms,
SBSMgandSBSM;.

Overall SBSM Performance Summary

In summary, SBSMs based on shap&BSMks, generally produce better values than
SBSMs based on shapeSBSM+s. Also, all SBSMs that adjustB.S M; with infor-
mation about the semantics common between two senses ienfir@vanking order of
the word-pairs.

It seems that measur®$3.5SM,, SBSM,~, andSBS M, can be disregarded due to
their poor performance. One may also choose to ignore mesSutS M,, SBSM;
and SBSM, as their results are regularly improved by normalisatiothefr multi-
pliers. This leaves measuréBSM;, SBSMg, SBSM,, and SBSM;g for further
consideration.
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Similarity Measure Parameter Evaluation

The effects that the parameters have on each measure arevalmated. Only mea-
sures that thus far are deemed to produce reasonable msuttsnsidered here. Table
4.5 shows the relative effect that each parameter has otasimimeasuré The re-
sults were created by counting the number of instances wheggticular parameter
improved results from the SBSMs. If only 50% of the instanwese improved, this
means overall the parameter did not improve results. Fsrrédason, two results are
shown in the table; Firstly, the number of improved instariseshown, followed by the
overall improvement shown by using the parameter, caledlasing equation 4.27.

— (m/2)

. n
improvement=
(m/2)

wheren is the number of improved instances, ands the number of results consid-
ered.

% 100 (4.27)

Pearson’s Spearman’s
Correlation Correlation
Results improved by 35 of 45 40 of 45

normalisation of the final
values

Results improved by
considering layman 20 of 24 19 of 24
structures instead of the 67% Improvement 58% Improvement
full WordNet 1.6 structure
Results improved by 12 of 24

56% Improvement 78% Improvement

considering flattened layman No Significant 14 of 24
structures instead of the Improvement 17% Improvement
full WordNet 1.6 structure

Results improved by

considering flattened layman 3of21 6 of 21
structures instead of non- 71% Decline 43% Decline

flattened layman structures

Table 4.5: SBSM Parameter Evaluation Summary

The results in the top three rows of table 4.5 show that allpgy@meters tested

20nly where parameters are applicable.
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have positive effects over the basic similarity measuresrnidlisation of the final
values has a consistent positive effect with most of the onreasand in combination
with other parameters. Layman structures also improvdtsesspecially when us-
ing non-flattened layman structures. The last row of talBesdiggests that flattened
layman structures have no significant advantage over nteffled layman structures,
however in some cases the correlation difference betweetwih different techniques
for the same similarity measure is very close, suggestiagttiere is little significant
advantage for either technique in such cases. Furthersis#@yneeded to determine if
flattened layman structures have any advantages.

Analysis of Scatter Graphs

Appendix B presents the scatter graphs produced by eacheddelected SBSMs.
These scatter graphs indicate how well these measuresperéonpared to each other,
and whether they produce the desired characteristics. dlseygive information about
which word-pairs are constantly assigned poor similamtytey may be investigated
further.

The spread of values f&tBS Ms, SBSM.s andS BS Mg are quite tight and show
a reasonably linear association to the human judgementseVéo, the spread of val-
ues forSBSM,q and SBSM, - is more sparse. The result of this sparseness in the
scatter graphs can, in part, account for the lower Pearsamiglation. By using a
function of the values produced from the similarity measuthe distribution of the
values in the scatter graphs may be improved. Figure 4. sstiee results of raising
the results ofSBS M, 7, using layman structures and normalised results, to theepow
of 15. The values of BSM ; are raised by a power as the original distribution shows
a logarithmic association to the human judgement values.pblwer of 15 was chosen
by considering the resulting line of best fit, produced udingar regression for the
values, to more closely match the line of best fit for the scagtaph produced by the
human values against word-pair. A line of best fit has beee@dtulthe figure to show
the resulting trend for the data.

The result of raising the results fro$\BSM,; by a power of 15 improves the
Pearson correlation of the results to 0.85. However, thie carrelation is not changed
as the relative rank order of the similarity values remamsstant, as intended. This
raises the question of the suitability of using Pearsonfsetation results to evaluate
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SBSM+7 using Layman Structures and Normalised Results SBSM+7 using Layman Structures and Modified Normalised Results
T T 7 T T 7

L L L x L x L
0 1 2 3 4 0 1 2 3 4

Human Similarity Judgement Human Similarity Judgement

Figure 4.14: Result of raising similarity values fra$i3.S M, ;

the overall performance of similarity measures, espgcgillen the abstract nature of
the task for a human to assign a similarity value to a word-far a human to order
word-pairs according to similarity seems natural. Howgetlee subjective nature of
assigning similarity values may make these values lesatdaitor objective evaluation
of similarity measures. For instance, what does a simylaatue of 1.5 in a scale of O
to 4 mean?

The SBSMs presented in this chapter were created by comgiddifferent ways
of using information within a lexical taxonomy to evaluate#arity between nouns.
However, more consideration can be made about the valudsiged by the SBSMs.
Such a technique of adjusting values to improve Pearsomi®lation with human
judgements can be used to fine tune the values produced byB®IS however this
IS unnecessary as this does not necessarily change therpanice on the specific
tasks for which these measures may be used. Indeed, themadplist the similarity
values is dependant on the task for which the measures wilkbd. For instance, the
WSD system presented in chapter 6 uses a similarity measutetéct if two nouns
are similar to each other, and therefore only requires adamolesult calculated by
detecting if the similarity between two nouns is above a efieed threshold. Whilst
the threshold is dependant on the values produced by theunegabanging the initial
distribution of the values will not change the performantthe measures in this case,
as long as the threshold used is also changed accordingly.

In general, where the SBSMs consistently give poor sintylaralues for a word-
pair, it can be seen that the values assigned are generaflingstic (i.e. low). Specific
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word-pairs that consistently show poor results can be asdds explain the poor val-
ues. The information in WordNet's lexical taxonomy used bg SBSMs to assess
the similarity for each of the word-pairs has been analysedetermine if sufficient
information is available to adequately calculate simiyar if poor results can be ex-
plained by considering potential missing information. Tokowing list presents the
word-pairs that consistently show poor values for all gel@SBSMs, and the most
likely reasons that these poor value assignments arosedaegdo WordNet's tax-
onomy. If reasons are left empty, no obvious answer was faahely considering
WordNet's taxonomy:

Forest, Graveyard There is no information that “forest” is a place or locationa
similar way to “graveyard”, therefore the MIS between the tmords is “object”.

Food, Rooster There is no information in the hypernym taxonomy of roosteatt
rooster is a kind of food. However, the meronym structurerémster makes
reference to rooster being part “chicken meat”, which imtoas food in its hy-
pernym structure. Therefore to make use of this relatiomtéasures would also
need to make use of the hypernym structures of all meronyrasvafrd sense.

Cemetery, Woodland This situation is identical to forest and woodland, whemaee
tery is a synonym of graveyard, and woodland is a synonym evithof the two
senses of forest according to WordNet 1.6.

Shore, VoyageAn association between shore and voyage would require derman
lations other than hypernymy and meronymy.

Furnace, Implement

Car, Journey The similarity between “car” and “journey” comes for infoation about
how both concepts relate to each other in the real word,jperfiey#1” requires
“transport#1” and “car#1” is a “transport#1” via its hypgm structure therefore
the two are related. However, this information is not coesed for semantic
similarity.

Cemetery, Mound Again, the relations that make an association between thd-wo
pair possible are not available, therefore the similargsigned is low.

Sage, Wizard

75



4.5 Evaluating Similarity Measures

Oracle, Sage

Furnace, Stove The description in WordNet for furnace states that a furnaeeheat-
ing device; however this information is not reflected in faca’s hypernym struc-
ture.

Comparison with other Similarity Measures

A number of existing similarity measures have been testeéld thie word-pairs used
for this evaluation. Budanitsky (1999) gives results forrbikrity measures using the
Rubenstein and Goodenough (1965) and the Miller and Ch@r®xl) word-pairs:

e St-Onge (1995); Hirst and St-Onge (1998)
e Jiang and Conrath (1997)

e Leacock and Chodorow (1998)

e Lin (1998a, 1997, 1998b,c)

e Resnik (1995a,b, 1999)

Using the results presented by Budanitsky, and resultsieax for the Wu and Palmer
(1994) similarity measure, Pearson’s and Spearman’slati;e coefficients are cal-
culated for each of the algorithms and compared to the seetiliBS M, 5, SBS Mg
andSBS M, with layman structures and normalised results. The Jiamgr&h mea-
sure produces negative correlation as it measures sendéstiace as oppose to simi-
larity. The results are shown in Table 4.6. From the currestlts, the chosen SBSMs
correlate more closely with human results using both Peaaso Spearman correla-
tion techniques.

Human Judgement Comparison Conclusions

Whist the product-moment coefficient f6IB3.S M, 5 andSBS Mg comes close to the
upper target of 0.9, there is still room for improvement foe similarity values pro-
duced bySBSM,¢. In general, values from the SBSMs are reasonably good. How-
ever, it seems that the order in which the SBSMs rank the \aits contains some
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L Rubenstein & Miller & .
Sl\;lmllarlty Goodenough Charles Resnik

easure

Pearson Spearmar Pearson Spearmar Pearson Spearman

Wuk 0.827 0.805 0.810 0.786 0.806 0.824
Palmer
Hirst & 0.786| 0767| 0.744| 0735 0775 0.793
St—0Onge
Jiang & -0.781| -0.712| -0.850| -0.813| -0.861| -0.840
Conrath
Leacock &1 g g3 0.783| 0.816 0.766| 0.829 0.818
Chodorow
Lin 0.819 0.777 0.829 0.782 0.860 0.840
Resnik 0.778 0.753| 0.774 0.749| 0.803 0.806
SBSMys 0.867 0.799| 0.873 0.782| 0.908 0.857
SBSMyg 0.808 0.799 0.839 0.833 0.884 0.894
SBSMyg 0.864 0.783 0.879 0.788 0.914 0.858

Table 4.6: Comparison Between Existing Similarity Measwaed the Best SBSMs

errors. The SBSMs show a significant improvement over otkistieg similarity mea-
sures. Results for all of the human judgement comparisciydmg all scatter graphs,
are contained in Appendix B.

4.5.2 Disambiguation Words Against Thesaurus Entries

The second evaluation of the SBSMs is performed using amytstelisambiguate the
nouns contained in thesaurus entries. This provides a npplécation-oriented ap-
proach to evaluating similarity measures. The applicadithesaurus entry labelling
was chosen as words in thesaurus entries are already seaflgngrouped by idea
(Rubenstein and Goodenough, 1965) and therefore providetuaal platform to test
similarity measures. A number of simple WSD algorithms astdd using the SBSMs
to disambiguate words contained in the entries of the Woytlsthesaurus. The best
combinations of WSD algorithm and SBSM are then comparethageesults from
Resnik's WSD approach (Resnik, 1995a,b, 1999) on the Woyttsthesaurus. The
evaluation is split into the following sections:

e Developing adequate WSD algorithms.
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e Producing test data.

e Evaluation of the algorithms together with existing simtlameasures and the
SBSMs.

e Comparing best results against the results provided by Svoyth.

WSD Algorithms for Labelling Thesaurus Entries

For the task of disambiguating the senses of nouns in thesauatries, an algorithm is
required which accepts a bag of nouns as input, and retuistoh $enses per word and
the likelihood that each sense is correct for the given gaduqouns. Each of the WSD
algorithms presented below only makes use of semanticrirdton to disambiguate
noun groupings. Their basis is that senses of a word sindlaehses of other words
in the word group are likely to be the best candidates for rolosely relating it to the
word group as a whole. Therefore the algorithms use thetsesiusimilarity measures
to increase support for senses of the nouns in the noun grdtpdast two algorithms
attempt to improve results further by selectively incragssupport only for certain
senses.

Two baseline algorithms are considered for the thesauhgdlilag tests, selecting
the first sense of words and the Resnik algorithm for disagdiigg noun groupings
(Resnik, 1995a,b, 1999). Three new WSD algorithms are assidered:

e A Greedy WSD algorithm is produced by calculating the sumhefdimilarity
for each word sense in the noun-group against all other wemdes in the noun
group. This sum is then normalised using the sum of the siityilaf each word
sense of a word, against all other word senses in the noupgide algorithm
selects the sense for each word with the highest resultihge\as the correct
sense for the word according to the noun group.

e The Exclusive Greedy algorithm is similar to the basic Gyegldorithm. How-
ever, for all word senses only similarity values greatentharedetermined pro-
portion of the highest similarity value assigned per wondsgeare considered.
The changes are made to avoid increasing support for the séasword when
the similarity detected between pairs is low in comparigotié highest similar-
ity detected for another of the word’s senses.

78



4.5 Evaluating Similarity Measures

e Again, the ‘Related Senses Only’ algorithm is similar to Gweedy algorithm.
However, for all word senses only similarity values greatean a specified
threshold are considered. The threshold is selected satharly word-pair with
a similarity above the threshold will be classed as reladéed, anything below
the threshold is considered sufficiently different not toskenantically related.
Therefore the algorithm only increases support when twalveense pairs are
significantly similar.

The thresholds for each similarity measure are calculasétgua genetic algo-
rithm, trained with manually tagged Wordsmyth entries foe tandomly se-
lected, reasonably polysemous woftar, Cat, Drink, Key, Line, Man andRe-
port, that maximises accuracy, where accuracy is calculated) 4sp8.

Accuracy = (C + D)/N (4.28)

whereC' is the number of correct word sense classificatidhss the number of
words correctly left unclassified and is the number of words evaluated.

Appendix C gives the pseudo code for each of these new WSDithligs. The fol-
lowing section describes how the noun groupings were delieftom the Wordsmyth
entries.

Test Data

Test data is collected from the Wordsmyth thesaurus. Notrmresrwere selected from
arandomly generated set of 214 nouns. From these 214 naueseatl isolated nouns
are extracted to form the noun group for the thesaurus e@myy entries containing
more than one noun are used for the test, reducing the nuripesio words to 62,
producing a test set of 1365 nouns in 186 thesaurus entrieseXtracted nouns in the
noun groups were manually sense labelled with all apples#drdNet senses for the
thesaurus entries to which they belong. When no applicarisesexists in WordNet,
no senses were given but the word is still considered duhiagevaluation. A copy of
the human classification is presented in Appendix D.

Finally, the results from the algorithms presented herecampared to results of
Resnik’s algorithm (Resnik, 1999) for disambiguating nguoupings. This WSD al-
gorithm makes use of Resnik’s information content basedlaiity measure (Resnik,
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1995a,b, 1999), created by bootstrapping statisticalriné&ion to WordNet’s lexi-
cal taxonomy. This evaluation uses the Wordsmyth thesaummisining experimental
links to WordNet calculated using the Resnik WSD algoritidaté supplied by Dr.
Robert Parks via personal communication). The data usechut@snatically gener-
ated and has thus far not been formally evaluated againsahynigements. Also,
not all nouns for each thesaurus entry used are labelledMotidNet senses, although
given the description of Resnik’s technique it is assumatdh nouns in the thesaurus
entry were used as input for the WSD algorithm. This is likgiyen the number of
examples where only one noun is labelled, due to the facthieaVSD algorithm he
presents requires at least one pair of nouns.

Evaluation of Noun Group WSD Techniques

The evaluation of the SBSMs is performed by testing the bBSiNEs with each of the
WSD algorithms discussed earlier. Each test produces a&unhbtatistics evaluating
different aspects of the system:

e Accuracy

The overall accuracy of a system evaluates the percentamerett sense classi-
fications and correctly unlabelled words over all words i tisst. The equation
is given in 4.29.

Accuracy = (C + D)/N (4.29)

where(C' is the number of correct word sense classificatidnss the number of
words correctly left unclassified and is the number of words evaluated.

e Precision

Precision evaluates the percentage of correct decisiods imaa classifier over
all classifications made by the classifier. The equationvisrgin 4.30.

Precision = C/Z (4.30)

whereC is the number of correct word sense classificationsaimlthe number
of words classified.

o Recall
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Recall evaluates the ratio of test words with adequate sens@/ordNet cor-
rectly disambiguated by a classifier, as given in 4.31.

Recall = C/M (4.32)

whereC' is the number of correct word sense classifications/nd the number
of words with at least one adequate sense according to WordNe
e No Sense Accuracy

The number of words with no sense correctly left unlabellgdhe classifier is
evaluated to see how well systems can detect when no adesprege exists in
WordNet. This is of interest because using information abaiword senses for
a word group may introduce relationships between words aohally consid-
ered by humans for particular thesaurus entries. The exuistgiven in 4.32.

NoSenseAccuracy = D/(N — M) (4.32)

whereD is the number of words correctly left unclassified,is the number of
words evaluated angdl/ is the number of words with at least one adequate sense
according to WordNet.

e Average number of senses considered

Lastly the average number of senses considered by a systéimtierest. Senses
considered by a system are defined as the senses given sgigater than zero.
Note that only the best scoring sense is selected. The equatgiven in 4.33.

Ave.SensesConsidered = S/W (4.33)

wheres is the total number of word senses considered by the clasmsiféd is
the number of words classified by the classifier.

The tests are performed using SBSMs and the Wu and Palméastynmeasure with
the following parameters:

e shape

¢ Non-flattened Layman Taxonomies
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e Normalised Measures
e Meronyms are not considered

Tables 4.7, 4.8, 4.9, 4.10 and 4.11 present the results cévihieiation statistics
grouped by WSD algorithm. Table 4.7 and results using the MdRalmer similarity
measure are used as baselines.

Accuracy| Precision| Recall | No Sense Ave N° Senses
57.87% | 57.87% | 64.91% 0% 1

Table 4.7: Results for Wordsmyth Thesaurus Labelling Eatabm for Selecting the
First Sense for each Word

Measure | Accuracy| Precision| Recall | No Sensg Ave N° Senses
Wu 83.41% | 82.88% | 90.11%| 28.31% 2.32
& Palmer
SBSM,; | 83.21% | 82.68% | 89.89%| 28.31% 3.37
SBSM,o | 83.47% | 82.95% | 90.18%| 28.31% 2.55
SBSM,3 | 81.97% | 81.40% | 88.50%| 28.31% 2.38
SBSM,, | 82.95% | 82.41% | 89.6% | 28.31% 2.52
SBSM,s | 84.32% | 83.83% | 91.14%| 28.31% 2.52
SBSM,s | 83.41% | 82.88% | 90.11%| 28.31% 2.47
SBSM,,; | 83.47% | 82.95% | 90.18%| 28.31% 2.50
SBSMs | 84.85% | 84.37% | 91.72%| 28.31% 2.55
SBSM,y | 80.60% | 79.99% | 86.96%| 28.31% 2.93

Table 4.8: Results for Wordsmyth Thesaurus Labelling Eatadin using the Resnik
WSD Algorithm

82



4.5 Evaluating Similarity Measures

Measure | Accuracy| Precision| Recall | No Sensg Ave N° Senses
Wu 81.06% | 80.76% | 87.03%| 31.93% 3.36
& Palmer
SBSM,; | 75.18% | 74.39% | 80.88%| 28.31% 3.70
SBSM,, | 84.00% | 83.82% | 90.33%| 31.93% 3.36
SBSM,s | 82.30% | 82.05% | 88.42%| 31.93% 3.36
SBSM,, | 81.97% | 81.71% | 88.06%| 31.93% 3.36
SBSM,s | 84.39% | 84.23% | 90.77%| 31.93% 3.36
SBSM,s | 82.50% | 82.26% | 88.64%| 31.93% 3.36
SBSM,, | 82.04% | 81.78% | 88.13%| 31.93% 3.36
SBSMys | 84.65% | 84.5% | 91.06%| 31.93% 3.36
SBSM,y | 80.60% | 79.99% | 86.96%| 28.31% 3.70

Table 4.9: Results for Wordsmyth Thesaurus Labelling Eatéd using the Greedy
WSD Algorithm

Measure | Accuracy| Precision| Recall | No Sense Ave N° Senses
Wu 84.91% | 84.93% | 90.40%| 39.76% 1.76
& Palmer
SBSM,, | 78.58% | 77.84% | 84.40%| 30.72% 2.87
SBSM,, | 80.08% | 80.11% | 84.98%| 39.76% 1.35
SBSMys | 82.69% | 82.56% | 87.77%| 40.96% 1.43
SBSMy, | 81.91% | 81.98% | 86.96%| 40.36% 1.55
SBSMys | 85.76% | 85.86% | 91.21%| 40.96% 1.62
SBSM,s | 84.39% | 84.60% | 89.74%| 40.36% 1.92
SBSM,; | 83.41% | 83.49% | 88.57%| 40.96% 1.87
SBSM,s | 85.11% | 85.17% | 90.48%| 40.96% 1.57
SBSMyg | 78.58% | 77.95% | 84.69%| 28.31% 1.30

Table 4.10: Results for Wordsmyth Thesaurus Labelling Eat@dn using the Exclu-
sive Greedy WSD Algorithm
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Measure | Accuracy| Precision| Recall | No Sense Ave N° Senses
Wu ' 1 g3.08% | 86.76% | 85.42%| 63.86% 1.70
& Palmer
SBSM,, | 82.36% | 87.18% | 83.66%| 71.69% 1.58
SBSM,, | 84.65% | 87.31% | 87.69%| 59.64% 1.90
SBSMy3 | 11.69% | 72.22% | 0.95% | 100.00% 0.01
SBSMy, | 79.75% | 85.00% | 81.39%| 66.27% 1.56
SBSMs | 85.76% | 87.63% | 89.30%| 56.63% 2.01
SBSM,s | 82.95% | 86.39% | 86.01%| 57.83% 1.81
SBSM,,; | 81.65% | 85.90% | 83.88%| 63.25% 1.70
SBSM,s | 84.78% | 85.30% | 90.11%| 40.96% 2.71
SBSMye | 80.86% | 81.68% | 84.91%| 47.59% 2.16

Table 4.11: Results for Wordsmyth Thesaurus Labelling Eat&dn using the Related
Senses Only WSD Algorithm

Interpretation of Results

The results for the tests show much less variation in queday the human judgement
tests presented previously, indicating that in generalltesre not greatly affected
by the similarity measure used. The only exception to this isifor SBS M, 3 with

the WSD algorithm that only considers related senseB.S M., a hybrid measure
making use ofSBSM,, marginally produces the best results using the Resnik and
Greedy WSD algorithms. Overalf BSM, 5 consistently produces the best results
with the two selective WSD algorithms.

Selecting the best WSD algorithm from the tests is not agytifarward as select-
ing the best similarity measure as a tie exists between tokiEixe Greedy algorithm
and the Related Senses algorithm when usintp M, 5. Sorting the results of all al-
gorithms and measures by precision shows that the RelateseSalgorithm regularly
produces more precise results, and as such more confidenbe pé&aced on the results
of this algorithm. The Related Senses WSD algorithm als@idens less senses per
word on average, therefore the Related Senses WSD algasiihbe used to compare
results against other systems.
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Comparison with Wordsmyth Test WordNet Links

The results from the previous evaluation are compared tadberacy of Wordsmyth'’s
experimental links to WordNet (provided by Dr. Robert Parkspersonal communi-
cation). These experimental links were created using tefum Resnik’s Informa-
tion Content based similarity measure and WSD algorithnmmfaun groups (Resnik,
1995a,b, 1999). In order to compare the results, the expetanlinks in the same
Wordsmyth thesaurus entries used in the previous evatuatgoe extracted and com-
pared against the human classifications. Typically, ondyithks calculated for nouns
in the ‘'SYN’ section of a thesaurus entry are given in the gaitavided, although it
is assumed that the inputs to the WSD algorithm follow a simélpproach to that
used during the evaluation presented in the previous sectie only a small number
of links are given per thesaurus entry, precision and reealllts are recalculated for
the results obtained from the related senses algorithm $\itl§ M5 considering the
same nouns. The results of both WSD algorithms are givenbie #12. The poor

Precision| Recall
Wordsmyth | g4 4404 | 71.26%
Test Links
Related Senses
) .28% .94%
with SBSM,, | co-28% | 90.94%

Table 4.12: WSD Comparison with Wordsmyth Experimentakkito WordNet

recall values for the Wordsmyth experimental links can besfidy explained by a lack
of training data for the information based similarity measwalthough no evidence is
available for this. Comparing the two approaches showsusiag WordNet’s taxon-

omy with S BS M, 5 and the Related Sense WSD algorithm significantly improves o
the current Wordsmyth test links.

4.6 Further Work

A number of areas are considered for extending the work pteddn this chapter.
These can be grouped into four categories:

1. Improvement of evaluation techniques.
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2. Work to improve the similarity values assigned by the SBSM

3. Evaluation of the effect of considering additional imfa@tion from WordNet,
for instance evaluating to what extend considering merangmay assist in the
calculation of semantic similarity.

4. Complete Wordsmyth links to WordNet using the techniquesented in this
chapter.

4.6.1 Improving Evaluation Techniques

Currently the data available to compare algorithm resuiis numan judgements only
has a maximum of 65 human judgements. Whilst it can be shoatnctbrrelations
using the existing data sets are statistically significduet current number of examples
may give biased results. Using a larger set of human judgenters a number of
features that are beneficial to making a more objective test:

e An increased number of word-pairs will make distinctionsizen the similar-
ity of word-pairs harder to judge by humans, especially ifrenaord-pairs are
deemed similar rather than dissimilar.

e More word-pairs will reduce bias potentially introducectinrent tests.

e A larger number of human judgements to compare with will picda better
correlation estimate giving a more objective result.

4.6.2 Improving the Similarity Values Assigned by SBSMs

The current SBSMs have been created by considering how te msdk of a lexical
taxonomy for evaluating semantic similarity between noudi@wvever, further consid-
eration can be given to the way in which similarity valuesl w# distributed across
noun pairs of varying similarity (for instance, low, mediamd high similarity accord-
ing to the human judgement data sets). Section 4.5.1 givatharrcrude example of
how to improve the distribution of values produced $85 M, . However, in order
to fine tune the values produced by the SBSMs further invatstig is required. The
example in section 4.5.1 improves results by adjustingasftomS BS M ; such that
the lines of best fit produced by linear regression techrsigquethe values produced
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closer match the line of best fit for the human value judgesagainst word-pair rank.
This assumes that the line of best fit is linear between siityilgalue and similarity
rank.

For further fine-tuning of the SBSMs, a non-linear line oftiféshould be calcu-
lated for the human similarity values with the Resnik (198&a set against word-pair
rank. The Resnik data set is chosen for this task as it is tladleshdata set and there-
fore results with the Rubenstein and Goodenough (1965) lendiiller and Charles
(1991) data sets should still be objective. This ensuresthigatechnique does not fit
results to a particular test, thus artificially improvingués. The values for all SBSMs
should then be adjusted such that the similarity valuesutatied for the Resnik data
set produce a line of best fit closely matching the human lirest fit. This will mean
that the values produced by the SBMSs across differentmgnkord-pairs will more
closely match the distribution of the values assigned bydmsn The effect of this
adjustment should then be measured using the RubensteiGandienough (1965)
and Miller and Charles (1991) data sets, and also usingGgtn-oriented evalua-
tion techniques. It is assumed that the resulting Pearsm@fficients will be more
comparable across the different SBSMs after such a change wiould make the
Spearman’s rank coefficient a more objective test as it iafietted by the adjustment
of the values. If this holds true, and if the adjustments malliést considering human
judgements improve results for other applications, sudthrtique will be applicable
for similarity measures as a way of fine-tuning their results

4.6.3 Considering and Evaluating Further WordNet Relatiors for
Semantic Similarity Measures

Currently, the SBSMs can use the WordNet meronymy relatipssto assist in the
calculation of similarity between two noun senses. Howetdee to the execution
times for WordNet to collect meronymy information for a noaimd the experiments
used, this feature of the SBSMs remains to be evaluatedat8aitechniques are firstly
required to increase the speed of searching for meronyms.

Other WordNet relationships should also be consideredhdurto evaluate their
usefulness in calculating semantic similarity. Howevareanust be taken in how such
relationships are applied as work has shown that usinglatisaships in an unguided
way can produce worse results (St-Onge, 1995; Hirst andnge(1998). An example
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of a further relationship being considered is to use hypasgf a noun’s meronyms
as a source of information from which to calculate semaitiglarity.

4.6.4 Complete Wordsmyth Evaluation

Automatically disambiguating all noun entries in Wordsmyioes not pose a large
amount of extra work. However, the human disambiguatiorhefwords necessary
to produce precision, recall and accuracy results for thidicegtion of the automatic

process requires additional time.

4.7 Summary

This chapter has introduced a number of ideas fundamentsiltidarity measures
based on the general shape of lexical taxonomies (SBSMs)g ¥§ordNet as the
source for the required taxonomies.

Initial tests comparing the new SBSMs to human judgememns gasults which
compare well with other existing similarity measures. Hearelarger number of hu-
man judgements should be obtained in order to further satigta this evaluation. It
is also shown that using Pearson’s Product Moment Coeffioiey not be the best
correlation coefficient to compare different similarity aseres as the technique is too
sensitive to the values of similarity assigned. It is argtheat the relative ranking of
word-pairs according to similarity is of more interest atuea from similarity mea-
sures can be adjusted after they are calculated, and betteusaman assignment of
values is subjective in its nature. Therefore correlatismg Spearman’s Rank Co-
efficient may be more suitable for comparing different measu This is especially
true when values from measures are not normalised betwesamga of values. The
evaluations show that SBSMs come close to matching huméorpgnce and as such
they show an improvement over current state-of-the-arisomes at simulating human
decisions about similarity between words.

A final more application-orientated approach to evaluativege SBSMs is used to
evaluate the similarity measures with a number of simple Vegrithms for use with
noun groups. The evaluation uses nouns contained withidl¥Woyth thesaurus entries
to test the disambiguation performance of the different WiRiprithms and SBSMs.
The best results are also compared with a collection of @xgertal links created using
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Resnik’s Information Based similarity measure and WSD @ilgm (Resnik, 1995a,b,
1999), summarised in table 4.13. The results of the final @epn show a marked

Precision| Recall
Wordsmyth | g4 1404 | 71.26%
Test Links
Related Senses 0 0
with SBSM,.. 88.28% | 90.94%

Table 4.13: WSD Comparison with Wordsmyth Experimentakkito WordNet

improvement over the information based approach by usin@aMswith a WSD
algorithm considering only related senses of words forsifgisig the senses of nouns
in Wordsmyth thesaurus entries.
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Chapter 5

Introduction to Word Sense
Disambiguation

The field of Word Sense Disambiguation (WSD) has been of denable interest since
the early stages of natural language processing (NLP) fide/&ronis, 1998). WSD
aims to provide a sub-component, in general for other NLRiegapons, to automati-
cally relate words in text with definitions according to orremmre lexical resources.
Once a WSD system determines a single word sense for a watdytind is said to be
sense tagged, or sense labelled. Thus, most researchWwg&isas an “intermediate
task” (Wilks and Stevenson, 1996; Gonzalo et al., 2003) mestarger NLP process.

Research on WSD, given the length of time it has been undertdias had lim-
ited success. WSD has been considered an Al-complete prdi@ele et al., 1993),
meaning that it presupposes a solution to the “strong Al lerab, i.e. the simula-
tion of human intelligence, and therefore can only be solwece all other difficult
problems in Al have been tackled. Improvement in the reprtesien of knowledge,
especially with the emergence of recent semantic netwarliscarpora of sense la-
belled text, such as WordNet and its associated corponaltedsn WSD becoming a
more tractable problem. This is illustrated by the increaagbe number of techniques
since the 1990s when public resources such as WordNet betangeavailable. In-
deed, the field of WSD has also grown in prominence, and “ipufeatly cited as one
of the most important problems in NLP research today” (Id& daronis, 1998).

This chapter initially describes how WSD helps other NLFks$as Section 5.2
presents a brief history of work particularly important t&®, giving particular promi-
nence to some of the most influential techniques. A numbexabiitiques of interest in
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relation to the work described in chapter 6 are introduceskution 5.3. Finally, given
the increased activity during the 1990s in the field of WSDolal gtandard evaluation
framework called SENSEVAL was introduced in order to hekeachers objectively
compare results from different systems in a standard aedepay. Section 5.4 gives
details of the various SENSEVAL conferences, showing hoaluation of WSD is
performed.

5.1 How WSD can Help other WSD Problems?

The disambiguation of word meanings in texts is believedtiubdamental to improve
results within the following applications of NLP:

e Machine Translation (MT)

Information Retrieval (IR)

Content and Thematic analysis

Parsing

Speech Processing

Early research within these fields, particularly with MTsuéted in the emergence of
WSD, although for a long period the majority of the WSD reshawras performed

as part of larger projects. Within each field, the polysemwofds is seen as one of
the major factors influencing the results from the technsguglemented. This early
work was able to place restrictions on domains and granylafithe resources used,
and in some cases quite accurate results were produced.

5.1.1 Machine Translation (MT)

A central issue in translation is selecting the correct woratarget language to reflect
the intended meaning in the source language. This is a coasegq of different sense
distributions of words in the source language to those ofalget language, and gives
rise to various definitions of a word being realised by ddfdgrwords in the target lan-

guage, for instance the Portuguese word “sentido” can iseddy any of “meaning”,
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“sense”, “side”, “direction” or “feeling” in English. Theaauracy from current state-
of-the-art WSD systems means that they are not widely usezibrgnt MT systems
given alternative approaches. Whilst most modern translaystems make use of sta-
tistical information from bilingual resources in order ides-step the need to explicitly
use WSD, such resources are limited and unavailable for dauof languages, such
as sign languages which currently have no widespread wifitten. It is “abundantly
clear to all in MT that word sense ambiguity is a huge probl¢kalgarriff, 1997).

5.1.2 Information Retrieval (IR)

Most classic IR techniques find information by matching vearddocuments, however
this produces two significant problems:

1. Synonymy has the consequence that more than one word ffent eeparticular
concept of interest. Without considering synonyms of a wagpbropriate doc-
uments may be missed during a search. These situations heganectall drops
for word-form based techniques.

2. Given the polysemy of words, if a match is based on wordiftiere is no
guarantee that all matches found reflect the intended mgaithe word. Such
situations reduce the overall precision of these techsique

A number of researchers have evaluated the impact the usesaf s on IR tasks
(Weiss, 1973; Salton and McGill, 1983; Salton and Buckl€389; Voorhees, 1993;
Schitze and Pedersen, 1995; Towell and Voorhees, 1998LltRéave been mixed,
showing that WSD could improve results for IR by at least 1%l B0 some cases by
up to 14%. Given the current performance of state-of-th&W8D techniques, actual
findings so far have been fairly discouraging (Kilgarriff9r), and in many cases
results actually declined. Thus, some have concluded thisggtWSD has the potential
to improve accuracy, “the performance of IR systems is isige to ambiguity but
very sensitive to erroneous disambiguation” (Sandersgg L

5.1.3 Content and Thematic analysis

A number of content and theme tagging approaches make ussetbéwords whose
distribution is analysed in order to classify them agaimstgefined categories. It has

92



5.2 Historically Important Events in WSD

long been believed that WSD can improve results (Quilli&&7t Litkowski, 1997) so
that words are only considered when used in a pre-deternsieese. The problems
faced here are related to problems faced by the IR community.

5.1.4 Parsing

Of interest for parsing techniques is the use of WSD to taaki@mber of problems,
such as determining the gender of a noun in Latin-based &yeguwhere the word
can be either male of female depending on its sense. WSD tisydarly important
for agreement phenomena and prepositional phrase attathoneserbs (Jensen and
Binot, 1987; Whittemore et al., 1990; Hindle and Rooth, 198Bhawi and Carter,
1994).

5.1.5 Speech Processing

A characteristic of words that creates a large problem feesp recognition systems
is homonymy, when words are pronounced in the same way bgpatedifferently. A
classic example of this is seen in the sentence:

“Write to Mr. Wright right away.”

WSD assists speech recognition systems by only presemtiraphsideration the defi-
nitions of the different words and selecting the word with thost likely sense within
the contextit is found.

5.2 Historically Important Events in WSD

WSD research emerged from various fields of NLP, and for a fmergpd of time the
majority of WSD research was performed as part of largeregtsj often placing re-
strictions on domains and granularity of the resources,Us#dable in some cases to
give very accurate results. In the 1960s, work appeareded¥SD was studied in iso-
lation, although due to a lack of resources, many examplesasf early work produced
very limited hand-tailored systems (Weiss, 1973). Hir98() gives a comprehensive
review of these early systems. Once more suitable resoli@emme available for
large-scale WSD to be possible, many of these early systeinsotiscale-up well to
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larger systems and there was a significant shift from produband-tailored systems
to systems making use of automatically collected infororatide and Véronis (1998)
give a comprehensive review of the history of WSD and the gpehlems that face the
field of WSD. The most recognised problems facing WSD areluagwith the col-
lection and representation of information. These rangm ftloe “lexical-bottleneck”
problem, where researches are unable to collect large enguantities of hand la-
belled examples, to issues about handling different dosnairlimiting the domains
considered and the granularity to which sense distincamasnade in lexicons.

The remainder of this section introduces some historic tsvand techniques in
the field of NLP, from early work in MT, to the development oteat systems using
information collected from corpora to assist WSD.

5.2.1 Early Machine Translation (1950s)

The earliest examples of word polysemy becoming a real issh&P began in early
work of MT field. Hutchins (1997a,b) discusses the pionepwork in MT, much of

which was limited to technical texts from restricted donsaiburing this period, a
number of key ideas were established which persist todayba®ty one of the most
influential ideas was that of context windows, first discdssea memorandum by
Weaver (1949). In this memorandum, Weaver made the follgwstatement relating
context to meaning, and giving a suggestion for a definitiocoatext:

“If one examines the words in a book, one at a time as through an
opaque mask with a hole in it one word wide, then it is obvipursipos-
sible to determine, one at a time, the meaning of the wordsBut if one
lengthens the slit in the opaque mask, until one can see hptlencentral
word in question but also say N words on either side, then if \Nige
enough one can unambiguously decide the meaning of theatevurd.

... The practical question is: ‘What minimum value of N wadl, least in
a tolerable fraction of cases, lead to the correct choiceedmmng for the
central word? ""(Weaver, 1949)

This idea was exploited by various researchers over theeguiest years (Kaplan,
1955; Koutsoudas and Korfhage, 1955; Choueka and Lusigr®8h; Preiss, 2001).
Tests were performed with human subjects to find the smakestonable size for
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a context window. The results found that humans interpratedning with context
windows of size N = 2 to an equal accuracy to when they had thieeesentence,
therefore concluding that N = 2 is an adequate size for a gowiedow.

In addition to the idea of context window, Weaver's memorandalso calls for
significant WSD work to be performed, making particular refee to his views of the
statistical nature of the problem of WSD, an idea that i$ gtévalent today in much
of WSD research.

Reifler (1955) is one of the first researchers to write aboeitlitik between syn-
tax and semantics, and the ideas of “semantic coinciderzssieen a word and its
context. He illustrates how the same words in German caresggistinctly different
meanings according to the syntactic configurations in wihely are used, such as in
gerund phrases, adjectival phrases or noun phrases. Gaagenheim and Michéa
(1961) presented similar ideas for French, in which the s@hshe verb “grossir” is
determined whilst considering its syntactic complements.

Initial MT work recognised the difficulty in handling opeaxts, therefore creating
resources to simplify the overall translation problem. Bitdng texts into fields
of knowledge, or domains, such as physics, biology and eo@®ofor instance, the
problems posed by synonym and polysemy could be constrtorsmine extent. Given
the recognised importance of domain in WSD for MT, effortgeveade to create a
number of specialised lexicons for use in specific and lichdemains (Oswald-Jr.,
1952). The entries in these lexicons only contained dafimitirelevant to the domain
of interest, and definitions for distinctions made during titanslation between the two
languages for which they were constructed to be used. Th#irgslexicons contained
no more than two-to-one correspondences between senshe sbtirce and target
languages. Further to these specialised lexicons, tegbsigere investigated to create
richer knowledge representations for WSD. Most of the estlwork on knowledge
representations used inter-lingua approaches (Rich8b8)1for instance the earliest
implemented technique by Masterman (1957) for autom#yicakating a resource
using a Latin-English dictionary together with Roget’s $aerus that later developed
into the idea of semantic networks.

Some of the earliest studies on the phenomenon of polyseng pegformed by
Harper (1957a,b), limited to texts within Physics and Sceedomains. He analysed
the polysemy of words in a Russian dictionary, reporting &6rage polysemy and
that English and Russian words are 5.6 quasi-synonymous.
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Most early MT work stopped in the mid-1960s due to the witkddaof funds in
the United States following the conclusion in a report byAlkomatic Language Pro-
cessing Advisory Committee (ALPAC, 1966) that MT had not royed since the early
1950’s (Hutchins, 1996). At this time there was a changeedisdn computational lin-
guistics away from statistics, most notably with the shoft/ards rule-based systems
as opposed to probabilistically based systems such as Giganideas on universal
grammar and transformational rules of describing syntaxnated (Chomsky, 1957,
1965).

5.2.2 Artificial Intelligence Methods (1960-70s)

Some of the most important work to result from the considerahift in paradigm
which the ALPAC report produced was the investigation irgmantic networks and
symbolic approaches to organising lexical information. skéaman (1961) selected
100 primitive concepts from which to organise 15,000 eastimea dictionary. This ap-
proach was the first to represent words as nodes in a netwbekgvihe links between
words represent semantic relationships. These ideas neepedcursors to modern lex-
icons such as WordNet. Using such semantic networks, @ui{li961, 1962a,b, 1967,
1968, 1969) introduced ideas for WSD which were later deyesdioto connectionist
models using spreading activation models (Meyer and Sawadt, 1971; Collins and
Loftus, 1975; McCelland and Rumelhart, 1981) where ideasstifi be found in some
more modern techniques such as Neural Network approaclogis€l; 1985; Hearst,
1991; Towell and Voorhees, 1998).

Wilks (1968, 1969, 1973, 1975a,b,c,d) introduced the lyigifluential “preference
semantics” approach for WSD, described as “essentiallysa-based approach” (Ide
and Véronis, 1998). The preferences for combinationsxi¢# items are based on se-
mantic features and were defined using 60-80 semantic présjtor ‘elements’. The
semantic primitives selected were influenced by work eadexformed by Master-
man. Although this technique was shown to successfully leemétaphor in language
amongst other examples, Boguraev (1979) later demonsttaéesuch an approach is
inadequate to handle highly polysemous verbs and attemptgtrove Wilks’ method
using further linguistic information. Boguraev (1979)almks his approach to WSD
with syntactic disambiguation. Wilks’ approach still hasaege influence in recent
work on WSD, and has been recently revisited by Wilks and £4890), McRoy
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(1992) and Resnik (1993, 1996, 1997).

A number of template-based approaches arose during thel®als. Weiss (1973)
approached the problem of WSD by testing a number of generakxgt rules and
template rules. After limited testing, Weiss concludedt ttemnplate rules produce
better results than general context rules for WSD. Templdes were created based
on 20 instances of 5 words, and the accuracy of the WSD systasnewaluated by
disambiguating a further 30 examples for each word. Regule are approximately
90% precision and recall for the examples tested. In a lagperiment with 6,000
words, Kelly and Stone (1975) used a similar approach to $\Véist also including
rules checking certain grammatical aspects of context.y Toacluded after using
various different approaches that “such a strategy canruziegd on a broad scale”.

Hayes (1976) and Hirst (1987, 1988) introduced techniq@asyucase frames in
combination with a semantic network to disambiguate sené@grds. The disam-
biguation process itself is similar to Quillian’s approaalnere the context of a word
activates nodes in the network to find semantic paths betwesan. This approach
worked well to disambiguate words at the homograph levelvéler, it was less suc-
cessful at finer grained levels of polysemy. Hirst’'s applopoogressively removes
inappropriate senses using “polaroid words”. One of thewraapects of his technique
was the inability to disambiguate any metaphorical intetgtrons of words as the po-
laroid words would eventually eliminate all available sems

The main criticism of work from this era is that the systemsked on toy examples
that were often unnatural (Sanderson, 1996; Ide and V&rd®i98). In the main,
this was due to the difficulty in finding varied and sufficigmilumerous examples to
work with, otherwise known as the lexical-bottleneck pesh| or more generally the
knowledge acquisition bottleneck problem (Gale et al. )9&iven the level of effort
required to build practical systems using the ideas intteduthese techniques remain
theoretically interesting. However, they are of little greal use except in the most
limited domains.

5.2.3 Knowledge-Based Methods (1980s)

The 1980s marked a re-birth in statistical techniques Walig the introduction of
a number of significant machine-readable resources, sutloragman’s Dictionary
of Contemporary English (LDOCE) (Procter, 1978) and CsallEnglish Dictionary
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(CED), Roget’s Thesaurus (Chapman, 1977) and WordNeth@&ath, 1998). This
stimulated the production of disambiguated corpora fronictvito collect statistical
information. Much debate exists about the exact number mdese necessary to de-
scribe all uses of a word, and the exact nature of how concaptbe organised hier-
archically. Some problems are highlighted in the work pmése in chapters 3 and 4,
namely to do with the actual organisation of data within Wéetl Regardless of these
debates, a large amount of work has been performed tryingrioels the necessary
semantic information from the available resources. Thikvebows a marked change
from work in limited domains, or hand-crafted systems wogkivith a small number
of examples, to a more ambitious approach of creating teclasiattempting to disam-
biguate words in open-texts. Krovetz and Croft (1989) gavaaount of some of the
most prominent machine-readable dictionaries (MRD) ohiied during the 1980s.

Of the most influential methods introduced during this erd/#sD is Lesk’s dic-
tionary overlap technique (Lesk, 1986). This techniquewdates the overlap of words
in the dictionary definitions (or glosses) of the target vi@einses against the words
contained in the definitions of the context words. A scoringction based on the
co-occurrence of words in the definitions is used to detesntin@ appropriate sense
of the target word by selecting the top ranking definitiontad tvord. Lesk showed
results of 50%-70% accuracy using the Oxford Advanced Lez&Dictionary of Cur-
rent English. The accuracy of his approach is highly serstb the exact wording of
the definitions in the lexical resource used. Many exampd@saiso be found where
combinations of words cannot be classified, as they shar@emonon words in their
definitions. Wilks et al. (1990) relaxed these problems Bating a network using
definitions from LDOCE and words commonly co-occurring witbrds found in the
LDOCE definitions. This way, more semantically related veoade available for an
approach similar to Lesk’s. The technique was evaluatathuk97 sentences contain-
ing the word “bank”. Results of 45% accuracy for disambigaraat LDOCE’s fine-
grained sense distinctions (13 senses) of “bank” and 79%hémore coarse-grained
sense distinctions (5 senses) of LDOCE are reported.

Veéronis and Ide (1990, 1991, 1995) used a large neural mktiwodisambiguate
text, creating the network using CED. The network links veorith senses, and senses
are in turn linked with the words in their definitions, andrfrahose words to their
senses, etc. ... Ide gave results of 70%-85% accuracy ohexpariments with vary-
ing parameters applied to the method. Sutcliffe and Sla@93%) tested the technique
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on a full text, and gave results of 72% accuracy in contragtO% accuracy using
Lesk’s technique and CED with the same text.

LDOCE was widely used with later techniques (Guthrie etl#891; Cowie et al.,
1992; Demetriou, 1993) applying its additional informatisuch as box and subject
codes, presented in the form of general primitives for eamfuwLater work has shown
that matching LDOCE box codes alone is insufficient for WSEa(in-Harder, 1993).
In general, success for the LDOCE has been relatively manespared to the work
using CED. This may be due to differences in the average polyf words between
the two resources.

Whilst MRDs provide a rich lexical source of information finowhich to perform
WSD, it is recognised that further pragmatic informatior imcluded in MRD is re-
quired to further improve results. Thesauri organise imi@tion into groups of related
words and therefore provide a source of more general rakttips between words.
Masterman (1957), as mentioned earlier, was the first to uwgget® thesaurus for
WSD. Further examples of WSD with Roget’s thesaurus can beddPatrick, 1985;
Yarowsky, 1992), the latter using 100 word contexts from gus of texts to create
word classes for words with common categories using inftionabout the collected
contexts. Using Bayes’ Rule on probabilities calculatedrfiGrolier's Encyclopaedia
(10,000,000 words), the classes of new examples of polysenvords are calculated,
where the class is assumed to represent the sense of a woet.cAracy of 92% was
given for 12 words with an average polysemy of 3 categoriesraing to Roget’s.

5.2.4 Corpus-Based Methods (1990-2000s)

The most recent work in WSD has involved empirically basedhtéjues often at-
tempting to reduce problems posed by the lexical-bottlepecblem. The most suc-
cessful knowledge source to date, WordNet (Fellbaum, 19983 created manually,
although a number of attempts have been made to automgptgetierate such re-
sources from available lexical resources (Michiels etl@®30; Calzolari, 1984; Chodorow
etal., 1985; Markowitz et al., 1986; Byrd et al., 1987; Nakmaand Nagao, 1988; Kla-
vans et al., 1990; Wilks et al., 1990). Rather than creaingd knowledge sources for
WSD, work turned to create WSD systems using informatioormaatically “learned”
from corpora. A number of sense disambiguated corpora weyated to aid this
research. Some examples are given in table 5.1. It is impottanote that these
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5.2 Historically Important Events in WSD

resources are far smaller than corpora used for other tatatitsasks due to the ef-
fort required in manually sense labelling them. The reldyivsmall size of the avail-

Resource

What was tagged?

Semcor (Landes et al., 1998)

Semcor (Miller et al., 1993)

HECTOR (Atkins, 1993)

(Smeaton and Quigley, 1996)

Cambridge University Pres
(Harley and Glennon, 1997)
(Wiebe et al., 1997)

(Towell and Voorhees, 1998)

(1998)
(2001)
Open Mind Word Expert
(Chklovski and Mihalcea, 2002

DSO Corpus (Ng and Lee, 199¢

A varied subset of texts from the Brown corpus and the ng
“The Red Badge of Courage” containing 234,113 instance
23,346 lemmas in passages were 103 manually tagged
WordNet senses.

200,000 instances of 1,000 selected words were hand ta
from subset of Brown corpus.

The first example of creating a lexicon and sense tagged sg
in combination. 300 “word types” (dictionary headwordsjtw
300 to 1,000 instances in a pilot version of the British Nadio
Corpus (20,000,000 words) were tagged with senses from g
icon created in tandem.
8,816 instances of 2,304 lemmas from image captions V
tagged with WordNet senses.

5)192,800 sentences containing 120 selected nouns and ¢fiesk
verbs from a subset of Brown and Wall Street Journal corf
were hand tagged with WordNet senses.

s 4,000 words were hand tagged against the senses of the
bridge International Dictionary of English (CIDE).

25 highly frequent verbs in 12,925 sentences from Wall $t
Journal Treebank corpus were hand tagged (Marcus et aB)1
Over 12,000 instances of the noun “line”, the verb “served &
the adjective “hard” from the Wall Street Journal corpuseav
hand tagged with WordNet senses.

Senseval 1 evaluation resources.

Senseval 2 evaluation resources.

An on-line resource provides an interface for users to acdal
sense tagged corpus with WordNet senses

vel
5 of
with
gged

rpu

ex

vere

le
ora

Cam-
ree
09

N

er

to

Table 5.1: Examples of Sense Tagged Corpora

able corpora undermines the use of established statiappmbaches in NLP for WSD
(Towell and Voorhees, 1998). Currently, the most accurtaissical systems in NLP
have been developed for speech recognition and part-eebp@OS) tagging. Table
5.2 summarises the size and complexity of the resourcesfasedme state-of-the-art
NLP systems. The task for WSD with WordNet would requireistatl classifiers

to disambiguate a total of 121,962 words and 173,941 setissgfore the size of an
adequate corpus would require a much greater number of dgartiyan are currently
available for established statistical techniques to beaalkely applied to WSD. With
the current level of storage capacity available, it is galssio collect such quantities
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Problem System| Accuracy Ambiguity No of Examples
Speech (Rabiner and o . In the order of
" % | 62 h
Recognition | Juang, 1993 95% | 625 triphones 1,000s of sentences
. . Corpora of
0 q
POS tagging (Brill, 1991) 97% | 64 POS tags 1,500,000 words

Table 5.2: Summary of Resources Used for Two State-of-tHdNAP System

of information, however the effort required for the manwaajding of texts remains the
main bottleneck and it is unlikely that a suitably large a@pvill be available in the
near future.

Systems developed during this period fall into one of théofaing categories of
techniques:

e Knowledge-based Techniques — These techniques make ugerofation solely
from lexical resources, such as the approach developed ¢k dred other tech-
niques created during the 1980s. Further techniques usmléxformation to
measure similarity between words as a basis for WSD (Su$98088; Agirre and
Rigau, 1995, 1996; Li et al., 1995; Preiss, 2001). Levow {398ives further
discussion about knowledge-based techniques.

e Supervised Training Techniques — These techniques reguagged corpus of
examples from which to train the system to disambiguate si@dch as (Bruce
and Wiebe, 1994; Ng and Lee, 1996; Lin, 1997; Wilks and Steern1997a,b,c,
1998b,c; Stevenson and Wilks, 1999, 2000; Ng, 1997; Stetiah, 1998). While
much work has been performed in producing such resourcissbélieved that
the number of examples available is still too few to produigh lguality results
using traditional statistical approaches for open-texDM3owever, the current
state-of-the-art WSD use supervised techniques.

e Unsupervised Training Techniques — Rather than requirangel quantities of
manually-tagged data, some research has attempted tesystems either to-
tally without tagged examples, such as (Yarowsky, 1995gPssh and Bruce,
1997), or only using a small tagged sample from which to gdfiim¢her non-
tagged data for training (Hearst, 1991). These techniqgaes,hn cases, made
use of information directly from the World Wide Web given tlagge corpus
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of information potentially available. However, technigusave so far produced
fairly modest results.

e Hybrid Techniques — Some techniques have approached thepitizm using
a combination of knowledge-based and statistical teclesiqao an endeavour
to improve performance by combining the strengths of theseapproaches
(Karov and Edelman, 1996; Mihalcea and Moldovan, 1998, 12000).

Rather than seeing research becoming more standardispgraaahes becoming
limited to a smaller set of techniques, the work undertakernnd recent years ap-
pears to be more divergent, with researchers using an siogg different number of
knowledge sources and evaluation techniques.

Gale et al. (1992a) are some of the first authors to discugstiidem of evaluation
for WSD in depth. Toward the end of the 1990s, a number of attwgarchers turned
their attention to producing standard platforms for thelst@on and comparison of
WSD systems (Resnik and Yarowsky, 1997; Kilgarriff, 1998&,eronis et al., 1998),
leading to the SENSEVAL conferences. These conferencesupeal a humber of
resources on which to train systems and a standard platform/ED systems to be
evaluated in various languages. These resources are krsava eurrent gold standard
for WSD evaluation. This has allowed for techniques to begamd in an objective
way.

5.3 Recent WSD Techniques of Particular Interest

A number of WSD techniques are of particular interest to #search reported in chap-
ter 6 and have had an influence in the design of the WSD appriesdribed there.
Wilks and Stevenson (1997a,b,c, 1998b,c) and StevensoWaksl (1999, 2000) ap-
proach the problem of WSD using a combination of results fpartial-taggers. Lin
(1997) uses a different definition of context to that tydic&und in the current litera-
ture, according to the thematic and syntactic informaticeword, in order to improve
WSD performance. Lastly, Suarez and Palomar (2002) etealuaumber of common
statistical features using a Maximum Entropy (ME) modeMé8D.
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Collocation
Extractor

Definition
Overlap

Preprocessing »| POS »| Pragmatic
Filter Codes

Selection
Restrictions

Result
Combination

A

Figure 5.1: Wilks and Stevenson (1997a,b,c, 1998b,c);eswnn and Wilks (1999,
2000) Partial Tagger WSD System

5.3.1 Partial WSD Tagger Approach

In an approach first proposed for WSD by McRoy (1992), and Edepted by Ng and
Lee (1996) and Wilks and Stevenson (1997a,b,c, 1998b@jeSson and Wilks (1999,
2000), a WSD system is developed using a combination of sipguttial-taggers to tag
all words in a text using LDOCE word senses. In Wilks’ apptgaz Brill POS tag-
ger (Brill, 1991, 1992) is initially used to restrict the ses considered for each word
to those comparable with the tagged word class, a technigwewidely utilised in
WSD (Wilks and Stevenson, 1998a). In experiments, thisirstep reduced around
87% of possible word senses. The system then uses three ™taggkng methods
to either remove unlikely senses (filters) or to considehlyidgikely senses of a word
(partial-taggers). The remainder of this thesis shallrredeboth types of taggers as
partial-taggers. The results of each partial-tagger agd as input to a learning algo-
rithm to find an optimum combination of the results from thetiptaggers in order
to produce a final solution. Figure 5.1 illustrates the catgbystem (Stevenson and
Wilks, 1999).

Pre-processing & POS Filter

Before any of the tagging modules are able to process textiettt is pre-processed
to mark ‘content words’, words with entries in the lexicatoerce being used. This
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module is composed of four components from the Sheffield &fsity Information
Extraction system LaSIE (Gaizauskas et al., 1995); a PQgetd@rill, 1991, 1992), a
named entity recogniser, a shallow syntax parser and aldgmkup component using
the LDOCE.

The output from the pre-processing module is used by the H@sth map each
of the content words to senses from their equivalent enttD@CE. Only the senses
of entries for the grammatical categories assigned by tH& fa@ger are retained.

Collocation Extractor

Wilks and Stevenson (1997a,c) give a limited discussiorutibsing verb preposition

information as found in sub-categorisation frames and iDOB example sentences to
disambiguate words. Using these frames and examples,ialpagger is constructed

to restrict interpretations using Yarowsky’s one sensecp#ocation technique (Gale

et al., 1993; Yarowsky, 1993, 1995).

Dictionary Overlap

Cowie et al. (1992) introduce a similar approach to Leslkésidnary overlap technique
by applying a simulated annealing algorithm to the problerorder to make the tech-
nique more practical for full sentences. Their approachatds to select senses from
up to10'° different combinations. The original algorithm was apglie WSD, giving
results of 47% accuracy to the sense level with LDOCE, and #2%e homograph
level.

Wilks and Stevenson use an adapted version of the Cowie etlgdrithm, nor-
malising the influence each common word makes to the overatbsof senses using
the length of descriptions. This avoids incorrectly prefey senses with longer defi-
nitions. They report an improvement in efficiency to 65% aacy to LDOCE'’s sense
level (Stevenson and Wilks, 1999), however these resudtslieemed not to be statis-
tically significant (Wilks and Stevenson, 1997c). A furtlaelaptation to the original
algorithm was made in order to return a set of suggested sense

Pragmatic Codes

The pragmatic codes from LDOCE can be used to restrict sdnsesly selecting
senses associated with the most likely pragmatic code foctmtext in which it is
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found. A technique similar to Yarowsky (1992) is used to gkdte the most likely

pragmatic code using a wide context window of 50 words to #fiednd right of the

word being tested, and is trained using a portion of the 8riNational Corpus (BNC)
containing 14,000,000 words (Burnard, 1995). Using a gpsiystem, results of 79%
of the available senses can be disambiguated.

Selection Restrictions

In a similar approach to Wilks (1972), LDOCE's subject coftasnouns, related to
each other via the hierarchical relations used by Bruce arntr@ (1992), and gram-
matical links from the shallow parser are used with selectastrictions to constrain
word senses. All senses that do not break any of the selemiostraints are consid-
ered further. In tests, 44% of words were correctly disamdigd using this approach
(Stevenson and Wilks, 1999, 2000).

Combining Results

The final module for WSD collects the results from the paitiz@igers and selects a
final sense for each word. The TiMBL memory based learningrélgn (Daelemans
et al., 1998) is trained using a number of annotated exanapléthe results from the
partial-taggers. The implemented module disambiguatesunelassified instances by
determining which training example is most similar to itchses where more than one
sense remains appropriate the first sense according to LO®&#ected as the final
choice.

Evaluation Results

The system was evaluated using Semcor as a tagged corpugnfi®6tags refer to
WordNet senses, SENSUS (Knight and Luk, 1994) was used tameayvordNet tags
in Semcor to LDOCE tags. Given significant gaps in the mappimg final LDOCE

tagged corpus contained 36,869 words. The system wasdrasiag 10-fold cross
validation over the entire corpus, producing results of ¥8uracy at the LDOCE
sense level and greater than 94% accuracy for its homogeaph |
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5.3.2 Syntactic Local Context Based Approaches

The most explored definition for context in NLP for statiaticlassification is the idea
of context windows first discussed by Weaver (1949). He pgepdhat humans can
accurately make judgements for the meaning of a word usinghdow of words to
the left and right of the word of interest. A number of receppr@aches make use of
syntactic relations and thematic grids as a basis for a tiefirof context, such as (Lin,
1997; Resnik and Diab, 2000; Green et al., 2001a,b). Thetignesbout syntactic
context can be seen in earlier work, such as in closing resnafrk esk (1986). Lin
(1997) defines context using dependency relationshipsegadhfrom a dependency
grammar (Hudson, 1984; Mel'cuk, 1988). Such grammarseelairds syntactically
using asymmetric binary links where one word is the head enréhation, the other
word is the modifier in the relation and the link representgpethdency relationship.
The local context for a word can be represented by any of thésaships using the
triple in 5.1.
{dependency relationship, word, positjon (5.1)

This definition of local context is used by Lin for WSD by calteng local context
examples from a corpus to create a Local Context DatabasP)(Libr each local
context, the triple in the form such as 5.2 is stored comagjimformation about words
related via a dependency relationship in a corpus of exawid the main word of
the local context (Dunning, 1993).

{word, frequency, likelihoo (5.2)

To disambiguate a new unclassified example from a parsed sentence or text, all
local contexts ofv are collected and stored ir”',,. The set of most likely selectors is
selected from the examples in the LCD using equation 5.3.

Selectors,, = ( U C(lc)) —{w} (5.3)
lceLCy,

The wordw is tagged with the sensethat is most similar tcSelectors,,. All other

instances ofv are also tagged with sens@mplementing the “one sense per discourse”

theory (Gale et al., 1992b, 1993). Lin uses his own simydsaised disambiguation

technique for measuring the similarity of the selectors possible senses of words.
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For evaluation, Lin constructed a system using the 25,@@0y@ord Wall Street
Journal corpus. A LCD was constructed consisting of a tdtabd,670 local contexts,
all with likelihood ratio greater than a value selected@abily, in this case 5. The local
contexts consisted of 1,067,451 words. The system was aealwsing the “press
reportage” section of Semcor consisting of around 2,00@s;@nd the algorithm was
only applied to nouns. Furthermore, three test conditiomsrer evaluated:

1. The selection is correct §imilarity(sanswer, Skey) = 1 (Strictest criteria)
2. The selection is correct $imilarity(Sanswer, Skey) > 0.27 (Relaxed criteria)
3. The selection is correct imilarity(Sanswer, Skey) > 0 (Weakest criteria)

The threshold for 2 was calculated empirically. Table 5&spnts Lin’s the results.

Criteria | System Accuracy
1 56.1%
2 68.5%
3 73.6%

Table 5.3: Accuracy of Lin (1997) WSD system

5.3.3 Maximum Entropy (ME) Approaches

There has recently been a marked increase in the use of MEtis&tmodels for
WSD systems. A description of the ME framework is given inatlea 6. However, the
critical and most interesting aspects of ME for WSD invollie selection of features
used by the ME model. A feature is implemented using a binaaguire function
returning 1 if the conditions specified by the function angeirO otherwise. Each
feature is allocated a coefficient, or weight, which the M&triework trains in order to
closely model a collection of prior probabilities colledt'om a corpus of examples.
Suarez and Palomar (1993, 2002), Dang and Palmer (2002Klaivd et al. (2002)
test a collection of different feature types designed tokasing context defined as
a context window around the ambiguous target word. The featselected for the
analysis come from work produced by Ng and Lee (1996) anddesoLet al. (2000).
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Traditionally, features model every combination of theommfiation shown in triple
5.4.
{word sense, example feature of interest, posjtion (5.4)

Suarez and Palomar propose an alternative approach ddsigrgreatly reduce the
number of features present in the final model. Rather thaster feature for each
example of 5.4, all examples of interest for a word sense dicp&ar locations are
gathered to form a set of examples of interest. This enahkesreation of features
modelling combinations of tuple 5.5 as all information deirest is recorded in a single
set.

{word sense, positign (5.5)

The feature templates used to create features from corpnspes for the two types of
features are referred to as template-word and templatesgectively. The templates
are then used to extract features of the following types:
e Template-Word
0-features
S-features
Q-features

Km-features

e Template-Set
L-features
W -features
B-features
C-features

P-features

0-features

0-features model information about the target word itselfr fFouns and adjectives,
aspects of word morphology are modelled, such as capiialisand quantification.
For verbs, additional aspects are modelled such as tense.
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S-features

S-features model words appearing at specific positionsivel&t the target word, for
instance if “red” appears to the left of “shirt” in an exampled “shirt” is the target
word, anS-feature models the fact that “red” appears in location Htree to “shirt”.

Q-features

Q-features model the POS of words appearing in a 3-word winglmund the target
word. These features look similar f5features where co-occurring words are substi-
tuted by their grammatical category.

Km-features

Words found appearing for at leaistm examples for a word sense are used to create
Km-features. The feature simply models the fact that such svivedjuently co-occur
with the target word.

L-features andV -features

L-features model the set of lemmas found at positions clogeettarget word. Sets for
positions -3 words, -2 words, -1 word, 1 word, 2 words and 3ds@round the target
word are collectedlV -features model the equivalent information for contentagor

These features return 1 if alemma or a content word in a patitocation belongs
to the set of lemmas or content words in the equivalent ositi

B-features andC'-features

B-features model the set of lemma collocations found at jpositclose to the target
words. Only sets for collocations found at positions (-3, €11, 1) and (1, 2) words
relative to the target word are collecte@-features are, again, the equivalent/®f
features for content words.

These features return 1 in similar conditiond tdeatures andl -features, when a
collocation at a particular location belongs to the set dibcations found at equivalent
positions around the target word.
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P-features

Lastly, P-features model the set of POS tags found near the target wbpbsitions
-3 words, -2 words, -1 word, 1 word, 2 words and 3 words arotedadrget word.

P-features return 1 when the POS tag found at a particulatiposaround the
target word belongs to the set of tags for the equivalentiposi

Analysis of Feature Types

Evaluation of the feature types was performed with a selaaf 10 nouns and 5 verbs
using examples from the DSO corpus (Suarez and Palomag)2@ach classifier
was trained using 10-fold cross validation and the resoltsHe best combination of
feature types was given for each word tested, shown in talleWork also showed

Word Senses Feature types Accuracy
Age (Noun) 3| SQ 74.3%
Art (Noun) 4 | OLWBCP 64.1%
Car (Noun) 2 | WSB 96.9%
Child (Noun) 2 | LWBCQ 94.5%
Church (Noun) 4 | OLWSBCQ 65.4%
Cost (Noun) 3| SCQ 89.7%
Fall (Verb) 6 | OLWBCKS 85.9%
Head (Noun) 71 SQ 81.4%
Interest (Noun) 6 | OLWSBCQ 68.3%
Know (Verb) 6 | OLWSBCQ 48.8%
Line (Noun) 22 | OLWBCK3 56.9%
Set (Verb) 11 | OLWBCPK3 58.0%
Speak (Verb) 5] SQ 76.2%
Take (Verb) 19 | LWSBC 40.8%
Work (Noun) 6 | LWBCPK5 51.8%

Table 5.4: Results from (Suarez and Palomar, 2002) for Besthbinations of ME
Features

that using combinations of template-set feature functimmy produces an average
drop in accuracy of 1.75% (0.99% for all words apart from ldhfor which the most

drastic drop in accuracy occurred). The advantage of theaaplate-set functions is
the large reduction in model complexity as fewer featurefioms are generated. This
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results in a large reduction in computational time necgdsatraining the ME models.
Although results are not given,-features andV -features are reported to produce
highly precise results with low recall, and O-features agerded to be particularly
useful for verbs.Q-features and°-features are reported to favour the most frequent
sense of words, at the expense of less frequent senses.

One conclusion made by Suéarez and Palomar (2002) is tha ex@amples and
deeper syntactic data about sentences are required intordaprove current WSD
techniques.

5.4 Gold Standards for WSD Evaluation

Towards the late 1990s efforts were made to create standafdagion techniques
for WSD. Some previous cases can be found where researdiamedscorpora and
resources, thus allowing results to be compared. Howewvest approaches to eval-
uation created ad hoc evaluation platforms using customocarwith different sense
distinctions and in some cases evaluating different aspéet technique. This was the
case even between closely related techniques, such agéicbségques stemming from
Lesk’s “dictionary-overlap” approach (Lesk, 1986), whemany researchers decided
to use different test sets (Wilks et al., 1990; Véronis ate] 1990, 1991, 1995). By far
the preferred evaluation technique is to measure the ptiopasf correct distinctions
made, otherwise known as the accuracy of the technique asmshaquation 5.6.

Accuracy = 100 x % (5.6)

whereC' is the number of correctly disambiguated words, ahi the total number of
words classified.

One problem with evaluating techniques with basic accucaayes from situations
where a system returns probabilities for senses, and theat@ense may be assigned
a marginally lower probability to the sense selected viaalgerithm. Accuracy does
not give credit for near misses. Accuracy also does not axtdou situations where
more than one sense of a word could apply in the same contexhstance consider
“give” in “He gave his report to his superior”. Given the ratrstrict interpretation of
accuracy above, a number of alternative evaluation metags been proposed trying
to relax this strict interpretation (Resnik and Yarowsk99T). Most contemporary
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research still does not make use of these proposals, andittentgold standard for
WSD evaluation comes from the SENSEVAL conferences.

Work for SENSEVAL started in 1997, following the workshopeging with Lex-
ical Semantics: Why, What and How?” held at the conferencéplied Natural
Language Processing. The goal was to produce and run a &salygse the strengths
and weaknesses of WSD techniques across a number of vaeyitsgin a number of
different languages.

Two subsequent SENSEVAL exercises have been run, the firk998 and the
second held at the Second International Workshop on Evagi#ford Sense Disam-
biguation Systems in 2001. A third exercise is planned f@420

5.4.1 SENSEVAL

The first pilot SENSEVAL experiment produced the essentahents necessary for a
gold standard evaluation technique:

e A task definition.

e A ‘Gold Standard’ dataset. This is defined to be a reprodacdarpus with
manually labelled senses for each word. For such a corpus tedroducible,
agreement between human annotators must be suitably higflefdore it is nec-
essary that all examples are tagged by at least 2 peopleadtige, agreement
above 90% between human taggers was deemed as acceptiperifk{1998a)
discusses this issue in greater detail.

e A framework for administering the evaluation to the highlestl of objective-
ness. It was proposed that a sample of roughly 200 ambiguorgswith man-
ually tagged examples in the corpus should be used as a tdet sgaluation.
This would be a manageable quantity for human taggers taupsothgged cor-
pora each year (Kilgarriff, 1998b). The words are only reézhto test systems
once they are “frozen” in order to avoid fine-tuning the systdo the test set.
Furthermore, in order to compare systems tagging diffeygrds of words, for
instance only nouns compared to all-words, or systems siittg radically dif-
ferent approaches, such as supervised versus unsupeedcbedues, consider-
ations must be made to ensure a “level playing field”.
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The corpus and dictionary used for SENSEVAL were both froemHIECTOR project
(Atkins, 1993). The first Senseval chose only to test a Selecif words, and not to
perform an all word evaluation of techniques. In total, 35agowere selected for the
evaluation, with 26 to 2,008 instances for 30 of the selegtedds available in the
corpus. The test corpus included 8,448 examples from whictagks (15 nouns, 13
verbs, 8 adjectives and 5 indeterminate examples) wergecrdéar the 35 words. A
subset of 1,057 corpus entries for 4 words was re-taggedstarera gold standard for
the corpus. Final agreement of 95% precision between atumsta reported (Kilgar-
riff and Rosenzweig, 2000a). Mappings from the HECTOR sets&V/ordNet senses
were provided, although the mappings were typically manypémy and gaps existed,
therefore some information loss between the two resousca@®evitable. Given this
mapping, an upper bound of 79% was calculated for WordNetdagstems by map-
ping evaluation answers from HECTOR senses to WordNet searsd back to HEC-
TOR senses and then calculating the agreement of the resaltnses. Kilgarriff and
Rosenzweig (2000b) note that given the high frequency oftormaany relationships
between HECTOR and WordNet senses, WordNet based teclsriigperate under a
severe handicap”, and thus comparison of their performuaiiltgield little objective
information.

In all, the first SENSEVAL test evaluated 16 English systethErench systems
and 1 Italian system. Systems were broadly split into twaugsp supervised and
unsupervised taggers, and each were tested at 3 diffel@milgrity levels:

e Fine-grained — Only tags identically to those assigned bydiuannotations are
classed as correct.

e Mixed-grained — Mixed grained scoring gives full credit iftagged sense is
subsumed by the human judgement, and partial credit is giviesubsumes the
human judgement.

e Coarse-grained — Sub-sense tags were ignored, therefaohesavith human
judgements are taken at a much coarser homograph level.

In the event of systems returning multiple answers the (atis®d) probability of the
correct answers returned are used as the score value adttedrasult of evaluation.
Two main baseline techniques were also employed (althoulgatiff and Rosen-
zweig (2000b) discuss a number of other baselines alsodenesl); Lesk’s dictionary
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overlap (Lesk, 1986) to compare against unsupervised igobs and a Lesk-Plus-
Corpus method employing training examples together withiahary definitions to

compare against supervised techniques. Results for thareegiven in terms of pre-
cision (5.7) and recall (5.8).

Precision = (s/n) (5.7)
Recall = (s/m) (5.8)

wheres is the score of the system,is the number of items classified by the system
andm is the number of items with classifications.
The results produced a number of conclusions for the systested:

e All systems tested gave improved results for the coarsexgpldevel compared
to the fine-grained sense distinctions and the relativeopmdnce of systems
tagging at fine-grained levels was equivalent for more @grained sense dis-
tinctions.

e Supervised training techniques perform substantiallyebeéhan unsupervised
techniques.

e Few systems outperform their Lesk baseline equivalent.

e The state-of-the-art for automatically disambiguating{grained sense distinc-
tions performs at around 77% precision and 82% precisiomeatdarse-grained
level.

The best performing systems from the evaluation were thersiged Durham WSD
system (Hawkins) and John Hopkins WSD system (Yarowskytesys (Kilgarriff and
Rosenzweig, 2000a,b).

5.4.2 SENSEVAL-2

Whilst the scoring guidelines remained the same, SENSERAitroduced some changes
for the evaluation approaches of the first SENSEVAL teststiir WordNet was se-
lected as the lexicon to provide the inventory of sensesvaluation, and a corpus was
created from a sample of the BNC, the Penn Treebank (Marais 4094) and from
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live web-pages for a web subtask. A newer version of Wordllat)(became avail-
able, where some changes were made given informationiregtidbm the annotation
process of the SENSEVAL-2 resources. The use of WordNet aidd¢® make the task
more difficult, highlighted by a 10% lower manual inter-atator agreement than for
the original SENSEVAL.

The original SENSEVAL only evaluated systems using a 45 viexatal selection
evaluation. However, SENSEVAL-2 also offered an all-wordlaation where systems
had to tag all words in 3 texts providing a total of 5832 rumgnivords, and a Japanese
to English translation task. A further difference was tHANSEVAL-2 did not provide
any manually tagged training data, as systems were expectese resources from the
public domain.

A total of 94 systems ranging across 12 languages were egdldaring the 2001
SENSEVAL-2 workshop. The two best performing systems slibavsignificant drop
to around 64% precision and recall for the fine-grained Ebgample test and around
64%-69% precision and recall for the all-word test, reftegtihe difficulty that inter-
annotators had in manually tagging the corpus with WordBesss. The best perform-
ing systems for English were hybrid systems from MihalcehMonldovan (2000) and
Yarowsky (2000), making use of multiple components and &taof lexical infor-
mation, such as syntax for the latter system. Baselinesshisaed a significant drop
in accuracy, resulting in many of the systems now being abkutpass their equiv-
alent baseline results. For Lesk-based baselines, thimimaply an indication of the
differences in the suitability of dictionary definitionstiveen HECTOR and WordNet.
As HECTOR typically contains longer definitions for sengesay provide a better
information source for Lesk’s approach.

5.4.3 SENSEVAL-3

A further SENSEVAL evaluation is scheduled for 2004, witht gegreater number
of groups showing an interest. Few detailed descriptione lieeen released so far.
However, a number of additional tasks are being considesth as sense labelling
WordNet glosses.
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5.5 Summary

A number of different phenomena of ambiguity in natural laage have posed con-
siderable problems to many NLP tasks, such as MT, IR, Comateati/sis, Parsing and
Speech Processing. From the initial WSD work in the 195@sfighd has undergone a
number of changes in approach due to changing trends in Nddareh and given the
provision of ever growing resources. Given the maturityhaf field, successes have
been modest to date, and the techniques applied by differeaarchers can be seen to
be ever more divergent. Recent standardisation of evaluagpproaches by the Sen-
seval conferences has aided development of the WSD fieldralém Senseval is the
provision of Gold Standard evaluation resources, inclgdiath material for the cre-
ation or training of WSD systems, and material for their aaéibn. These resources
are in the form of a sense labelled corpus of examples, wherenanual inter-tagger
agreement is ensured. The aim of the gold standard is togeaarpora with inter-
tagger agreement above 90%, meaning that the resource=paoeucible by different
individuals thus making evaluation more meaningful andeotiye. Looking at the
other available sense tagged corpora, when evidence imlaleaabout inter-tagger
agreements, it is found that agreement is much lower thathéoSenseval resources,
for instance the Semcor and DSO corpora have an inter-taggeement of 57% (Kil-
garriff, 1998a).

Three WSD techniques particularly influential to the reskaresented in chapter 6
were introduced in section 5.3. The first of the three tealesgcreated a WSD system
using a number of partial taggers (Wilks and Stevenson, 4993, 1998c; Stevenson
and Wilks, 1999, 2000). This approach has the advantagerobicing results from
several “weak” taggers to only consider the most confideaisttns from each tagger.
This means that different aspects of a word’s context carsbd in making a decision
about its meaning. The second technique discussed appliéfe@nt syntactically-
based definition of context to a WSD system (Lin, 1997). Ateelaapproach is intro-
duced in chapter 6, however instead of solely considerimgasyic relationships, the
definition of context considers the semantic role of words (section 6.2). Such a
definition is useful as it targets the words in the surrougdaiontext that are related,
thereby avoiding noise introduced by other words in theaurding context and con-
sidering fewer but more related words than a context windefindion of context. A
third ME-based approach (Suarez and Palomar, 1993, 2802yoduced to illustrate
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how the ME statistical paradigm is applied to the problem &DVParticular attention
is paid to the design of features, as such features form tie bbthe statistical model.
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Chapter 6

Word Sense Disambiguation Using
Lexical Taxonomies and Syntactic
Context

A striking trend of current Word Sense Disambiguation (W$&hniques discussed
in chapter 5 is the variation in the type of information use@dnany cases achieving
little or no improvement. This variation is due to the use afitiple sources of infor-
mation publicly available and the variety of linguistic tnes which can be exploited
in tackling at least part of the WSD problem. This chaptemppses a WSD system
employing a number of partial-taggers designed to configeatiuce the number of
senses being considered for words in an open-text, befaalyfimaking a decision
about remaining ambiguities using a statistical WSD conepbnDuring this process,
when only one sense remains under consideration for a woedyord is said to be
sense tagged or sense labelled. The majority of the chaptierdicated to describing
the development of such a final WSD component within the MaxmiEntropy (ME)
framework. This component uses a new definition of contextgihed to target the
information of interest for disambiguation of a word withis surrounding sentence.
Section 6.1 introduces a new multi-tagger approach to WSikjmg use of existing
theories. This new framework contextualises the reseambrted later in the chapter.
Given the available time it is not feasible to construct atessary partial taggers,
therefore later sections are restricted to reporting tmstraction of a new statistical
WSD component. Whilst the reported test results evaluatenmeance in isolation of
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further techniques, it is intended that such a WSD systersad @as the last stage in a
multi-partial-tagger approach. Section 6.2 details tHedon of context considered
by the statistical WSD component, and section 6.3 shows hml a definition of
context with semantic similarity can be used to build a statl classifier for WSD
using the ME framework. Test results are presented whigbtithte how current results
could be used to reduce the cost of manual WSD. Section 6adlsipbssible future
work and section 6.5 discusses the significance of this relsea

6.1 Using Multiple Partial Taggers for WSD

Given the current accuracy of state-of-the-art WSD tealmsg no single technique
can deliver the level of performance necessary for highigufSD of open-texts.
High quality in this context is understood as being at leastgarable to human inter-
tagger agreement. Defining such a baseline has posed acghiiroblem for WSD
researchers, with a low inter-tagger agreement of 57% &giitj, 1998a) between two
of the most used resources for WSD, Semcor (Landes et aB) H9@ DSO (Ng and
Lee, 1996). More recently, work for Senseval has producédtgtandard corpora for
WSD evaluation, producing around 90% inter-tagger agre¢roe a sample of the
Penn Treebank corpus (Marcus et al., 1993). In order to ingoresults, Wilks and
Stevenson (1997c, 1998c, 1997a) and Stevenson and WilR9,(2900) used multi-
ple partial-taggers to reduce the number of senses undsidesation for each word.
The final sense is assigned by considering results from eaxtlalgtagger. We pro-
pose a similar approach using ideas from Gale et al. (19%8pwsky (1993, 1995),
and lexical theory to initially reduce the number of sensesipled with a statistical
component to make informed judgements about the remaiminges. The possibility
is also available to use further partial-taggers, althocgsideration must be made
about the order in which such taggers are applied. It is delgirto use more precise
techniques with the lowest coverage early in the WSD proaeisis later lower preci-
sion techniques giving maximum coverage. Thus the systammiaaimum confidence
about decisions it makes earlier, reducing potential srbyrlater techniques. By in-
corporating less confident techniques later in the WSD m®id¢hae system can evaluate
residual ambiguity once the more confident techniques hega bpplied and also en-
sure maximum coverage. The general framework for such &yt illustrated in
Figure 6.1. The pre-processing stage tags words with tlaeirqf-speech (POS), and
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Input text

l

Pre-processing

\ 4

Partial Tagger 1
Highest Precision, Low recall

h 4

Partial Tagger n
Low Precision, Highest recall

l

Sense Labelled
Text

Figure 6.1: General Partial-Tagger WSD Framework

performs any further processing required for the paraglgers. This initial stage is
important not only for preparing documents for processingubsequent components,
but it is also the first stage in restricting senses for théesy$o consider by assigning
POS tags to words (Wilks and Stevenson, 1998a; Towell andhées, 1998).

The framework illustrated in Figure 6.2 shows the collettad techniques pro-
posed as the minimum set of partial-taggers to constitutergptete WSD multi-tagger
system. In contrast to the approach taken by Wilks and Ssewefi997a,b,c, 1998b,c);
Stevenson and Wilks (1999, 2000), where partial taggersised in parallel to each
other and the final sense selection is made consideringsdsuh each of the taggers,
the approach here is more of a pipeline where each taggemmsrtally reduces the
number of senses being considered. The techniques withiftalnework are applied
in the following manner:

1. One Sense per Collocation

Gale et al. (1993) and Yarowsky (1993, 1995) create a decist@ based WSD
system to tag common word collocations with the same sefsesgd on the
hypothesis that the senses of words in a collocation do rastgdhacross different
instances. The decision trees are structures used adielassir WSD. Each arc
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Input text

y

Pre-Processing

!

One Sense per Collocation

!

One Sense per Document

!

Selection Restrictions

!

One Sense per Document

v

Maximum Entropy WSD System

v

One Sense per Document

v

Sense
Labelled Text

Figure 6.2: Proposed Minimal Set of Partial-Taggers for WSD

in the decision tree represents a decision that can be mada gome input
stimulus, nodes within the tree represent different stagése decision making
process, and the leaf nodes of the tree represent the finsliatex made by
the classifier. The work demonstrates 99% precision wheaedesith words
having two senses. However it has been questioned whethétiothesis holds
for fine-grained sense distinctions in dictionaries sucmasdNet. Martinez
and Agirre (2000) show that the hypothesis does not hold dsasess genre
and topic variations, presenting results of 70% precisiwhlaw coverage with
similar corpora tests. They propose using topic and gefoenration as an input
parameter to the decision list in order to tune the results.

This technique (Gale et al., 1993; Yarowsky, 1993, 1995)c:ba tuned to only
consider decision lists producing highly confident reswhen tested across cor-
pora with topic and genre variations in order to produce auadite first partial-
tagger for the multi-tagger WSD technique.

2. One Sense per Discourse
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6.1 Using Multiple Partial Taggers for WSD

The one-sense-per-discourse hypothesis (Gale et al.b1332umes that the
sense of a word remains highly consistent within a given dwnt. Such a
hypothesis is useful for assigning senses to untaggednicesaof words that
have been tagged in other parts of a text, and in correctiogsemade by WSD
systems within a document. Yarowsky (1995) gives exampld®avords for
which this approach was tested with 37,232 instances. Tédtseof the test
gave a total accuracy of 99.8% and showed that the technigiseapplicable
for 50.1% of each word’s occurrences (The technique is epplé to words
occurring more than once within a document).

Given the accuracy of this approach and the precision of theiqus partial
tagger, an approach using this hypothesis can tag unldtialeances of words
tagged elsewhere during stage 1. However, some care muetdae tA number
of the most frequent and ambiguous words, such as the veie™toregularly
violate this rule. Prior to such a rule being suitable for us@pen-texts, the
set of words that consistently violate the one-sense-ggeodrse rule must be
determined. Given that such words are likely to occur fredjyethis should be
possible using existing sense tagged corpora. Once thif seteption words
has been found, the one-sense-per-discourse rule candlwemfidently applied
to any word outside the exception set.

3. Using Selection Restrictions to Reduce Senses

Section 6.2 illustrates a number of ways in which the conéijan of verbs and
their complements can be described, and how the noun coreptsrof a verb
have an important role in the selection of senses for bottvéhnle and nouns.
Such information can form the basis of a selection restricibol. Data to create
such a system could come from information in a variety of sesirfor instance:

¢ Information contained in dictionaries, or from dictionaypsses, although
in some cases, such as WordNet, this information can becpkatiy weak.

e From resources such as the Levin Verb Classes (LVC) (Le9®3). There
is currently no link between the LVCs and WordNet synsetsweier, a
technique has been proposed (Green et al., 2001a,b) tleattiedly links
the two resources in a task to tag verbs in a verb database.
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6.1 Using Multiple Partial Taggers for WSD

This technique is applied after the one-sense-per-cdllmtand one-sense-per-
discourse techniques in order to make any possible woraggedsictions.

4. Repeat One Sense per Discourse.

Partial-tagger 2 is applied again to make further poss#daections to the docu-
ment’s ambiguity.

5. Final Statistical Sense Discrimination Tool.

At this stage only one further tagger is considered. The e f such a tagger
is to make the final decision about the correct sense of a \gorel any residual
ambiguity. Given the body of work available, a large numbfeieohniques can
be used as shown in the previous chapter and by the Sensenkal Gorrently
the best results are attained by supervised learning tggési The main topic
for the remainder of this chapter is a new statistical tegph@ito be used for the
final selection of the word sense.

6. Repeat one sense per discourse.

Finally partial-tagger 2 is applied once more to make anydassible reductions
to the document’s ambiguity, if any words are left ambiguois this stage,
the one-sense-per-discourse theory can also be appliegrriect erroneously
assigned sense tags. By examining each word within the Hekxtare not part
of the one-sense-per-discourse exception list, if serreaseonsistent, the most
frequently assigned sense tag can be assigned for eachdestba word.

For partial-taggers 3 and 5, an additional pre-processiagesis required. These
partial-taggers require syntactic information; therefamparser is needed to determine
the syntactic structure of each sentence in the input text.the purposes of the re-
search reported in this chapter, the CMU Link Grammar passgsed. This collection
of partial-taggers constitutes a minimum set of compontmtthe system proposed,
as all but the statistical discrimination tool use existiWgD theory, are simple to
implement and have relatively high degrees of confidencherctassifications made.
The first 4 taggers do, however, suffer from low recall, aretéfore the penultimate
tagger is required to make judgements about regardingualsignbiguities in order to
maximise recall for the processed documents. The problerermily with the kind of
component to be considered for the statistical discrinmnaiol is its relatively low
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precision; therefore the initial taggers are used to rena@vmany senses as possible
in order to reduce errors by the later components. As suchfrdmework allows for
further modules to be added to the system.

A new technique is proposed in section 6.3 for statisticaDN® use the lexical
taxonomy of WordNet to evaluate word similarity as preseiechapter 4. The tech-
nique also uses a new definition of a word’s context utilissiegnantic relationships
between words determined from their syntactic configuratidhe remainder of this
chapter concentrates on details of such a statistical W&ipoaoent, as the implemen-
tation of other partial-taggers is outside the scope ofttiesis.

6.2 Using Syntactic Relationships for WSD

Fundamental to the statistical classifier for the new WSDhnaype presented here is
the idea that words have semantic relations to other wortlema tight context that
is central to the human decision making process about theesafna word (Weaver,
1949; Kaplan, 1955; Koutsoudas and Korfhage, 1955; Masteri961; Choueka and
Lusignan, 1985; Preiss, 2001). The most common definitiorcdmtext used in the
field of NLP uses the idea of context windows (Weaver, 1948)niya context window
of sizen, the context of a word is represented as theords to its left and right.
Such a definition of context assumes that all words withindbetext window are
important to evaluating the meaning of a word, and also tiesignificant information
for establishing the word sense is contained within the wimdr he statistical classifier
developed in this chapter uses an alternative definitions @hernative definition of
context is similar in principle to that used by Lin (1997),9R& and Diab (2000) and
Green et al. (2001a,b). However, it differs in some impdrempects. Such a context
can be expressed in predicate form. The arguments for suchdicate form for a
context can be used to restrict and rank various possit#egrétations of a word.

This section presents this new definition of context, usiegstyntactic features of a
sentence to detect relationships between the words whhbisgéntence. These relations
are assigned a semantic role according to the syntacticemaftion within which they
occur. For verbs, these semantic roles are represente@rastib roles. While pre-
liminary examples will be restricted to verbs, section Bdscusses how relationships
for words with other parts-of-speech (POS) can also be sgprkin similar predicate
forms. The CMU Link Grammar parser is used to determine th&syic relationships
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6.2 Using Syntactic Relationships for WSD

between words, although such an approach can be applied twtput from parsers
generating more traditional Chomskian Sentence Strustditee section concludes by
showing a refined version of the information that is used ingD/¢lassifier.

6.2.1 Sub-categorisation of verbs

Consider the examples of three related CMU linkages in eg6t3, 6.4 and 6.5. In

X
AP

MVp:
Wd Ss | Os —Jp

{1 Maigret will.aux imitate.VERB Poirot with.PREP enthusiasm.NOUN

Figure 6.3: CMU Linkage for “Maigret will imitate Poirot witenthusiasm.”

Xp
MVp

0N
U S

Wd-—Ss |— D*u DD——Sp

{1l Bertie will.aux abandon.VYERB the.DET race.NOUN after the.DET first NOUN lap.VERB

Figure 6.4: CMU Linkage for “Bertie will abandon the raceeafthe first lap.”

Xp

MVp

Wd

GN——Ss |— D*u Ds—

{1t miss.NOUN Marple will.aux reconstruct VERB the.DET crime.NOUN in.PREP the.DET kitchen.NOUN

Figure 6.5: CMU Linkage for “Miss Marple will reconstructdfcrime in the kitchen.”

each case, the verb shares a common structure. Each exdropie @ transitive verb
with an optional verb modifier. Each of the modifiers providéormation about the

manner, time or location of the action.
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In traditional grammar, verbs are placed into three categprelating to the num-
ber of objects appearing to the right of the verb in an actardence:

e Intransitive - No object.
e Transitive - One obligatory object.

¢ Ditransitive - Two obligatory objects expressed either gmi of nouns, or a
noun and the noun of a verb modifier.

Figures 6.6, 6.7 and 6.8 give an example from each sub cgtegdaegeman (1994)

Xp
Wd Ss ‘
ittt Hercule dithers.VERB

Figure 6.6: Example of an Intransitive Sentence

Xp

}WdTSS—I_OS—I ‘

il Tanya saw.VERB Simon

Figure 6.7: Example of a Transitive Sentence

Xp
Osn

Wd Sg—+1+—0s Dmu

il Woster gave.VERB Jeeves the.DET money.NOUN

Figure 6.8: Example of a Di-transitive Sentence

gives an in-depth introduction to sub-categorisation yughifications from Chomskian
Government and Binding theory. Aside from glosses, thikésanly type of informa-
tion given about the number of arguments for a verb in mostuomdictionaries, such
as the Oxford Dictionary of Concise English.
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Sub-categorisation gives some information with respethéaumber of required
object arguments for a verb. However, nothing is said abotgrh’s subject or the
semantic relationship between the verb and its arguments.

6.2.2 Argument structure

Verbs can be considered as predicates, where nouns or sgeehiositional phrases
are syntactically related to the verb as arguments. Theshqates take a verb’s sub-
ject into account, along with its objects. Therefore, verbs be represented by the
following type of predicates according to their sub-clasation:

¢ Intransitive verb — One-place predicate
e Transitive verb — Two-place predicate
¢ Ditransitive verb — Three-place predicate
The previous examples can be expressed in the followinggatedforms:

1. Maigret imitates Poirot.

Imitate( Maigret, Poirot)

2. Bertie abandoned the race.

Abandon( Bertie, race )

3. Miss Marple reconstructed the crime.

Reconstruct( Miss Marple, Crime )

4. Hercule is dithering.

Dithering( Hercule )

5. Wooster gave Jeeves the money

Give( Wooster, Jeeves, Money )

Argument structures show which arguments are obligatarg friven verb. Haegeman
(1994) uses the following metaphor in her description otiargnt structures:
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“Predicates are like the script of a play. In a script a nundfaoles
are defined and will have to be assigned to actors. The argsroém
predicate are like the roles defined by the script of a play dfpade-
guate performance of the play, each role must be assigneal &utar.”
(Haegeman, 1994)

For instance, consider the verb ‘give’. In its most litenatieirpretation, it must take
three arguments: The giver, the given and the receiver. i@ersg the argument
structure of a verb derived from its conceptual meaning caitle the representation.
In traditional Chomskian grammar we can express the argtsrignspecifying the
phrasal type to which the arguments belong. However, thewWialg argument struc-
ture examples use CMU link labels to specify how the argusané syntactically
expressed. “S” links refer to verb subjects, “O” links referverb objects and MV
links refer to verb modifiers, such as prepositional phrésésienotes a wild card for
sub link information):

1. Imitate: verb; 1 2
Sx  Ox
2. Abandon: verb; 1 2
Sx  Ox

3. Reconstruct: verb; 1 2

Sx  Ox

4. Dither: verb; 1
SX

5. Give: verb; 1 2 3
Sx Ox Oxn
Sx MVx Ox

No further information, such as timing, manner or place ubverbs is expressed
in their argument structures.

Situations where arguments are optional are expressedrayparentheses around
the optional argument number:

Hercule bought Jane a detective story.

Hercule bought a detective story.
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Buy: verb; 1 (2) 3
Sx Ox Oxn
WordNet gives some information similar to argument streetat a sense level in
its sentence frame relation for verbs. However, rather gtaowing optional argu-
ments explicitly, it enumerates various allowable struesyufor instance the following
example of give#5:

give, pay -- (convey, as of a conplinent, regards,
attention, etc.; bestow, ‘‘Don’t pay himany mnd ’;
‘‘give the orders’’; ‘*Gve himny best regards’’;
‘‘pay attention’’)

*> Somebody ----s sonething

*> Sonebody ----s sonebody sonething

*> Sonebody ----s sonething to sonebody

Whilst this basic representation of arguments is availdbkelevel of information pro-
vided by WordNet for verbal sentence frames is limited. Taply, the only argument
types found are “somebody” and “something”, making theefuless limited to es-
tablishing that a verb’s argument is either human or nondmum

6.2.3 Thematic structure

We have shown that verbs have an associated argument struetating to syntactic
relations of words in the surrounding context. However,enohthe examples shown
so far consider information about the semantic role thekdeet words may have.
Theta theory (Haegeman, 1994) describes such semantronafion in terms of the-
matic roles or theta rolegroles), refining the relationships between a verb and each
of its arguments. These assignments can replace argumecituses with thematic
structures.

The importance of thematic structures is widely recognibed as yet a standard
theory has still not been agreed. Different linguists defiifferent sets of-roles. At
one level, a linguist may choose labels which give very dpmelationships between
two words, such as in “John gave Mary some flowers”, “John” lsatabelled as the
giver, “Mary” as thereceivetr and “flowers” are thayivenitem. For the purpose of
the work presented here, a much more general definition witha small number of
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f-roles is considered. Such a definition restricts the péessibtationships to one of the
following roles across all verbs:

e Initiator
e Goal
e Essence

For the previous example, “John” is tiatiator of the action, “Mary” is thegoal of
the action, and “flowers” are tressencef the action.

As shown, the use d@f-roles considered for this work is rather restricted. Théama
reason for considering ttferoles of verbal arguments will be to generalise infornmatio
across different argument structures. Further detailgiasn in section 6.3.2.

6.2.4 Context Features

The remainder of the chapter shows how a WSD system can useitleas as the basis
of a definition of context for a statistical model. The maingmse for the statistical
classifier is to use a weight assigned to the importance df@@mponent of the context
during the disambiguation process for a given word. Suchrapoment of context
is referred to as a feature or statistical feature. Selgdtiese features is the most
important part of the creation of a statistical classifiemc® features are available,
their weights are trained according to a corpus of trainixeeples.

6.3 A New Statistical Technique for WSD

Many tasks in Natural Language Processing (NLP) have be&tethusing stochastic
models which capture information about some phenomenorloanbour of interest.
Using such statistical models for WSD has provided prorgisesults, but they still
suffer from the lexical bottleneck problem (Ide and Vémrio98) as there are limited
numbers of publicly available sense tagged corpora.

The WSD technique presented in this section is used in a Maxi@ntropy (ME)
framework that exploits the previously defined notion oftest (section 6.2) and se-
mantic similarity (chapters 3 and 4) to alleviate the lekimattleneck problem.
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6.3.1 Maximum Entropy

ME is a statistical technique that is becoming increasimgipular in NLP in tasks
such as machine translation (MT) (Berger et al., 1996)-plspeech (POS) tagging
(Ratnaparkhi, 1996), text segmentation (Beeferman etl@P9) and more recently
WSD (Suarez and Palomar, 1993, 2002; Dang and Palmer, R0€i2; et al., 2002).
Such classifiers provide a way to make use of contextualnmdtion to estimate the
probability of a classification, such as the linguistic sla$ interest for a word. The
idea of ME can be dated back to pre-biblical times in the wyi$i of Herodotus (425-
485 BC) (Berger et al., 1996), but only recently has enoughpmdational power been
available for maximum entropy to be used effectively. Thalgd ME is to create a
classifier that will select the most likely possibility (g the context some problem
lies in), without assuming anythingbout information that is not available at the time
of training. Furthermore, ME techniques are used when theceof information for
the model is known to be sparse, and thus where only estirotibe probabilities
of certain classifications are available. Therefore thédler is to find a statistical
distribution, p(d, ¢) whered is a decision and is a context, that can be used as a
classifier which maximises entropy, or uncertainty, sutif@constraints that represent
evidence used in the decision making process.

This section illustrates the use of ME to translate the Bhghiord “in” to its French
alternative. Section 6.3.2 introduces and justifies thek#tatures and classifier for
use in a WSD framework. Finally, these ideas are preliminaested to assess their
potential for WSD.

Basic Probability

The main interest in many NLP tasks is to characterise songglitic phenomena,
such as the determining meaning or word translation of a weodthat it closely

matches human judgements. A common approach currentlwewdtraining a statis-
tical system with judgements that have been manually deliefrom various sources,
such as annotated text corpora or recordings. Such systentisem tested with new
examples to check that they generalise sufficiently to leahdlre examples. This is
commonly achieved by reducing the original problem to onestimating the proba-
bilities of a finite set of possible classifications in ordefihd the most likely classifi-

cation.
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The most basic probability to start from is that for a knowtuaiion, where the
sum of the probability of all known examples must be 1.

Zp(e) =1 (6.1)
eeE
whereF is the finite set of all examples. Equation 6.1 defines the dossstraint for
a classifier. Using the example from Berger et al. (1996), are start to construct a
classifier, p, which given the English word “in” will prediits French translation.

The English word “in” has five alternative translations iekch; “dans”, “pandant”,
“en”, “@” and “au cours de”. Given 6.1, 6.2 must hold.

p(dang + p(pandant + p(en) + p(&) + p(au cours dg= 1 (6.2)

An infinite number of classifiers can be derived which meetthastraint imposed by
6.2. The Principle of ME recommends that probabilities sgeed in themost non-
committal fashion Where no empirical evidence is available, probabilitieswdd be
assigned without making any further assumptions regattiedistribution of the data,
and therefore probability is assigned as uniformly as fpdsgGuiasu and Shenitzer,
1985). This reduces bias that could arise in the classifieerao further information
about the translation of “in”, and given that French has nhtr possibilities for
the translation of “in”, the most non-committal distrilbariis shown in table 6.1. As
Berger et al. (1996) notes, this is not the most uniform madéhat would grant equal
probability to all French words.

Translation, f| p(f)

dans 1/5
en 1/5
a 1/5

aucoursde| 1/5
pendant | 1/5
Total 1

Table 6.1: Most uniform distribution for the translation“of”.

The availability of empirical evidence about human decisiallows a more com-
plex model to be created. For instance, equation 6.3 shovemstraint about the
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frequency of “in” being translated to either “dans” or “en”.
p(dang + p(en) = 3/10 (6.3)

Given 6.3, the most non-committal distribution is shown ablé 6.2. Adding the

Translation, f| p(f)

dans 3/20
en 3/20
a 7/30

au coursde| 7/30
pendant | 7/30
Total 1

Table 6.2: Most uniform distribution for the translation“af” given constraint 6.3.

further constraint 6.4 will, however, make the selectioraafuitable classifier less
obvious.

p(dang + p(a) = 1/2 (6.4)

Now the problem is to distribute probability evenly acrdss¢lassifierp( f), but this is
no longer trivial. In order to solve this, a way of measuring tiniformity of a classifier
is required, so that a classifier can be found that maximisdermity subject to any
constraints that apply to the classifier.

ME calculates a statistical classifier that has maximumrigmee about anything
outside the body of evidence with which it is supplied, i.ée tlassifier assumes
nothing about what is unknown at the time of training. Forghmple examples, solu-
tions are givenin tables 6.1 and 6.2. However, it can be de#iricreasing constraints
rapidly increases complexity, and that selecting a swetelalssifier soon becomes more
than a trivial task.

Features and Context

Basic probability alone is too simple to produce a usefussifger for most tasks. It
is impossible to predict the best classifications in mosblamms without considering
information other than the statistical distribution of ttlassification’s behaviour. A
common practice in NLP is to consider the context surroundi@ behaviour of the
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terms being modelled (Weaver, 1949). This is normally lgdito considering the
characteristics of words directly to the left and right of thiord of interest, referred to
as a context window. ME models individual components of egithat are of interest
asfeatures Such features help predict the behaviour of interest. 8tbez, we now
consider the problem of calculating the probability of sodeeisiond, given some
contextc by making use of information calculated for a set of features

The first task in constructing such a classifier is to seleetafksuitable features
from the context surrounding a word. In the example by Beegex. (1996), context
is defined as the words directly surrounding “in”. To selegtttires, a large corpus of
phrases containing the word “in”, together with their Fietr@nslation is used. Given
this corpus, the empirical probability of contexts and sifisations (or decisions), can
be calculated using equation 6.5.

1

__ (c,d)eSample

p(c, d) i (6.5)

whereN is the number of examples in the samplés a context and is a decision.
Selecting a feature set for some classifier involves chgosiset of contexts and de-
cisions that are significant in the decision making procéssan initial estimate, all
contexts and decisions could be used to generate the fesyralthough techniques
do exist for automatically generating feature sets fronpasrexamples, as discussed
in section 6.3.2. Features are considered as binary furs;tibe feature indicators, of
the form shown in equation 6.6.

(6.6)

fe.d) 1 : if disthe decision for contextgiven some constraint
c,a) = .
0 : otherwise

A feature can be interpreted agis a valid decision given some conteXt

In the example of translating the word “in” into French, thening sample shows
that if “April” follows “in”, the translation of “in” is “en” 9/10 times. The feature
indicator for such information is represented by feature 6.

1 : if d ="en”and “April” follows “in” in ¢
fle,d) = { P 6.7)

0 : otherwise

So, for each feature that is known to be significant, a bineagure indicator is intro-
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duced to model it.
Given these features, the probability that some feafuras seen in the empirical
data can be calculated with equation 6.8.

pf) = ple,d)f(c,d) (6.8)

wherep(c, d) is the probability that the decision d and context ¢ co-oattine empir-
ical data. Applying Bayes rule means that 6.8 can be reewiis 6.9.

Bl =D _ple)pld|e) f(c,d) (6.9)

Given that the final statistical classifier used must acelya¢flect the known facts,
the constraint shown by equation 6.10 must be true.

p(f) = p(f) (6.10)

wherep(f) is the probability of a feature being active as calculatdédgia statistical
classifier. With this constraint, the probability of a fe@wccurring is now calculated
using equation 6.11.

p(f) =D _ple)p(d|e)f(c,d) (6.11)

This allows the possibility of automatically calculatiniget conditional probability,
p(d|c), to generalise the statistical model given by the empiniistribution,p(d|c),
but in such a way as to still conform to the distribution in trening samplep(d|c)
forms the basis of the classifier in the final classificatiosteam.

The Maximum Entropy Framework

A training sample of data yields information about the decis made within different
contexts; however this only accounts for a small portionlipassible situations due
to the sparse nature of the data for the task being modellegltakk of ME is to train a
classifierp(d|c), that conforms to the empirical distributions of the tramsample but
in addition remains as uniform as possible for all other oltses. Given information
about how features affect decisions made in the test dadask is to find a classifier
that uses these features to calculaiéc). That is to say, the principal of maximum
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entropy is:

“To select a model from a sé&t of allowed probability distributions,
choose the model, € C with maximum entropy{ (p).”

ps = arg maxH (p) (6.12)
peC

where H (p) is the measure of uniformity. Berger et al. (1996) give thehmmatical
measure of conditional entropy as a measure of the unifgrofiip(d|c), as shown in
equation 6.13.

H(p) = —> p(c)p(d|c) log p(d]c) (6.13)

To ensure that the classifier will conform to the informatadoout the features, the set
C of allowable classifiers are defined by equation 6.14.

C={pePlp(f) = p(fi) Ni€{l,2.....n}} (6.14)

whereP is the set of all possible models ands the number of features used by the
classifiers.

A classifier,p(d|c), is constructed using the features collected from a trgisam-
ple. Berger et al. (1996) and Berger (1997) give a methodgusagrange multipliers
from the theory of constrained optimisation to train a MEseiéier. For each feature,
fi» a Lagrange multipliery;, is introduced. The Improved Iterative Scaling (1I1S) al-
gorithm (Berger et al., 1996; Berger, 1997) trains the Lageamultipliers for each
feature untilp, is found. The resulting classifier can be used to disambegnatv
examples using the formula in equation 6.15.

classification(c) = max  p(d|c) (6.15)

dedecisions(c)
wheredecisions(c) is the set of possible decisions for the word being evaluated

contextc. Appendix E gives further detail about the IIS algorithm &l framework.

6.3.2 WSD with ME

ME has been applied, with some success, to the field of MT @eeg al., 1996),
amongst many other NLP fields (Ratnaparkhi, 1998). For suelsla ME classifiers
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are trained using information from bilingual corpora. Rdrthe task of ME classifiers
is to select the correct word in the target language with dmesmeaning as the word
in the source text. This is similar, in principle, to selagtithe correct sense for a
word, given a finite number of senses from which to select. &ofrthe difficulty in
directly applying such approaches to WSD is due to the ladente tagged examples
from which to train, but also in part to the fine-grained natof lexical resources used
to select word senses. The following section describes hewME framework can
be used to produce a classifier for WSD, reflecting the digioh of the information
crucial to the WSD task, using the approach described inrndqus section. We also
show how word similarity techniques using WordNet's taxaryocan generalise the
model further. The WSD system produced differs to other M&WaNSD systems in
that a new definition of context is used, based on the syutactifiguration of a word
within a sentence, and because semantic similarity is usethtch words.

The main task is to define a ME classifigf/|c), to model the human decision
making process in selecting the correct meaning of a polgsemord within a con-
text. The reason for choosing ME as the framework from whigbroduce a statistical
classifier is that we can regard the Lagrange multipliergiass to features as weights
indicating their importance during the process of WSD. Ehfeatures reflect individ-
ual aspects of the context in which a word appears. The negudltassifier estimates
the probabilityp(w+#s|c), that the sense of a wordw was intended for the local con-
textc. Before we can proceed we must clearly define what is meartigxt and with
this in mind define the set of feature templates that will keduits produce features for
the classifier.

Context

The definition of context introduced here is based on thendtiat syntax plays an im-
portant role in classifying the meanings of words (Reifl&53; Towell and Voorhees,
1998). Therefore, for any given word in a sentence, contegefined as those other
words in the sentence which are deemed to be syntacticédiede an approach simi-
lar to that taken by Gougenheim and Michéa (1961). Thisgraoy to a large body of
previous work using ME WSD classifiers whose definitions aftegt use windows of
words surrounding the word for which the context belongstJave shown that the
optimum context window size for computation systems isdg|y of size 3, therefore
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the context of a word typically includes 3 content words te t&ft and right of the
word in question. This definition assumes that related wdrdectly surround each
other. However, in practice it is found that some of the mogtartantly related words
can be separated by large numbers of unrelated words, sudteasrelated words are
separated by a relative clause. Considering the syntaatictsre of a phrase, context
can be defined that is both compact, and contains only reladedis. Such a definition
of context may also model better the human behaviour to makgements about the
meanings of words within a very limited amount of informati®eifler, 1955).

Earlier evidence showed that the subject and objects ofla plaly an important
role in understanding its meaning, but now the idea must tenebed to consider other
syntactic relationships. Such syntactic relationshigsiaturn labelled with the par-
ticular functional or semantic role they represent withieit context. For instance,
consider the following example:

“John gave Mary flowers.”

The example sentence produces the CMU linkage in Figure B€ing 6-theory to

Xp

Opn
Wid Ss Os

{#itt John.NOUN gave.VERB Mary.NOUN flowers.NOUN

Figure 6.9: CMU Linkage for “John gave Mary flowers”
label the syntactic links to the verb “give”, we can produee lbcal context in 6.16.

[ambiguousword(give), initiator(man 1), goalwoman 1), essencgdlower, 1)]
(6.16)
In the example local context, the numbers represent thesonding WordNet word
senses, and the labelled relationships are representetebicqtes containing word
senses as arguments. For verbal arguments, this labedlirgsonably straightforward
as thed-roles of the noun complements can be automatically detdoden the verb’s
syntactic configuration. Notice also that the local contegtudes the main word of
interest, labelled as the ambiguous word. To produce thietdl context of a word we
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collect information about all the words of interest that ayatactically linked to that
word. Other information may also be of use, such as informnabout parts-of-speech
of surrounding words, and word co-occurrence as testedigr ME WSD techniques
(Suéarez and Palomar, 2002). However, for the purposessoivibrk, only information
collected from the syntactic relation of words is considere

For further types of syntactic relationships we must defihatthe relationship is.
In many cases the relationship we define merely substitotethé syntactic relation.
However, in other cases different syntactical relatiopslaire treated as equivalent and
therefore are assigned the same type of relationship. leraaddefine the relation-
ships, all the possible links available that are deemed tofbemative for WSD must
be considered. When looking at such links in detalil, it isphdlto concentrate on
information particular to individual parts-of-speech.€following two sections detail
the relationships currently defined for verbs and nouns. rAs#ial step to defining
the contexts of adverbs and adjectives, the inverse of thgaeships where they ap-
pear below could be used. This is currently untested andaagplcally only yield one
relationship in the context for either adjectives or adgerbost frequently the noun or
verb they are syntactically associated with. Local corstextly consider the canonical
form of words according to WordNet.

Verb Context Constituents: We have already shown an example of creating a verb
context using subject and object links. Given the syntamiidfiguration of the verb’s
arguments, the theta role of the verb are detected autaatigtidable 6.3 shows for
some CMU link configurations the interpretation which detigres the constituent of

Syntactic Link

Context Relationship \

Noun -S*- Verb <thetarole>(Noun, NounSense)
Verb -O*- Noun <thetarole>(Noun, NounSense)
Adverb -E- Verb verb attribute(Adverb, AdverisSense)

Verb -MV- Preposition -J*- Noun
Verb -P- Preposition -J*- Noun
Nour, -S*- aux -P*- Verb -MVp-| essence(NounNoun,_Sense) and
“by” -J*- Noun, initiator(Noury,, Noun,_Sense)

actionis_<Preposition-(Noun, NounSense)

Table 6.3: Verb Context Constituents
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a local context. A complete local context is created by abersng all possible con-
stituents in a sentence syntactically related to a word.

Also, CMU uses “B*” links to link back to nouns used outside thcope of the
argument structure for the verb under consideration. Thekg are evaluated to pro-
duce constituents of the type<thetarole>(Noun, NounSense)” depending on the
configuration of the noun and verb relative to each other.

Noun Context Constituents: Similarly to the verb context constituents, table 6.4
shows for some CMU link configurations the equivalent intetg@tion to make a con-
stituent of a local context.

Syntactic Link

Context Relationship \

Determiner -D*- Noun determiner(Determiner)

Adjective -A- Noun attribute of(Adjective, AdjectiveSense)
Noun -S*- Verb has <thetarole>(\Verb, Verh. Sense)
Verb -O*- Noun has <thetarole>(\erb, Verh Sense)
Nourn, -AN- Noun, or modifier(Noun, Noun,_Sense) and
Noun, -Mp- “of” -J*- Noun, modified(Noun, Nour,_Sense)

in(Nouny, Noun,_Sense) and
contain(Noun, Noun,_Sense)
on(Noun, Noun,_Sense) and
hold(Noun, Nourp,_Sense)
to(Noun, Noun,_Sense) and
to_rev(Noun, Noun._Sense)
Noun, -Mp- “under” -J*- Nour, or | under(Noun, Noun,_Sense) and
Nour, -Mp- “over” -J*- Noumn over(Noun, Nourp,_Sense)

Verb -MV- Preposition -J*- Noun or
Verb -P- Preposition -J*- Noun

Nour, -Mp- “in” -J*- Noun,

Noun, -Mp- “on” -J*- Noun;

Noun, -Mp- “to” -J*- Noun,

done <Preposition-(Verb, Verh Sense)

Table 6.4: Noun Context Constituents

Feature Templates

ME classifiers make use of a set of statistical featuresect@tl prior to training the

classifier, in order to predict the statistical distributimf a given data set. The features
typically reflect individual, or combinations of, consgtuts of local contexts, there-
fore the features for the ME classifiers use information aioetd in the components
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of context described in the previous section. The simptash fof feature for the con-

text definition would match words given word-form; howevie ffeatures used here
go further by matching words using semantic similarity.sTisiachieved by consider-
ing WordNet's lexical taxonomy using the techniques désctiin chapter 4. This is

discussed later in this section.

In order to generate features from some source, featurdaées@re used to collect
specific information of interest. Using the basic layout ééature, open slots defined
in the feature templates are filled using relevant infororaéixtracted from examples.
For instance, the following list of equations gives the fieas templates for handling
verbs and their nominal arguments.

fle,d)

fle,d)

fle,d)

if the ambiguous word im is a verbvA

B(v,d, < FeatureVerb >, < FeatureVerb_Sense>)A

c contains an initiatof with sense A (6.17)

v(i,is, < Featurelnitiator >, < Featurelnitiator_Sense>)
otherwise

if the ambiguous word im is a verbvA
B(v,d, < FeatureVerb >, < FeatureVerb_Sense>)A
¢ contains a goay with sensegysA (6.18)
v(g,gs, < FeatureGoal >, < FeatureGoalSense>)
otherwise

if the ambiguous word i is a verbvA

B(v,d, < FeatureVerb >, < FeatureVerb_Sense>)A

¢ contains an esseneevith sensez; A (6.19)

v(e, es, < FeatureEssence>, < FeatureEssenceSense>)
otherwise

wherev(nq, ng, no, ngo) is a boolean function which is true when noun sengé,;

is similar to no#ng and 5(vy, vs1, v, vs2) iS @ boolean function which is true when
verb sense #uv,, is similar tovs#v,,. Further templates are used to create the features
pertaining to other components of context as defined in t@@us section. Additional

to such templates which gather information from local cetstea further set of features
models the distribution of senses for a word. Such featuresn&roduced to reduce
potential problems when using semantic similarity to matcinds, because multiple
similar words may distribute senses differently. Feataneglates for such features are
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of the form illustrated by 6.20.

L if the ambiguous word ir is <FeatureWord> A
fle,d) = " d =< FeatureWord_Sense> (6.20)
0 : otherwise

These features are referred to as distribution features.

The example from the previous section is used to illustrate & set of features is
created for it. It was shown that the sentence “John gave Kianers.” produces the
local context 6.21 for “give”.

[ambiguousword(give), initiator(man 1), goalwoman 1), essencdlower, 1)]
(6.21)
Now, further local contexts are considered for all otherteahwords in the sentences,
as shown in equations 6.22, 6.23 and 6.24. These additional tontexts model
“give” as having sense 8 (give#8) according to WordNet 1.6.

[ambiguousword(man), hasinitiator(give, 8)] (6.22)
[ambiguouswvord(woman), hasgoal(give, 8)] (6.23)
[ambiguousword(flower), hasessencgive, 8)] (6.24)

Using feature templates, such as those described aboveree®.25 to 6.34 are ex-
tracted from the local contexts generated from the example.

~ ifthe ambiguous word ir is a verbv A 3(v, d, give, 8) A

fle,d) = " ccontains an initiatof with sense; A v(i,is,manl) (6.25)
0 : otherwise

if the ambiguous word ir is a verbv A (v, d, give, 8)A

fle,d) = " ccontains a goaj with sensey, A v(g, gs,woman1)  (6.26)
0 : otherwise

~ ifthe ambiguous word ir is a verbv A 3(v, d, give, 8)A
fle,d) = " ccontains an esseneavith sensez, A v(e, e, flower, 1) (6.27)

0 : otherwise
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if the ambiguous word i@ is a nounn A v(n, d, man 1)A
1 : contains a verly with sensev, with n as its initiaton
fle,d) = ¢ _ " (6.28)
Ble, es, give, 8)

0 : otherwise

if the ambiguous word im is a nounn A v(n, d,woman 1)A

1 : contains a verl with sensev, with n as its goah
fle,d) = ‘ . nasisg (6.29)
6(67 637 glve7 8)
0 : otherwise

if the ambiguous word i is a nounn A v(n, d, flower, 1)A

1 : contains a verly with sensev, with n as its essence

fle,d) = ‘ . " (6.30)

B(e, es, give, )

0 otherwise

fled) = 1 if the ambiguous word im is the verb “give’A d = 8 (6.31)
0 otherwise

fled) = 1 if the ambiguous word i is the noun “man’A d = 1 (6.32)
0 otherwise

fled) = 1 if the ambiguous word i is the noun “woman’A d = 1 (6.33)
0 otherwise
1 if th bi dimis th “f "Nd =1

fed) = if the am iguous word im is the noun “flower (6.34)
0 otherwise

Sources for Generating Features: A number of possible sources of information to
create features are available. Ideally, the source of stfomnation will give direct ac-
cess to a wide variety of examples without generating exeegsiantities of features.
The first two of these sources have already been mentiondgkindntext of provid-
ing potential information for creating selection resioats, although their limitations
become more problematic for use in generating statistezlies:

o \WordNet

WordNet offers both sentence frames for verbs and gloss ghegrfor its synsets
which potentially provide sources for generating featundswever, the infor-
mation currently available in WordNet is not adequate to edufor this task.
Firstly, the sentence frames are too general to producelusébrmation, and
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the glosses are fairly ad-hoc and do not give a rich enougtcsaf informa-

tion to create an adequate set of features. On a positivematgh, if adequate
information were available, then this information wouldealdy be related to
word senses and thus would provide a direct source of inflilom#or generating
features. Work is in progress to provide improved senteran@d information

(Baker et al., 1998).

Other lexical resources can be considered. However, adinéquired to Word-
Net's senses in order for the resource to be useful.

e Levin Verb Classes (LVC)

The LVCs offer a source of information for different classéverbs and their
possible complements. It can provide a wide coverage seafifes. However,
there are doubts about whether the information is variedigindo be useful
for a ME WSD system. A further problem is that the concepts\oC& verbs
and WordNet are not yet related, although work by Green g¢2@D1a,b) may
provide the necessary information to link the two resources

e Corpus examples

Using examples from a pre-tagged corpus can retrieve advseieof examples to
use as a feature set for a ME WSD classifier. In practice, wdirayailable ex-

amples to produce a feature set is not desirable for two nsagdrstly, too many
examples introduce additional problems as some examplgsomdradict each
other, or the sheer number of examples could deteriorat@spra. Secondly,

the high number of features introduces unnecessary coipieto a statistical

model, thus increasing the time required to train and tautale results from the
classifier for new examples.

Similarity Relations: In order to match words and word senses using semantic simi-
larity, the features use four similarity relations, onedach part-of-speech, that match
concepts via information about WordNet's lexical taxononiye similarity relation

for nouns uses techniques described in chapter 4. Howeveelations have been
defined previously for verbs, adjectives and adverbs. et handle the remaining
parts-of-speech, a set of simple heuristics is used. WHents® adequate heuristics,
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care was taken to use only the strictest relationships iardadensure reliable results.
The following section details the heuristics used for eactilarity relation.

Noun Relations: Chapter 4 details a number of different parameterised ndstho
for calculating semantic similarity between two noun sersesed upon the hypernym
structure of both senses. For the purposes of this work, amh ghe results from
chapter 4 for the cross lexicon labellingBS M, 5 is used with non-flattened layman
structures and normalised results. In order to use thisune#s produce a boolean re-
sult for whether or not two senses are similar, a threshdleevaf 0.19296, taken from
results for labelling Wordsmyth thesaurus entries, is usHderefore, the similarity
relation for two nouns is given in 6.35.

SimNouns(ni, ng,ne, ng) <= SBSMys(ny,ng,ng, ng) > 0.19296  (6.35)

wheren, andn, are nouns, and,; andng, are sense labels far, andn, respectively.

Verb Relations: For verbs, the heuristic in 6.36 is used to check WordNexs le
cal taxonomy for the existence of some specific relatiorsship

Synonym(vb Vs1, V2, UsQ)\/
StmVerbs(vy, vs1, V2, Us2) <= hypernym(vy, Vs, V1, V1)V (6.36)

antonym(vl7 Us1, V2, U32>

wherev; andwv, are verbs, and,; andv,, are sense labels fox andv, respectively,
synonym(vy, vs1, V2, Vs2) IS true only if vi#vg andvo#vg, are synonyms, the direc-
tional relationshiphypernym (v, vs, ve, vs) IS true only ifvi#v,; is a hypernym of
vottvge, @ndantonym(vy, vs1, Vo, Ugo) IS true only ifv#v,; andv,#ug, are antonyms.

Adjective Relations: As with verbs, similar adjectives are detected using a Beuri
tic, illustrated in 6.37.

synonym(ay, as, as, as)V
SimAdjectives(ay, as, az, as2) <= antonyml(ay, a1, as, as)V (6.37)

pertainym(ay, as, o, )
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wherea; anda, are adjectives, and,; anda,, are sense labels far, anda, respec-
tively, andpertainym (v, vy, v2, vs2) IS true only ifv1#v,; andvs#u,, are pertainyms.

Adverb Relations: Finally, similar adverbs are detected by heuristic 6.38.

synonym(ady, adsy, ads, adg)V
StmAdverbs(ady, ads, ady, adsy) <= antonym(ady, ads, ads, ads)V — (6.38)

pertainym(ady, adgy, ads, adgs)

wheread; andad, are adverbs, andd,; andad,, are sense labels fard, and ads
respectively.

Feature Reduction

Once an initial set of potential features is available, fesshould be reduced to con-
sist only of those features useful for WSD. Using all thesgainfeatures is likely to
produce a model over-trained to the training examples frdnthvthe features were
extracted. Four different approaches are proposed fochegdeatures:

e A manual feature reduction process.
e A mathematical feature induction approach.

e Two linguistically based feature reduction approaches.

Of the least practical solutions proposed is the manualifeagelection process.
The manual process involves testing a trained ME classifidraamalysing erroneous
results. Analysis of the features used in the calculatiograneous results may show
that some features are unhelpful to the WSD process, and aykaow some con-
tradicting features creating difficulties for the WSD preseFor instance, in the tests
presented in section 6.3.3, it can be seen that for the vavie™,ghe initiator from
many senses is “person#1”. As such, this evidence is uniegpthe WSD process as
it does not discriminate between senses of the verb “give’fatt, as later senses of
“give” only have examples for which “person#1” is the inftg these senses are gen-
erally preferred when little additional evidence is avaléain a word’s context. This is
clearly an undesirable situation, therefore such featsineslld be manually removed.

An established mathematical technique for inducing festfnom a set of potential

features is given by Berger et al. (1996) and Pietra et a@%19997). The method they
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propose captures the salient properties of the empiris#iition of the training data
by incorporating an increasingly detailed collection ohtieges. This allows better
generalisation to new examples. New features are greedilgdy incrementally, to a
ME model by calculating the improvement each candidateufeadds to the model.
The candidate features initially comprise of all the patdreatures extracted from
the training data and any other feature source. In orderltulede improvement, or
gain, the 1S is required to estimate the Lagrange multipla# the candidate features.
Once the gain given by the remaining candidate featuresnbessufficiently small,
the iterative method stops adding new features.

An initial linguistically-based approach is to group infeation common to mul-
tiple word senses of a word into a single feature. SuarezPatdmar (1993, 2002)
propose a set of template features that group informatiom fseveral examples into
one feature, referred to as set-features. Their approacittsen a reduced number of
features at a marginal degradation of accuracy, aroundd ii%he tests presented.
This approach can be applied in a selective manner to the petext features. If
more than one word sense of a word shares the same comportkeirafontexts, for
instance the initiator of a verb, above a high threshold abdly, a single feature can
model the component of the context shared by multiple wonde rather than using
multiple features.

Finally, a new linguistically based approach is proposed thay also be used to
further reduce the number of features used in a WSD ME modptesented in this
chapter. As the features proposed use semantic similarityatch words, it may be
found that a number of features will be similar to each othestmeaning they may
apply to the same examples. For instance, a particular \@rbesmay have either
“man#1” or “woman#l” as an initiator, therefore producingptdifferent but similar
features. Two such features may be reduced to one featurengyrajising their initia-
tors using their most informative subsumer (as defined iptenal), therefore produc-
ing a single feature where “person#1” is the initiator. Sad¢kechnique can be applied
to any group of features where the arguments of the featueesudficiently similar.
However, some care must be taken. If this process is perfbiman unsupervised
fashion, some important information and distinctions maydst.

Detailed discussion of the above techniques is outsidedbpesof this thesis as
each technique relies on there being a working implememtati a ME training algo-
rithm. As such, the creation of such reduction techniquéfti®pen to investigation.
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Other Considerations

Due to the use of similarity to match concepts instead of worth, the standard
framework for ME becomes unsuitable for use with the featwaescribed here. The
main problem is that for any given ambiguous woid,in a local context, its possi-
ble decisions are the senses for the wardccording to WordNet. If two or more
such senses are similar, independence between the difééasnrifications is no longer
possible, and as such features that match with the similanimgs will add to the
normalisation value. In the situation where only exampte®he of the similar senses
are available, the empirical distribution of the sensesmeler be calculated properly
due to the increasing size of the normalisation value. Tigiin will very quickly
produce a computational overflow issue during the calautatif the normalisation
value. In order to avoid this, the standard normalisatiorcfion 7, (c) is adapted to
handle dependant decisions. If two different senses maitthtlae exact same exam-
ples they could be treated as applicable as each other ie #imtions. There are
naturally cases where they do not both match with the sanof sgamples due to the
non-transitive nature of the similarity measures used (@xe chapter 4). In such a
case, the more likely of the two senses should take precedétmwvever, the shared
examples should also be reflected in the calculation of Keditiood.

Consider the standatd, (c) function, illustrated in 6.39.

Z)\(c) = ZGXP <Z)‘z’fi(c7 d)) (6.39)

Itis currently assumed that each decision is independetitiis is not always the case.
If decisions are now treated as sets of unrelated decisifyig) can be represented as:

Zy(c) = > expZi(c,D) (6.40)
DeS(c)

whereS(c) is a set of similar sets of word senses for the ambiguous wordThere-
fore, all decisions or word senses/inwill be similar to each other. Using this normal-
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isation may result in the situation illustrated by 6.42.
p(dlc) > 1 (6.42)

The situation in 6.42 will occur if two or more senses of thebegnous word in the
local context are similar, as they may both be applicableaat qff the surrounding
context in which they appear.

6.3.3 Experiments

Prior to the more formal experiments documented in this@ectests were performed
to see if such a ME classifier would produce promising resultsdo this, the verb
“give” was selected as a test candidate. “Give” was chosénisbighly polysemous
(45 senses), and thus provides a challenging problem tstigate. It has been shown
that the more ambiguous a word is the more frequently it i uisevery day language
(Zipf, 1945; Jastrezembski and Stanners, 1975; Jastrestenit981). By making a
larger number of examples available, a variety of diffi@dtior WSD and a large
amount of variations in the contexts in which such words atmél can be examined.
If a word with few senses is chosen, for which few examplesagadable, little varia-
tion in the word’s uses would be found. Additionally, the @@y on such a simpler
problem will also do little to help in an open-text situatj@as again in practice the more
ambiguous words in a language tend to be found more frequelatyi to day examples,
therefore highly ambiguous words cannot be ignored. Thasalitests helped in as-
sessing the required feature templates and the influentasimg similarity measures
has on training a ME classifier. Ideally, more than one wordesirable for such an
analysis. However, given the time needed for producing dogliired tagged corpus
of examples, analysis was initially restricted to “givetefminary results from test-
ing the initial classifier created for “give” with some hatadlored examples yielded
promising results.

After the preliminary tests, attention was turned to sediog well such a ME
classifier would perform with WSD. It is important to note tlaa no form of feature
reduction or feature induction has been used, results miextd@ere give an indication
of the lower bound to the potential accuracy that would beeetgd for the classifiers.

The goal of the experiments presented in this section isstaftthe ME classifiers
produce interesting and expected results in their curant fnot to provide a conclu-
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sive evaluation comparing the WSD classifiers to other teghas. This is because the
classifiers created do not currently represent a complete 8yStem, and a number of
elements remain unfinished. The first experiment evaluasesgée ME model trained
to perform WSD for all test words. Experiment 2 assesseshenaireating separate
classifiers for each word improves results and the effecéwioving distribution fea-
tures. Experiment 3 determines if the current ME classittarsbe used to reduce the
cost of manually labelling word senses. Finally, experitdesmssesses the performance
of the best classifiers produced on two tasks:

1. Disambiguating words senses for contexts where moreath@mword in the con-
text is a test word, and where the context words have unknewses.

2. Disambiguating examples of the test words where the cosemse was not seen
in any of the training examples.

Experiment 1 Creating a WSD ME Classifier to Disambiguate Diferent Words

As an initial experiment, it was decided to see if a unified M&ssifier could be
created for WSD. A unified classifier uses a single statisticadel to handle all in-
put words. To create such a classifier, a corpus of test amdngadata was created
since there were no publicly available corpora containiathlthe sense information
required about words and the syntactical structure redquo@enerate local contexts
for sentences. A number of considerations influenced exyetial design:

e The time required to create such a corpus;

e The number of words required to show that these ME classiraduce reason-
able results;

e If any tools are available to aid in the creation of such aasrp

Within the framework set out so far, it was decided to only tesources required by
the WSD system and to include the verb “give”, for which ddteaaly existed, plus ten
reasonably ambiguous nouns found within the same locaégbas “give”, presented
in table 6.5. Sentences containing any of the above words wsdracted from Sem-
cor to create the sample database. Thus far, sentencesaag/nonyms or similar
words to those tested were not intentionally extracted dude amount of time re-
qguired to manually process the data subsequently. If amynmdtion is available for
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Word Senses
Dog

Eye

Family

give
Information
Instruction
Party
Report
Suggestion
\ote

Work

N

~N~Noooa~NoOoh~h oo N 01O

Table 6.5: Number of Senses per Test Word According to WordMNe

similar words, then this is available as these similar waaacidentally appeared in
the sentences extracted. Table 6.6 summarises the informettracted from Semcor.
The table includes all sentences containing the words efest, regardless of part-of-

Word Number of Sentences
Dog 37
Eye 177
Family 124
Give 677
Information 132
Instruction 16
Party 53
Report 195
Suggestion 20
\ote 55
Work 429

Table 6.6: Summary of Example Sentences

speech and whether the CMU parser generates a usable linkégge only Semcor
sentences where the nouns are sense labelled were useel hauths in the test. These
sentences were then parsed and checked manually using eypfllication’s inter-
face to the CMU link parser 2.3. In order to produce adequade@eaningful linkages
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from the CMU parser, it was necessary to split or rearrangeessentences. In total,
1,971 linkages were created from the input sentences. Assilple word collocations
were automatically detected and checked using the infeom&bm the original Sem-
cor tags. From the resulting data, the local contexts faraitent words were extracted
automatically, giving a total of 10,966 local contexts. As® Semcor sentences were
changed to produce adequate parses from the CMU parsernbe tags for all the
words had to be labelled manually. This gives the basis ofitta to be used for both
training and testing the ME classifier. Table 6.7 shows theraye polysemy of the
final dataset.

Average Polysemy
All Test Word Examples 22.1 Senseg
Test Noun Examples 6 Senses

U7

Table 6.7: Average Polysemy of Examples in Final Dataset

The local context data was divided so that the contexts fot @Dall sentences was
reserved as training data, and 30% for test data.

Training the ME WSD Classifier:  Using only the training data, a total of 14,635
possible features were generated from the local contexhples. From these fea-
tures, a complete set of empirical probabilities for thénirg examples and features
were calculated and cached for use with the training algoritBy caching this infor-
mation, the performance of the training algorithm is im@dWby reducing redundant
calculations. It is worth noting that the strictest intefation of probability was ap-
plied to the training data, i.e. that the data constitutedraplete and closed set of
examples. An alternative to such an approach could be torasatileast one unknown
example, therefore removing cases where some examplessagaed probability 1 by
introducing a margin for error. Where many examples arelavia for a word sense,
this error will be small. However, if only one example is dable for a word sense
the error introduces a larger influence. It was decided napfuy the later approach
during these experiments as it assumes information thatismaoluded in the training
data. However, this is deemed to be satisfactory in the dabésdNVSD problem as it
is known that the dataset is not closed, and that importareles may be missing.
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For a ME classifier to be completely trained it must accuyateimpute probabili-
ties that match with the empirical distribution of the tiam sample, and it must also
be as uniform as possible. This would not necessarily beatdsias the ME WSD
classifier would become over-trained to the training exaspand would not neces-
sarily generalise well to new examples, a widely recognmetllem often referred to
as overtraining. As the classifier is intended for use in W&uation 6.43 is used to
measure the accuracy of the classifier.

Accuracy = ¢/n (6.43)

wherec is the number of correct classification according to Semauerby a classifier
andn is the number of examples used to test the classifier. Intehsawhere two
senses have the same conditional probability, the sensetlatlowest sense ID is
selected. This equation provides the information used tasme the success of the
classifier as in practice the primary and dual problems of kgparely measures about
the statistical model itself. Figure 6.10 shows the clas3sfaccuracy over the training
data. Unfortunately, the classifier could not be trained pasation 31 as the Lagrange
multipliers for features become too large to compute thelitammal probabilities using
standard floating point precision numbers. This is mostyikiele to contradictions in
the training data requiring large Lagrange multipliers rdey to more closely match
the empirical distribution of the examples. It may also be ttusome unhandled factor
due to using similarity relations in the features, though thharder to determine as it
would most likely appear as contradictions in the data.

Analysing the results, however, shows some interestingasp It seems likely
that a classifier with such complexity would require many eniberations before all
words would reach their maximum accuracy, but for “dog”,v&ji and “report” we
see a negative trend emerging up to iteration 32. For “dogrisses 2, 3 and 4 re-
late to human type definitions, and given the high percentdgexamples of words
similar to “person#1”, we can assume that at iteration 13chassifier starts to as-
sign senses 2, 3 or 4 higher probabilities for certain exampl‘Report” shows a
more worrying trend. This is easily understood due to theineadbf WordNet's def-
initions for “report”. We see that out of the 7 senses avédldbr “report”, 3 senses
are very closely related via “information”, and one furtisense related also to these
3 senses via “communication”. Given the fine-grained destom between over half
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All Word Classifier Accuracy During Training
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Figure 6.10: All Word Classifier Accuracy During Training

of the senses of “report” it makes it likely that most of thesatassified examples are
genuinely ambiguous given the contexts being consideoed$tance:

“She wanted his report first thing in the morning”

Here, “report” may refer to a verbal report, a written acdpanstudy or a paper. The
correct interpretation here is clearly influenced by infatimn not contained in the
local context. Results for “give” are discussed later iis gection.

Overall, using the input sentences as a source of featuageuate for this type of
ME classifier. However, the problems encountered and sortteeahisclassifications
in the training data can be attributed to not reducing theufesset so that only relevant
features are considered.

Testing the ME WSD Classifier: Attention is now turned to the accuracy of the new
classifier in sense tagging the test data. This test is peedrto see if the classifier
generalises well to new examples. Figure 6.11 shows theaocof the classifier at
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All Word Classifier Accuracy with Test Data
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Figure 6.11: All Word Classifier Accuracy with Test Data

disambiguating the test data at various iterations of itnginThe test accuracy results
give a mixed picture. Overall the results are fairly modest,the range of accuracy of
the words is large. We could assume that dog would get goadtsess only examples
for sense 1 are found in Semcor. Again, at iteration 13 we #p B accuracy due
to a human related sense of “dog” being selected. The pooltsdesr “give” are also
unsurprising given the training results. Results for “Vatee surprising though, even
given the low number of examples available. Looking at thammary of the results
we can see that the classifier starts to assign a higher gliop#d “vote#5” than to
any other sense of “vote” for the test examples. Given thexietlare no examples for
“vote#5” in Semcor, features taken from other words thatsarelar to “vote#5” bias
the results. For the other test words there is evidence a@raltto improve, but we
do not yet see the typical signs of overtraining. This sutggtst further training is
possible, but does not give further information about theepisal of such a classifier.
The performance across all evaluation words is shown indg@r12 and 6.13,
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Overall Summary for All Word Classifier Accuracy During Training
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Figure 6.12: Overall Summary for All Word Classifier Accuydauring Training

Overall Summary for All Word Classifier Accuracy with Test Data
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Figure 6.13: Overall Summary for All Word Classifier Accwyatith Test Data
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firstly using the training examples, and then using the testples. The red line on
the figures represents results when classifying all wordisartraining and test set, and
the blue represent results when only classifying nouns. oMeeall performance with
the training examples is greatly impaired by the results‘¢ve”. However, when
considering only the test nouns the classifier gives pramgisésults. The results for
the test examples imply that the classifier has not yet saldilas there are no clear
indications of overtraining. There is an initial dip in acaay explained by the fact that
prior to training, at iteration 0 the classifier always pitke first, and most frequent,
sense of words. For Semcor this gives high accuracy as thébditon of senses in
WordNet was calculated using frequency counts from Senttowvever, the accuracy
of such an approach for other corpora tends to be lower asmknated in the Senseval
2 English lexical sample test where the overall accuracgdtecting the most frequent
sense is 47.6%. As the classifier starts to make more infopreatictions, the number
of errors made initially increases compared to selectimgfitist sense. By the 16
iteration the accuracy starts to increase. Currently, thesdier does not generalise
well given the substantial gap between training exampletesictexample accuracy.
Considering only the performance with the test exampleas ctassifier currently
reaches its best performance for all evaluation words etiten 5 with all test words,
and at iteration 31 when only considering nouns. Table 6dvstthe results at this
iteration. In order to provide a baseline accuracy, the i@ayuwhilst only considering
the first sense for the test words is included in table 6.8.0fdiog to WordNet, the
first sense of a word is the most frequent sense within the 8eoarpus. Whilst
this baseline provides the percentage of instances theséinste of a word is taken as
correct within the Semcor corpus, it tells us little abowd tomparative performance
of the classifier against other WSD systems. Also, as theiéecy of word senses in
Semcor was used to order senses in WordNet, it is expectedubh a baseline will
be biased for Semcor. This is reflected in similar baselioealternative corpora, for
instance for the Senseval lexical sample test data, only df8#erds are assigned the
first sense in WordNet (Note that the lower baseline of 45%&v/Hy influenced by the
verb “give”. The most polysemous word in the Senseval ldxdample test has only
16 senses). It is further reflected by the fact that the nosellyee here is higher than
the human inter-tagger agreement rate of 57% between Seandathe DSO corpus
(Kilgarriff, 1998a). Other work follows the gold standartiSenseval to implement an
alternate WSD system such as an adapted version of Lesk)(1B@@vever, it is not
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Word All Word | First Sensg Noun Best Noun First
Best Accuracy] Accuracy| Accuracy| Sense Accuracy
Dog 100% 100% 84.62% 100%
Eye 33.33% 95.56% 40% 95.56%
Family 46.67% 42.22% 46.67% 42.22%
Give 3.93% 21.35%
Information 35.71% 62.5% 35.71% 62.5%
Instruction 60% 60% 60% 60%
Party 25% 56.25% 18.75% 56.25%
Report 36.36% 72.73% 36.36% 72.73%
Suggestion 66.67% 66.67% 66.67% 66.67%
\ote 33.33% 50% 0% 50%
Work 22.03% 38.98% 28.81% 38.98%
All Words 23.97% 45.06% 38.63% 61.48%

Table 6.8: Best Test Data Results For All Word ME WSD Classifie

possible within the time available to do the same here. Als®current system only
represents a prototype of a ME WSD system. As such, a numbaewfents which
may improve the classifier, such as feature reduction, aswailable as a working
ME training system was required prior to the developmentumhselements. The
experiments presented here do not represent a full scdlsa¢ioa of such a ME WSD
system, only preliminary tests.

Problems with give: The results for verb “give” show some discouraging results a
this stage. It is expected that the results would be at bedestg@iven the ambiguity of
the verb. However, the results for the test examples aresatjls under twice better
than random (1/45). We can also see from the results thatitaesto “give” that the
classifier cannot be trained further, as some of the stisfi the training examples
for “give” become incomputable at iteration 32. There arecemaging results up
to iteration 4. However, the classifier quickly degenerditem that stage on. To
understand why this is occurring we must look more carefallthe results.

Accuracy only gives us information about the most likelysefor each example.
However, to have a more complete impression of what is ocwuwith the classifier,
it is beneficial to consider where the correct sense occusslist of senses ordered
by the probability assigned by the classifier. The averagk od the correct sense
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in such a list can be used as a measure to see if the WSD MEf@agsimproving
or deteriorating in accuracy. Figure 6.14 shows the averagje of the correct sense
of the verb “give” when testing with training data (red lire)d test data (blue line).
The graph in figure 6.14 gives a clearer idea of how the classsfiperforming. Over

Average Rank Assigned to Correct Sense
of "Give" Using All Word ME WSD Classifier
T T T

Rank
>

A | ——TestData
—— Training Data

L L L
8 16 24 32

Iteration

Figure 6.14: Average Rank Assigned to Correct Sense of “Gigeng All Word ME
WSD Classifier

the course of training, the correct sense of “give” accaydmthe Semcor examples
becomes more likely compared to other senses, showingdhe progress is made in
improving the ME classifier. By the/5iteration, on average the correct sense occurs in
the top 9% of senses as ranked by the classifier. In contfassifications for the test
set produce the best ordering of senses at iteration 28 whem®rrect sense occurs on
average in the top 14% of senses ranked by the classifier]atéhiterations showing

a slight deterioration in results.

Throughout these experiments, all the potential featuvaad in the training ex-
amples were used for the ME classifier. The likelihood is thahy of the features
over-complicate the statistical model and consider m@tehips that are potential con-
tradictions, or do not assist in the task of WSD. Such exasipldude features that are
highly probable for local contexts that differ in the worehse assigned. For “give”, we
see that in many cases the initiators and goals of the verbdory different senses are
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people. This leads us to assume that in most cases we argereisied in modelling
such facts. Until suitable feature induction techniquesdaveloped for this classi-
fier, it is impossible to tell how significant any improvemevduld be with a reduced
feature set.

Experiment 2 Creating Individual Classifiers for Specific Wards

The first experiment generated a single WSD classifier fomarg using a ME WSD
classifier. Given the inherent difficulty in the field of WSDgmduce single statistical
models capable of modelling all words in a language to a heghllof accuracy given
limited training data, it is common to find that individual dweds are created per word
in a language for WSD. Words attain their best accuracy déreifit stages of the
training, and due to the examples and features for “give’ctassifier is only trained
up to iteration 31. By splitting the single classifier intéfelient classifiers, one for each
test word, it is also possible to train the classifiers furtltes assumed that results will
improve as only relevant examples from the corpus are ceresidby each classifier,
and there is also the benefit of using classifiers at varyargtions of training for each
of the words.

Experimental parameters of the first experiment were rethivhere possible, specif-
ically:

e The same data is used
e The feature set from the first test remain the same

The training and test examples are splitinto 11 sets sut¢lintleach set only examples
of words similar to the word of interest are kept. This alldas11 different classifiers
to be trained, one for each word of interest. Table 6.9 shtvesdata available for
evaluating each of the classifiers independently. The “Nemd§ Similar Training
Examples” column shows the number of examples for words de&dg training that
are semantically similar but have a different word form te tast word. For further
detail about the distribution of the examples for each segeAppendix F. Two tests
are performed with the different example sets. Firstly, Wallause the same features
from experiment 1. A further experiment is performed to sew lthe distribution
features affect these classifiers by removing such didtobdeatures. The results of
both tests are then combined to give a final combined result.
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Number of Number of| Number

Word Training | Similar Training of Test F\,Spl.lt

atio

Examples Examples| Examples

Dog 25 364 13 | 65.79%
Eye 113 72 451 71.52%
Family 83 407 45 | 64.84%
Give 406 32 178 | 69.52%
Information 81 225 40 | 66.94%
Instruction 10 270 51| 66.67%
Party 46 299 16 | 74.19%
Report 47 292 22 | 68.12%
Suggestion 16 279 6| 72.73%
\ote 12 110 6 | 66.67%
Work 142 252 59 | 70.65%

Table 6.9: Data Available for Each Word of Interest

Results Using Distribution features: Figure 6.15 shows the disambiguation accu-
racy of each new WSD ME classifier with the training exampl€ke effects of the
additional training can be seen immediately. The chart sitgvs that the individual
word classifiers attain success earlier in training prqcass classifiers can be trained
much further than before. The improvement in the initiagstof training for indi-
vidual words is due to the comparative simplicity of the sléiers in comparison with
the large complex classifier used for experiment 1. Figut® 8hows training up to
iteration 304. However, most classifiers were trained mugcthér to see if further
improvements were possible.

Results for “report” show surprising characteristics.Ha first experiment it could
be seen that toward the later stages of training, the acgtoadisambiguating “report”
showed a slight negative trend. This trend occurs much iatére new classifier, but
is more dramatic. Again, this is probably due to not redudimg feature set, and
because four different senses of “report” are very simildnis means that some con-
text examples are insufficient for resolving the ambiguityeg the fine-grained sense
distinctions contained within WordNet.

“Give” shows similar difficulties with the new classifier, toagain will not train
past iteration 31 without feature reduction. Given thaadat other similar verbs was
not specifically collected, this is expected to some extent.
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Different Word Classifiers Accuracy During Training (Using Distributional Features)
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Figure 6.15: Individual Word ME WSD Classifier Accuracy DhgiTraining

Figure 6.16 illustrates the accuracy of disambiguatingtés¢ examples with the
new classifiers. The accuracy of the classifiers with thesbemtnples shows an overall
trend to improve over more training iterations, except foarty” where the best re-
sults are attained during early iterations. This suggestsgesovertraining for “party”
almost as soon as the classifier starts training. This mayééotagging errors within
Semcor, for instance consider the sense of “party” in:

“She wrote it down right between the weekly PTA meetings &edlthurs-
day night neighborhood card parties.” (Semcor Source08rplaragraph
16 sentence 1)

Here, a natural interpretation of “party” would be WordNehse 2, meaning a so-
cial event where people are gathered for entertainment.eMervSemcor has “party”

tagged as sense 4, meaning the actual group of people thgattwered for pleasure.

Further similar examples exist within Semcor. Such inaacis not only skew results
from the classifier, but may also cause contradictions withé features extracted that
create difficulties for the ME WSD classifier.
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Different Word Classifiers Accuracy with Test Data (Using Distributional Features)
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Figure 6.16: Individual Word ME WSD Classifier Accuracy witst Data

Table 6.10 summarises the best test results for each watidgghe best training
accuracy during those iterations, the first sense accumaaybaseline, and quoting the
best iterations. The best iterations are found by detenyithe set of iterations for
which the best test results are attained, then by consglérabest training results for
those iterations and the lowest average rank for the caseatde. Overall results show
improvement over those of experiment 1. However, result§dive” are not signif-
icantly improved and results for “vote” are worse (partlyedo a lack of examples).

Results Without Distribution features: A similar set of classifiers without distribu-
tion features was also tested. This may improve the restitsroe classifiers as each
classifier is trained only using relevant examples for thedihbe classifier represent,
and the distribution of senses may be less affected by thebdiSon of similar senses
for different words. Disambiguating the training exampbeer the various iterations
produces the graph in Figure 6.17. Without using the distitim features, more
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Word Best Test Teséng:é Training Fi;;aslrgrr:ge Iterations
Accuracy Accuracy

Accuracy Accuracy
Dog 100% 100% 100% 100% | All Iterations
Eye 62.22%| 95.56%| 92.92% 92.04% 295—
Family 53.33%| 45.22%| 90.36% 48.19% 212—
Give 3.93%| 21.35%| 23.15% 21.67% 4
Information 40% 62.5%| 72.84% 61.73% 1
Instruction 60% 60% 100% 50% 112—
Party 31.25%| 56.25%| 71.74% 54.35% 1
Report 27.27%| 72.73%| 27.66% 72.34% 1
Suggestion| 66.67%| 66.67% 100% 56.25% 226-367
\ote 50% 50% 100% 91.67%/| All Iterations
Work 30.51%| 38.98%| 74.65% 39.44% 3
All Words 29.19%| 45.06%| 55.86% 45.57%
Nouns 46.69%| 61.48%| 78.96% 62.43%

Table 6.10: Best Results for Individual Word ME WSD Class#i@Jsing Distribu-

tional Features)

Different Word Classifiers A
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6.3 A New Statistical Technique for WSD

classifiers have difficulties during training, namely thfiseé'family” and “suggestion”.
This suggests that for those words, distribution featuigtp@duction of a better clas-
sifier. For “suggestion” this is possibly due to the lack oamples and thus the dis-
tribution features present a more important role in the W3argss. However, the
same cannot be said for “family”. Looking more closely at $kases of “family” sug-
gests that the classifier could have problems with the siityilaf the senses relating to
“group”, and therefore using distribution features hefpgeiducing errors by favouring
the selection of frequently occurring senses for a givemmgte. The classifiers with
training problems when using sense distribution featurksisow the same behaviour;
however the overall accuracy attained while training shenmgsificant improvement.
Figure 6.18 shows the graph of results for disambiguatiaggeeeamples using the
new classifiers without distributional features. “Dog” fsems marginally worse here

Different Word Classifiers Accuracy with Test Data (Without Distributional Features)
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Figure 6.18: Individual Word ME WSD Classifier Accuracy DhgiTraining

as the classifier selects a “person” definition in a limitednber of cases. “Party”
also shows slightly worse performance, although this wbel@éxpected if the corpus
contained incoherent sense tags. “Family” portrays sontkeoproblems present for
“report”, due to similarity within a number of the sensestu word, and now it can
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only be trained up to iteration 261. “Instruction” and “segtjon” also perform worse,
although this is likely to be due to the lack of examples tedatning suitable features.
Overall, however, the results achieved without using selisteibution features give
significant improvements over the results with the distitou features as they tend
to perform better with words that have larger numbers of gtam Whilst still not
giving adequate accuracy for “give”, there is a significanprovement. Table 6.11
summarises the best results for the classifiers not usimgodigson features.

Best Test Test First Training Training :
Word Accuracy Sense Accuracy Sense First Iterations
Accuracy Accuracy
Dog 92.31% 100% 100% 100% 2—
Eye 64.44%| 95.56%| 93.81% 92.04% 67,68
Family 37.78%| 42.22%| 65.06% 48.19% 10
Give 10.67%| 21.35%| 26.11% 21.67% 1
Information 70% 62.5% 96.3% 61.73%| 354-696
Instruction 40% 60% 90% 50% 6—
Party 18.75%| 56.25%| 95.65% 54.35% 46—
Report 54.55%| 72.73%| 70.21% 72.34% 45-48
Suggestion| 33.33%| 66.67% 100% 56.25% 42-55
\ote 66.67% 50% 100% 91.67% 30-65
o o o on| 104-139,
Work 38.98%| 38.98%| 92.25% 39.44% 141-150
All Words 34.71%| 45.06%| 62.59% 45.57%
Nouns 51.36%| 61.48%| 88.35% 62.43%

Table 6.11: Best Results for Individual Word ME WSD Class#i@/Vithout Distribu-
tional Features)

From the current experiment, 22 different classifiers haenlproduced to perform
WSD on 11 words. If the best classifiers for each word are tadethe results in table
6.12 are achieved. Whilst the overall accuracy of the systeross all words is fairly
low, the tests performed here show results for extremetsing given the average
polysemy of the words used in the tests. The words testedanbigher classifier pol-
ysemy than would be expected for typical words in WordNetvenan standard texts.
Statistics about word polysemy in the tests performed, iwitkiordNet and in open-
texts are summarised in table 6.13. Given the additionadeseto consider, and the
lack of feature reduction, these results can be seen asrmsealues for the approach
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Best Test Test First Training _Training

Word Accuracy Sense Accuracy First Sense
Accuracy Accuracy

Dog 100% 100% 100% 100%
Eye 64.44%| 95.56%| 93.81% 92.04%
Family 53.33%| 42.22%| 90.36% 48.19%
Give 10.67%| 21.35%| 26.11% 21.67%
Information 70% 62.5% 96.3% 61.73%
Instruction 60% 60% 100% 50%
Party 31.25%| 56.25%| 95.65% 54.35%
Report 5455%| 72.73%| 70.21% 72.34%
Suggestion| 66.67%| 66.67% 100% 56.25%
\ote 66.67% 50% 100% 91.67%
Work 38.98%| 38.98%| 92.25% 39.44%
All Words 37.7%| 45.06%| 64.83% 45.57%
Noun 56.42%| 61.48%| 92.17% 62.43%

Table 6.12: Best Performance for Individual Word ME WSD Gifisrs

Test| WordNet| Natural Text
POS Average| Average Average
Polysemy| Polysemy| Polysemy
Noun 6 1.23 ~4.7
Verb 45 2.17 ~8.3

Table 6.13: Statistics about Polysemy

described. The results when only considering nouns aregVvenvvery promising.
Improvements in these results are expected to follow from afsfeature reduction
techniques.

Experiment 3 Improving the Cost of Manual WSD

The previous experiments show that the current accuratyeaflaissifiers is inadequate
to perform automatic WSD to the quality required for apgiimas. In order to use
output from the WSD classifiers, each classification mustheeked manually. One
way in which the classifiers can aid manual WSD is to reducetimeber of senses to
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be considered, therefore simplifying the task for a humggea This is a natural way
forward, for when erroneous classifications are made thecisense classification is
typically ranked highly according to the classifiers.

A cost function is firstly required in order to test the impeovent possible by
reducing the number of senses being considered during WS8ume that the “cost”
of tagging a word is proportional to the average number ofseffior all words in a
text being annotated, hence the cost function for taggingalwhen an incorrect
classification is made is given in equation 6.44.

c=Tn (6.44)

whereT is the average time to disambiguate a word, ard the average number of
senses for a word minus one. Now suppose that only a reducederwof sensesyn
on average, are supplied to the human tagger, then the cashies:

c=aln (6.45)

wherea is a parameter that reduces the senses being consideréslisimplest form,
« is the proportion of senses to be considered, and is boundumstien 6.46.

0<a<l (6.46)

However this does not take into account situations wheredhect sense is not listed
in the reduced set of senses being considered. On averageladsifier will have a
probability, p., of the correct sense not being a member of the set of redwress.
The total cost function is therefore represented as:

c=aTn+(1—-a)pTn (6.47)

The cost function can be further simplified, &s is a constantk, for a given set of
words, so we can write:

c=k (a +pe - ape) (648)
C

r:E:a—l—pe—ape (6.49)
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wherer is the relative improvement in the cost of tagging whilshgsa WSD classifier

to reduce the senses being considered. With the relativeoireament function, if

a = 0, the classifier only picks the most probable sense meanirge additional
relative cost for checking other senses will be the errottlier classifier. The worst
case scenario is when = 1, as the human tagger must consider all word senses (i.e.
the number of senses is not reduced).

Testing the best classifiers produced in experiment 2 welttst function 6.49 for
considering senses not initially selected by the classifienduces the graph in Figure
6.19. The red line represents the results when disambigytte test examples, whilst
the blue line shows the results for disambiguating nounse gieen and magenta
lines represent the manual tagging cost of all words and s\oespectively at sense
reductiono. For both nouns and all word tests, the classifiers mininhiseelative cost
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Figure 6.19: Selection Reduction Cost Reductions

of manual tagging by selecting a sense and then leaving laefu26% of the leftover
senses as potentially correct. The additional cost of nipneteecking senses assigned
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to words at this stage is 0.4 for both all words and for noutnss & equivalent overall
to a potential 60% reduction in the cost required to manuditambiguate words in
open-texts.

A further way of reducing the senses for a word would be tocsedenses which
meet the condition expressed in 6.50 given the results frenckassifier.

p(c|s) > plelsy) x t (6.50)

wheres is a sense for the ambiguous word given in context is the most likely sense
selected by the ME classifier ands a threshold. In order to evaluate the efficiency of
reducing the number of senses to consider, the results steoeffiect of the threshold
over the proportion of senses being considered and thetiresabst. These results
are illustrated in Figure 6.20 for all words, and Figure 6f@lnouns. The red line
shows the percentage of senses being considered at thtestina blue line represents
the error of the classifier at threshdldand the green line represents the manual cost
tagging cost at reduction threshdald
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Selection Reduction 2 Results for Nouns
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Figure 6.21: Selection Reduction 2 Cost Reductions (Nouns)

Both graphs show that by using thresholds few extra sensesoaisidered before
t = 0.1, although this is not totally unexpected. Given the re&yivsmall number
of examples, there may be aspects of the test contexts natlleddy the features.
This, together with the number of training iterations usadiie classifiers, means that
some more generic aspects of the test contexts misleadabsfetrs into being fairly
confident about incorrect classifications. A confident dfesswill assign a relatively
high probability to a small group of senses compared to atbeses of a word. Un-
fortunately the gain made in precision when consideringensenses is not significant
enough to warrant using such a technique for reducing théeuof senses being con-
sidered. It is unnecessary to test for when the thresholétisden 0 and 0.1, as this
represents the weakest results from the classifiers aneftinemwill select more incor-
rect senses resulting in an increase in the cost of manuigbyrbiguating the words.
The best results are shown in table 6.14.

Given these results using 6.50, the initial sense redudéohnique of adjusting
a in 6.49 is preferred as a method for reducing the cost of mMlaM&D. The sense
reduction technigues show that even error-prone techsigaie lead to significant cost
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% of Extra

Cost| Threshold Senses
Considered

All Words | 0.524 0.4 9.2%
Nouns 0.435 0.6 17.7%

Table 6.14: Best Results for Threshold-Based Sense Reducti

benefits over manual sense tagging.

Experiment 4 Tests Using Ambiguous Contexts and for Handlig Untrained Word
Senses

Handling Ambiguous Contexts These experiments have determined how well the
classifiers can classify words given unambiguous localecdat However, the situa-
tion where context words are ambiguous has not been testeal.cbmplete system,
as described in section 6.1, the senses to be considered&irwords have already
been reduced, and some words will have even been disaméijuéth Yarowsky’s
one-sense-per-collocation and one-sense-per-dischypseheses (Gale et al., 1993;
Yarowsky, 1993, 1995). At this point in time not enough dats\available to be able
to create other partial taggers and to extend the curretigtgtal component to work
with more words. With more data, the effect of calculating groduct of the prob-
abilities of any combination of senses could be used to ssktses from multiple
ambiguous words. Applying such an approach means thatdemasion must be made
about optimisation due to the combinatorial explosioniagi$rom the number of pos-
sible sense assignments (Wilks et al., 1990). This expetichemonstrates the effects
of simultaneously disambiguating two words, and demotedrthat the classifiers can
generalise to the point of disambiguating word senses fachwvho training data was
available.

Examples are selected from the Semcor data where “giveégtmtontain a noun
for which a classifier has been created, and the equivalemtcantexts were also used.
Rather than exhaustively testing every combination ofiptessenses, the senses of the
words in the context will be set to 0, as sense 0 considerglafles of a word at once.
Disambiguating the example phrases produces the resuiétblan6.15, where the rank
of the correct sense is presented when it is not selected stslikely.
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Sentence| Sentence Frame Training/ | Noun “give”

ID Test Data| Result Result
br-k18 “...she'd give#0 me a look out of narrowgdTest Correct | Incorrect
para-26 | eyes#0...” 4th
sent 2

br-p12 “...softening eyes#0 gave#0 her a look...” Training | Correct | Incorrect
para-41 12th
sent5

br-g11 “...the family#0... gives#0 us both some immu-Training | Correct | Incorrect
para-1 nity... and a way...” (note the 2 local contexts fpr 2nd

sent 6 give)

br-a02 “...the ballot couldn’t give#0 enough informa-Training | Correct | Correct
para-36 | tion#0... for the voters...” and Test

sent 1

br-f03 “...priest... gave#0 him... information#0...” | Training | Correct | Incorrect
para-24 ond

sent 1

br-j11 “Detailed information#0 on record lengths... |isTest Correct | Incorrect
para-14 | given#0 in the section...” 2nd

sent 1

br-jo1 “...give#0 otherwise unobtainable informa-Test Correct | Correct
para-2 tion#0...”

sent 2

br-jo3 “They also give#0 information#0 which will Training | Correct | Correct
para-6 aid...” and Test

sent 3

br-114 “...who gave#0 the information#0...” (“person”Training | Incorrect| Incorrect
para-29 | substituted for “who”) 3rd 12th
sent 2

br-j37 “Both parties#0. .. were busily atork. .. trying...| Training | Correct | Correct
para-7 give#0 the elections a... degree”

sent 5

br-c04 “The party#0... gave#0 the “chorines* |aTest Incorrect| Incorrect
para-39 | chance...” 5th 3rd

sent 1

br-k29 “...permission to give#0 a camp reunion Hal-Training | Correct | Correct
para-6 loween party#0..."

sent 2

br-a02 “...give#0... afavorable report#0...”" Test Correct | Correct
para-22

sent 2

br-j34 “They will give#0 suggestions#0...” Test Correct | Incorrect
para-3 2nd
sent 6

br-j34 “...his suggestions#0 are given#0 the consideratidmaining | Correct | Incorrect
para-12 | they deserve...” 2nd
sent9
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br-h11l “This work#0 gave#0 a heatf_formation...” Training | Correct | Correct
para-1 and Test
sent 2

Table 6.15: Ambiguous Context WSD Test Results

For the Semcor examples tested here, very promising remeltseen. In some cases,
the selected senses considered incorrectly classifieddvadsb make for valid inter-
pretations. However, the test performed here is to see hdiithveeclassifier predicts
Semcor’s sense classification. Table 6.16 summarises gwesfmn of the classifiers
selecting exactly one sense, and selecting a reduced sehsés for further disam-
biguation. The most likely reason for the relatively goodulés in this smaller test

Precision
Classifier Selecting 1 sense 65.6%
Classifier also considering 25% of 87 5%
senses other than the most likely '

Table 6.16: Precision Summary for Ambiguous Context Test

compared to experiments 1 and 2 is that all contexts useddostain a number of

relationships. In the previous tests a number of contextsemted containing smaller
numbers of relationships, for instance only a determinged to the noun. More

words and relationships make for a richer context, allowimgre information to be

available to the ME WSD classifier. Primarily, results foive’ are dramatically bet-

ter for this smaller test.

Handling Unseen Senses A further aspect of the classifiers to be considered is the
ability of the classifiers to generalise sufficiently to aigaguate senses for which no
examples were available in the corpus. This is possible @$edtures use semantic
similarity to match words instead of word-form. Given that word sense disam-
biguated examples for such senses are currently availdi@gyroblem in question is
how to evaluate the classifiers’ performance at generglignsuch new senses. In
order to show that this generalisation is at least possibéenall number of examples
containing word senses similar to the word senses of irntaresselected, as long as
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the context still makes sense when the words are replacédtétword of interest.
Table 6.17 shows the selection, giving with each examplsdtsce and the result of
disambiguation after the word of interest has been substitinto the example. Ex-
amples of classifying contexts with the missing senses gf timily, instruction and
suggestion are not given here as the best classifiers creatizdl make use of sense
distribution features, making them much less likely to gahge to new senses. The
classifiers not making use of sense distribution featureb@weever, show evidence of

br-p01 paragraph 12 sentence 1

“...glued to DrexelStreet...”— “...glued to eye...” or ... glued to the eye...”

“Eye” successfully labelled with sense 4, meaning a cerftarlacation.

br-k17 paragraph 34 sentence 3

“...getinside Majdanek. .. “...get inside the eye...” or “.. . get inside the eye of thg.ci.”
“Eye” successfully labelled with sense 4, meaning a cerftarlacation.

br-j55 paragraph 16 sentence 1

“...defending. . .through loopholes. . - “defending. . . through eyes...”

“Eye” successfully labelled with sense 5, meaning a hole.

br-g31 paragraph 11 sentence 9

“...atmosphere...content.. = “...atmosphere. .. information. . .”

“Information” successfully labelled with sense 2, meanitaga.

br-j32 paragraph 1 sentence 1

“...organize the...contents.. 2 “...organize the...information...”

“Information” successfully labelled with sense 2, meanitaga.

br-e23 paragraph 18 sentence 2

“...illusion of depth...”— *“.. .illusion of information...”

“Information” successfully labelled with sense 4, meansedective information/entropy.
br-e30 paragraph 67 sentence 1

“...eye to minimum inconvenience to the operation.—". .. eye to minimum information to the operation...”
“Information” successfully labelled with sense 4, meansedective information/entropy.
br-e25 paragraph 23 sentence 1

“...adescription of the. .. parts.. = “...areport of the. .. parts...”

“Report” sense 5 is as likely as sense 1, where sense 5 istarweialuation.

br-j31 paragraph 3 sentence 2

“...saying in a...condemnatory tone..=2 “...saying in a...condemnatory report..."
“Report” sense 5 is as likely as sense 1, where sense 5 istarweialuation.

br-j12 paragraph 7 sentence 4

“...criticism of...views..."— “...reports of...views..."

“Report” successfully labelled with sense 6, meaning a ausitjpn/paper.

br-f03 paragraph 19 sentence 3

“...impulses in...associated word symbols. —"“...impulses in...associated word reports. ..”"
“Report” successfully labelled with sense 6, meaning a ausitjpn/paper.

br-j37 paragraph 8 sentence 1

“...deterioration of local party organization-* “. .. deterioration of local party vote.”

“Vote” successfully labelled with sense 4, meaning a bodyobérs.

br-h18 paragraph 8 sentence 1

“...agenda of...dozens of international bodies.—~™. .. agenda of. .. dozens of international votes. ..”
“Vote” successfully labelled with sense 4, meaning a bodyobérs.

br-j06 paragraph 2 sentence 2

“...determine values. .. of...reactions. =2 “... determine votes. .. of. .. reactions...” or “... det@rereaction votes. ..”
“Vote” successfully labelled with sense 5, meaning a vaiendut.

br-g15 paragraph 1 sentence 1

“...number of characteristic elements. =% “... number of characteristic votes...”

“Vote” successfully labelled with sense 5, meaning a vaiendut.
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br-g14 paragraph 6 sentence 1

“...record of afew pictures..."— *“...record of afew works. . .”

“Work” sense 5 is as likely as sense 2, where sense 5 is a bodgr&ffrom a writer.
br-j19 paragraph 19 sentence 7

“...votes for.. . pair of pictures...> “...votes for. .. pair of works. ..”

“Report” sense 5 is as likely as sense 2, where sense 5 is adbeeyrk from a writer.

Table 6.17: Examples of Disambiguating Word Senses Wherérbioing Data Was
Available

this kind of generalisation.

Currently, the results in table 6.17 are possible withollecting further examples.
However, results could be improved by including sentencegaining words similar
to the test words in the training data, thus producing a eoagread of examples.
We must also assume that results are biased towards sensésdh examples have
been collected; this is clearly seen with contexts comaimieterminers and for clas-
sifiers created with limited numbers of examples. This isabnge any examples for
words similar to those particular words’ senses withoutgxas in Semcor have been
collected by chance.

6.3.4 Limitations

The current limitations of the technique introduced in @hspter can be categorised
as; test limitations, data limitations, or feature reduttimitations.

Test Limitations

There are two subcategories of limitations in the testsqmtesi here; the type of tests
performed and the objectivity of the tests performed. Tlassifiers produced thus far
only comprise part of a total WSD system, as described attéineaf the chapter. The
intention of the statistical component tested in this cbastto make a decision, given
the senses remaining from previous components of the WSteraysegarding which
sense is most likely for the ambiguous words. As such, thesiflars make use of very
tight contexts that do not use any cross sentential infaomanor information about
other words outside the local contexts. If the tests weréopaed by human partici-
pants, it would be likely that different conclusions woulkel tmade by the participants
to the classification of the sense found in Semcor. Therefanaly be more sensible
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to compare results from the classifiers with results from &snvhen given the same
information. This would reflect a more suitable test for theywn which the classifiers
work.

The objectiveness of the tests is also a consideration,egsdt not give results
to directly compare with results from other existing tecjugs. The situation is com-
pounded by using examples for words with an average polyggegter than the av-
erage polysemy for full texts. A word like “give” cannot givesults indicative of the
performance of classifiers to disambiguate most other veflnés can be addressed
either by implementing other technigues and testing theti the same data, although
the data sample is small, or by collecting enough data to etalyepeat the Sense-
val tests for which test results are available for a large Imemof different techniques.
The latter approach is preferable as Senseval currenttgsepts the gold standard for
evaluating WSD techniques.

Data Limitations

Given the small number of both syntactically and sense ledbelxamples available it
is not possible to perform more large scale evaluationssaaatire documents, nor is
it currently possible to disambiguate adjectives or adserthis has been due to the
cost associated with manually checking the syntactic gtras produced by the CMU
link grammar parser.

A further problem with the data is due to the way in which thateeces were
selected. All sentences containing at least one word ofastevere extracted from
Semcor. Local contexts for all words in the selected semtemere kept as the clas-
sifiers could be trained with, and make use of words similahetest words. The
classifiers would benefit from being trained with as many gxdasof words similar
to the words of interest. However, not all sentences commgiat least one word sim-
ilar to a test word were extracted. This may have produceskbiaesults by omitting
examples from Semcor that could have been used to train tHe MiSclassifiers. By
using the data from similar words, the classifier could bmé@ with a richer source
of more varied examples.
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Feature Reduction

Currently all features have been collected from trainingnegles. However, their
validity and usefulness remains to be evaluated. This wessetily increases the com-
plexity of the classifiers, and causes incorrect conclissiofe made during WSD. For
instance, considering the examples for the verb “give’s itlearly seen that most of
the time the initiator and goal of the verb is “person#1” favshsenses of “give”. In-
deed, for some of the senses for which there are few examp&smcor, all examples
use “person#l” for the initiator and goal if they are avd#abrhis would indicate a
conditional probability of 1 for later senses of “give” whidre context only comprises
of an initiator similar to “person#1”. It would be more bermi to consider the ear-
lier senses of “give” given such a weak context. Clearly #isws that such features
actually hinder the performance of WSD.

6.4 Future Work

The work presented leaves many aspects for further inagiigbefore it can be used
for large scale WSD. Given the automatic method used foectiig features from
example local contexts, the most immediate requiremertasriplementation of a
suitable feature reduction technique. A number of techescare briefly discussed in
section 6.3.2. However, the implementation of such teakesds beyond the scope of
this thesis. Once an adequate reduced set of features latdgawork should con-
centrate on creating further example data from Semcor,egsahsnd further available
sources, in order to test the technique using the Sensepatiments. With this data
available, classifiers could be created and evaluated aetiyely against other WSD
techniques.

Evaluating the impact of using semantic similarity to matards in features, com-
pared with using only word-form, is currently untested. Therent hypothesis is that
by using semantic similarity the coverage of the featurdshei expanded, and thus
require less training data to give comparable results. &hes two tests that should
be performed to measure the effectiveness of using sensamiiarity in the statistical
features:

1. Firstly, the “similar word” relations for each part-gbeech should be defined to
be true only if both the word-form and sense are the same &pdir of words
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being tested. With this change to the relations, new classifvould need to be
trained using the same data as the classifiers presenteid chpter, and then
the two different types of classifiers could be compared &ifs@atching using
similarity improves results.

2. Classifiers using the current feature set could be traangédusing data for sim-
ilar word senses and not with specific examples for the wofdisterest them-
selves. The classifiers should then be tested using all¢océéxts for the words
of interest to evaluate how well they perform WSD on examfbesvords not
used in the training data. This would give an indication ofvisuccessful the
classifiers could be at disambiguating word senses for wincexamples were
available.

Another aspect of the current work which should be testedpewatively is the defini-
tion of local context introduced in this chapter. The diéflece in the accuracy attained
from using syntactic relations to create local contexterathan using a more tradi-
tional context window should be tested, where a context awncepresents context as
then content words directly surrounding the word being evaldiate

In order to further improve WSD accuracy using only the MEssléers, a number
of options should be considered:

e Using Discourse Representation Structures (Kamp, 198ihpas to the system
instead of only the syntactical structure, in order to sedseies with anaphora
and to include cross sentential relationships to provicleer local contexts

¢ Implement features from other WSD ME classifiers, for instathe features
tested by Suarez and Palomar (2002); Dang and Palmer (2B0i#h et al.
(2002), and test features reflecting the syntactic straadfifocal contexts and
morphological information

There is also no reason to restrict the statistical compdieernly the ME paradigm.
During the course of the work it was found that the constaierimation calculated for
training lends itself almost directly to creating Suppaetior Machines (SVM) (Boser
et al., 1992; Cortes and Vapnik, 1995), a technique cugreéatjarded as state-of-the-
art for statistical classification. A simplified descriptiof SVMs is that they can be
used to create binary decision trees (Platt et al., 200@h Sulecision tree contains at
each node a SVM capable of making a binary choice. Trainin§\¥ls is typically
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much faster than training ME classifiers, as SVMs are puraineéd for classification
and not to predict some conditional probability of the diecigor some context. This
gives the possibility of improved results using the curteaining method of splitting
the data into training and test data. However, it can alse tjie possibility of training
using cross validation techniques (Stone, 1974). This midakmssible to use a larger
percentage of the data for training data, whilst still emsgpithe classifier can generalise
well to new examples.

Finally, it is not the intention to use the statistical teiciuge alone to perform WSD
across full texts, but to use such a technique as a pargjgetan a larger WSD system
as described at the start of the chapter. In order to comtilet®¢/SD system, other
partial taggers must be created, potentially using the skateeas used by the statistical
technique. With all four partial-taggers implemented,gffectiveness of such a multi-
tagger technique can be evaluated.

6.5 Summary

In this chapter, a definition for context based on syntaatid semantic features of
language was introduced. This new definition was used inristion of a statistical
classifier for the purpose of WSD. The Maximum Entropy fraroguyas used by other
WSD and classification systems, was followed to create acidin of classifiers. Fi-
nally a number of tests were performed to evaluate the usedslof such a classifier in
isolation of further processing. In order to perform thdédea corpus of local contexts
was generated from selected sentences in Semcor for 11 wifdan average poly-
semy of 22.1 senses. From this corpus, 70% of the selectéelh®es were reserved
for training the ME WSD classifiers and the remainder foritgst

Table 6.18 summarises the results for the ME WSD classifiedssambiguating
the training examples taken from Semcor. Iterations privduthe best results while
disambiguating the test examples are used to create trmdesre

Table 6.19 summarises the best results for the ME WSD clessdt disambiguat-
ing the test examples, again taken from Semcor.

It is difficult to objectively compare these results with slecof other techniques, as
the test presented here is too small and no other technigwesdeen evaluated using
the same data. Also, techniques using similar syntacticomghes for context, such
as the approach taken by Lin (1997), group senses to fornse@oaense distinctions
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Classifier All Words | Nouns
A.II vv‘ord.classmer, with 56.50%| 80.04%
distribution features
Individual word classifiers,
with distribution features
Individual word classifiers,
without distribution features
Best individual word
classifiers

55.86%| 78.96%

62.59% | 88.35%

64.83%| 92.17%

Table 6.18: ME WSD Classifier Training Summary

Classifier All Words | Nouns
A.II vv‘ord.classmer, with 23 97%| 38.63%
distribution features
Individual word classifiers,
with distribution features
Individual word classifiers,
without distribution features
Best individual word
classifiers

29.19%| 46.69%

34.71%| 51.36%

37.70%| 56.42%

Table 6.19: ME WSD Classifier Test Summary

in order to avoid difficulties with handling similar meansgdrhe average polysemy of
the test words is also higher than would be expected in a Adextaand significantly
higher than the average polysemy of the words in WordNet.ithatdhlly, currently the
features which form the basis of the ME classifiers are autically extracted from
the training examples and do not undergo feature reductidns has the effect of
the classifier using an unnecessary number of featuregasicry computation time.
Examining the majority of the training results, it can berstet the features selected
seem reasonable, as most of the training examples arefiddssirrectly; however the
results with the test data are much lower indicating thatesofrthe features selected
may produce erroneous classifications and do not genevaiteAs such, it is argued
that the results presented here estimate the baselinsiprecand recalls for the type
of classifier developed in this chapter.
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Given the high accuracy required for the purposes of usingsS®Wé improve the
results of translation systems on open-texts with domadadhtapic variations, there
are currently no systems capable of working completely pedeently from human
involvement. Given this situation, ways of reducing the bemof senses to be con-
sidered during WSD were developed, along with a way to meathar relative cost of
manually disambiguating a text. The cost ratio measure isséidstrated by equation
6.51.

r=a-+ p.— ape (6.51)

wherer is the cost ratiogq is the proportion of leftover senses to be considered once
the most likely sense according to a classifier has been rethendp, is probability

that the correct sense is neither the most likely sense diogpto the classifier nor part

of the set of extra senses being considered. When congyddtiword sensesy = 1.

Two different ways of restricting senses were considereeaaluated to see if they
significantly reduce the cost of manual WSD

e Selecting the first% of the most likely senses, other than the most likely sense.

e Selecting senses where the probability of the sense isegreatequal to the
product of the probability of the most likely senses and stimeshold.

The best improvement followed from selecting the 25% mastyi senses, after con-
sidering the most likely sense, with a cost in the order of Ulis suggests an reduc-
tion of 60% in cost over considering all senses of words beisgmbiguated whilst
performing manual WSD.

Testing was concluded by showing examples from the traiamdjtest data where
both the verb “give” and one of the test nouns are found in #meeslocal context. This
small test yielded some higher than average results ussylEhWSD classifier. The
results are summarised in table 6.20. These above aversgigsrazere most likely
obtained due to the nature of the data collected, as the detapecifically collected
to handle most of the context words in the examples. For tigetdests, most contexts
tested only consist of one of the test words.

Finally it was shown that the classifiers generalise sufiityeto handle examples
for words senses for which there was no specific training.da@tas is possible due
to the use of semantic similarity in the statistical feasuiee match words with similar
meanings (rather than word-form).
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Precision

and Recall

Classifier Selecting 1 sense 65.6%
e T 0

Classifier also considering 2§A) Df 87 5%

senses other than the most likely

Table 6.20: Precision Summary for Ambiguous Context Test

Overall, the current state of the work shows promising tesubenseval 2 scores
range from of 28.7% precision and 3.3% recall for the lowasked system to 69%
precision and recall for the best system for the “all worcleation on 3 texts totalling
5832 running words. The best results for the Senseval 2dkegalection evaluation,
a similar evaluation to tests presented here using 45 difteavords with an average
polysemy of 5.2 senses, perform at a slightly lower prenigsiod recall of 64%. Even
though direct comparison with these results is not posdideresults presented in this
chapter compare favourably with the state-of-the-artesystevaluated in Senseval 2.
As feature reduction techniques are not yet available, theent results represent a
lower bound to the potential accuracy of such a disambigoagchnique. Further
work to establish larger training data sets would permieotiye comparison with
other research results.
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Chapter 7
Conclusions

This chapter summarises the work and results presenteckithdsis. Section 7.1
recaps the techniques presented in chapters 4 and 6, diggtissquality of the results
obtained by the test systems developed. Section 7.2 prefutsee work to extend the
work presented. Finally, section 7.3 summarises the daritan made to the fields of
study.

7.1 Summary of Work Presented

The research presented in this thesis build upon two didiglds of research:

1. Semantic Similarity

2. Word Sense Disambiguation (WSD)

The best resulting system developed from the work with séimamilarity is used in
the work performed for WSD.

7.1.1 Semantic Similarity

Semantic similarity between words is measured using Wot'dINxical taxonomy for

nouns to produce a number of similarity measures for use ab-#ask of larger natu-
ral language processing (NLP) systems. The work developsigimal approach using
WordNet's hypernym and meronym relations. By considerimgghape of hypernym
structures, and reducing such structures to only consiogesfor non-technical lay-
man concepts, the similarity measures produced outperéxisting measures. The
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shape of hypernym structures is calculated using eithepith@uct or sum of the hy-

ponym branching of nodes within the structures and the satatture can be reduced
to a layman structure by removing concepts where the averalgesemy of the words

for the concept is not greater than one. Using these ideasnher of different mea-

sures are produced, each capable of considering threeetiffg/pes of structures for
measuring shape:

1. Full hypernym structures

Shape is calculated considering the hyponym branching efyavode in a hy-
pernym structure.

2. Layman hypernym structures

Only the branching of the nodes for layman terms is constl&recalculating
the shape the structure.

3. Flattened layman hypernym structures

In order to consider the hyponym branching of non-laymamsettheir branch-
ing is added to the hyponym branching of the next layman teghdn in the

hypernym structure. This is equivalent to flattening hygeristructures to only
consider layman terms, with the branches of non-laymangessociated with
the most relevant layman hypernym.

The similarity measures produced, called SBSMs, expleistiape of the resulting
taxonomy in a variety of ways. In general the SBSMs use the odtgeneralisation
between two nouns if they have a common subsumer, and inaepmformation
common to both nouns given by the structure above the mastiative subsumer of
the nouns. In addition, hybrid techniques are also consttesing shape together with
ideas from existing path based techniques for measuringgsity A number of pa-
rameters may also varied to influence the results from theM&3Such as considering
meronyms when calculating similarity, the normalisatibvalues to a standard scale
for all word pairs and to select whether to use product or susps measures.

Two evaluations were performed; the first compared SBSMItesuith human
judgements, and the second used the SBSMs to disambigeaterike of semantically
related words. The evaluation comparing SBSM results todnjedgements was per-
formed using three publicly available data sets with hunu@ggments for 65, 30 and
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28 word pairs. For each set of human judgements, resultyvailalale for a number of
existing similarity measure techniques, commonly evadaising Pearson’s product-
moment correlation. As it is more natural for humans to omierank word-pairs
according to their similarities, and as values of similarteasures can be adjusted
post calculation without changing their relative orderitige use of Pearson’s correla-
tion is believed not to produce the most objective comparosimilarity measures.
The evaluation follows the common approach using Pearsamiglation. However,
Spearsman’s rank correlation is also used to compare thgveebrdering of word-
pairs according to similarity. Table 7.1 summarises thaltegrom a selection of the
best existing measures and SBSMs tested. For each set ohhudgements an upper

Correlation Existing SBSM

Coefficient | Techniques Techniques
Pearson 0.75-0.86] 0.86-0.91
Spearman | 0.71-0.84| 0.78-0.86

Table 7.1: Summary of the Best Similarity Human Judgememtelation Results for
Existing Measure and SBSMs

target is available for Pearson’s correlation given theaye agreement between the
human candidates for the test. For this work, we considserupper target for Pear-
son’s and Spearman’s correlation to be 0.9, given the worsekation between the 3
different sets of human judgements. The results show thatSBSMs improve re-
sults when comparing against human judgements, and thabtst accuracies nearly
match human performance.

WSD of semantically related words is performed using thedsfmyth thesaurus
for which experimental links to WordNet are available. Timk$ are calculated using
the Resnik information-content similarity measure. Thaleation is performed using
the SBSMs together with a number of simple WSD algorithm&@mg the first sense
and using the Wu and Palmer measure are used as baselinesevathation. Given
a selection of randomly selected hand-tagged noun entriggordsmyth, accuracy,
precision and recall are calculated from the results. Tleeipion and recall results
from the best performing SBSM and WSD algorithm are compé&oedtie results for
the experimental links to WordNet contained in Wordsmytthe Bummary of these
results is given in table 7.2. As multiple tags are assignesidrds where necessary,
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Wordsmyth| SBSM WSD

Links Algorithm
Precision 80% 88%
Recall 71% 91%

Table 7.2: Summary of the Best Similarity Human Judgememtelation Results for
Existing Measure and SBSMs

it is assumed that given enough human candidates for thdatiorostage, the upper
target for such an evaluation should be close to 100% acguadthough only one

candidate annotated the entries used in the evaluationrpetl. The results show
a significant improvement in both recall and precision oherlinks calculated using
Resnik’s similarity based WSD technique.

Results were also calculated to show how frequently the WAgIlems correctly
detect words with no adequate WordNet senses for an entry\vordsmyth. The best
WSD algorithm and SBSM combination accurately detects 5@8tances of words
with no adequate senses.

From the work performed with SBSMs, the measure 7.1 with shageferred to
asSBSM,s, performs most robustly across both evaluations.

Simgpsms(c1, ) = Simgpsyi(c, c2) X normalisecyy(d(cs3)) (7.1)
( shape(c) . Uf shape(ci) < shape(cz2)/\
shapela) "ol Ly Aey # 3
Simspsa(ci, c2) = shape(c)  1f shape(er) > shape(ca) A (7.2)
shape(ct) " o) £ ey Aoy # e
1 : otherwise

\
1 : if c=root(c)

{ . (7.3)
#((A(c))) x shape(w(c)) : otherwise

shape(c) =
wherec, ¢; andc, are word senses; is the most informative subsumer for bethand
2, d(c) is the depth of conceptaccording to WordNet's hypernym taxonomyyx)
is the set of hyponyms for a word sense\(z) is a hypernym of a word sense and
root(w) is the root of the hypernym structure fot
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7.1.2 Word Sense Disambiguation

The work on WSD introduces ideas for a WSD system using a aaettibn of partial-
taggers, as illustrated in Figure 7.1. Each of the initiatiphtaggers use existing ideas,
and are intended only to restrict senses before a penudtistatistical component is
used to disambiguate as many of the remaining ambiguoussvas ghossible. Work
was restricted to developing a statistical WSD system Blgitéor such a task. An
initial maximum entropy (ME) based system was developedguai number of new

ideas:

e A new definition of local context for words based on linguigirinciples rather
than the classical context window based approach to contisktg grammatical
structures according to the CMU link grammar parser, localtext is defined
considering information collected from the resulting brtk a word.

e A new set of features is considered. These features refleabfibormation in the
new definition of local context, and use word similarity acting to WordNet's
lexical taxonomy for word matching. By using this altermatapproach to match
words, it is possible to gather information about similaregas input to train a
statistical model thus alleviating the lexical bottlen@c&blem.

A sample corpus was created to develop statistical classifte 10 nouns and
1 verb. The corpus consisted of a subset of Semcor senteantsring a word of
interest. These sentences were parsed with the CMU pardenanually checked to
select adequate linkages. The final corpus therefore dedsid both sense tagged
words and linkages from which local contexts were extrack¥dm this corpus, 70%
of examples were used to generate features and train th&tistdtclassifiers, whilst

the remainder was reserved for testing purposes.
Although a complete system was not created due to time @ntsy with the lack

of feature reduction techniques being most notable in teelt® the current perfor-
mance of the maximum entropy approach with the new set ofifeatwas evaluated

in five different tests:

e Evaluation of the performance of a generic classifier boiltisambiguate in-
stances of the 11 test words.

e Evaluation of the performance of specialised classifiers tnuhandle each of
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Input text

y

Pre-Processing

!

One Sense per Collocation

!

One Sense per Document

!

Selection Restrictions

!

One Sense per Document

v

Maximum Entropy WSD System

v

One Sense per Document

v

Sense
Labelled Text

Figure 7.1: Proposed Minimal Set of Partial-Taggers for WSD

the 11 test words. Two classifiers were trained for each wand,including the
use of sense distribution features, and one without.

e Evaluation of the ability of each of the best performing slfsrs for each word
to simplify the task of manual annotation of senses.

e Evaluation of the best performing classifiers to disambig@xample contexts
containing the test verb and at least one test noun. Thesextsare completely
ambiguous, i.e. context words were treated as ambiguous@rsgnse labelled.

e Demonstration of the ability of the classifiers to succdsfssign senses for
words not available in the training data.

The results show that use of specialised classifiers for eacti, instead of a generic
classifier for all words, produces improved results at 56&eigion and recall for the
nouns tested. Sense distribution features are most usefwidrds with few available
examples. However, they can reduce accuracy for more amibsgords with an ad-
equate number of examples. Using the classifiers to redeasuimber of senses to be
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considered by a human annotator can reduce the cost of dilondig approximately
60%. Finally, contexts containing only words considereovsimproved results, giv-
ing an average precision and recall of 66% across all 11 testsy

Overall, results for the WSD ideas developed so far have faedy modest, espe-
cially when also considering results for the test verb usedny 45 senses according
to WordNet. The main intention of the tests performed wasive gvidence of the
utility of the new ideas and demonstrate encouraging resaltly in their development
into a full WSD system. For this reason, and given the difficof preparing a large
enough corpus with the CMU parser to provide data for the Mr@gch, the tests
performed cannot be directly compared to existing systeResative performance to
other systems can however be inferred. This suggests thse ideas produce results
at the upper end of the Senseval 2 results scale. Difficutiiedirect comparison are
further compounded as Semcor does not present a gold-stiohata set for the evalu-
ation of WSD techniques, as average agreement between Santtthe DCO corpus
is only approximately 57% (Kilgarriff, 1998a), thereforense of the sense tags may
be incorrect. To directly compare the current implemeatatvould firstly require a
gold-standard sense and syntax tagged corpus. Howevenat isensible to perform
this until further work is performed on the implemented $iolus, such as the inclusion
of feature reduction techniques to simplify the ME modelac®this ME implementa-
tion is complete, together with implementations of the otertial-taggers described
for a complete system, then it would be sensible to use theesah2 data in order to
compare results objectively with other systems.

7.2 Future Work

Overall, the work performed for calculating semantic sarity between nouns was
highly successful. Possible extensions of this work ingdluther efforts to use other
WordNet relations to calculate semantic similarity, altbb it is also believed that it
would be timely to start developing more rigorous evaluatechniques for similar-
ity measures. A number of approaches should be considerestlyFthe question
of how results from systems are compared to human judgersbotdd be revisited.
For instance, is Pearson’s product-moment correlatiom&s¢ measure to objectively
compare the standard of the results of the different systemis the relative ranking
of word pairs more important than the final values assignesl#t ik more natural for
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humans to rank words relative to each other according tdasiityi than it is for them
to assign similarity values to word pairs, and as similaviajues from measures can
be fine-tuned to particular tasks, Pearson’s correlatioimetr dependence between
values may not provide an objective comparison betweenaityi measures. In the
light of this, Spearman’s Rank correlation coefficient magvide a more objective
evaluation measure to compare similarity measures ageacs$t other. A technique
is proposed for fine-tuning similarity measure results sgytfit to a more suitable
distribution curve on a graph for a number of words. Also, ¢therent sets of hu-
man judgements available are fairly small, with the 30 waagpgiven by Miller and
Charles (1991) being the most commonly used set, thereforlesthould be performed
to develop a gold-standard data set for evaluating sinylareasures.

As similarity measures are generally used as sub-taskgwatlarger NLP system,
they should also be evaluated using an accepted set of afipticspecific problems
such as the WSD of related nouns problem visited in chapté&géin, for such eval-
uations to be truly objective, the labelled data must be id@ned to be sufficiently
replicable and large enough to represent a gold-standaedsea for evaluation. Fi-
nally, the measures implemented can be used to completdyidrds in Wordsmyth
entries to WordNet with higher accuracy than Resnik’s appino

The work on WSD leaves a number of tasks open to further ilgagin. The
primary task requirement is to find suitable feature redunctechniques for the new
features defined in chapter 6.

Once suitable feature reduction techniques have beeningpieed, attention should
be turned to produce adequate quantities of training datedier to be able to repeat the
Senseval experiments, enabling the possibility of objetticomparing results from
the approach taken against existing WSD systems. This @l grovide a more suit-
able test platform to isolate the effects of original aspeéthe system, where specific
aspects can be evaluated in isolation, such as:

e The effect of using semantic similarity to match words in bhe features.

e The effect of using the new definition of context based on seimeelationships
determined using syntactical information in contrast timgs classical context
window approach.

Further tests should be performed to determine how a cortibmaf the features in-
troduced in this thesis together with features from otherkwWor WSD with ME can
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further improve WSD, in a similar way to the tests performgdSnarez and Palomar
(2002).

Some further alternative approaches have also been coegdittat are of interest.
Firstly, using Discourse Representation Structures (Kd@p1) as input to the system
may provide a richer source of context than simply using theagtic relationships
between words in a sentence. Also, given the similarity betwfeatures in ME and
those used in support vector machines (SVMs) (Boser et332;1Cortes and Vapnik,
1995), it is believed that SVMs can be readily created udiegriformation calculated
for ME classifiers. As SVM train much faster than ME modelgytmay be a more
practical approach to creating future classifiers for WSD.

Finally, further partial-taggers should be implementedeoa suitable final statisti-
cal tagger is available in order to evaluate a full, robustD/\¢$stem.

7.3 Contributions of the Research

This section lists the original contributions the work istthesis provides to the fields
of semantic similarity and word senses disambiguation:

7.3.1 New ldeas

e A new way to use WordNet’s lexical taxonomy for the calcwatdf semantic
similarity between nouns that outperforms existing tegbhas (Section 4.3 and
4.4).

e A technique to reduce the hypernym taxonomy of WordNet 1.6nig contain
layman terms (Section 4.3.3).

e A new set of WSD algorithms for disambiguating semanticedlated words by
calculating the similarity between senses of the relatedis/(Section 4.5.2 and
appendix C).

e A proposal for a multiple partial tagger approach for WSD lbfaeords in texts
(Section 6.1).

e A new definition of local context for use in a WSD system (Sa&tt6.2 and
6.3.2).
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e A new set of features based on this definition of context, asidgusemantic
similarity to match words instead of word-form (Section.g)3

e An evaluation approach to evaluate the cost of manuallynaléguating words
while assisted by a WSD algorithm that reduces the senses tmhsidered
(Section 6.3.3).

7.3.2 Tools and Systems Produced

e A number of new shape-based similarity measures (Sectbn 4.

e A system for disambiguating groups of nouns, assuming tbegg contain se-
mantically related nouns (Section 4.5.2 and appendix C).

e A number of experimental ME WSD classifiers created spedifi¢ca disam-
biguate 11 selected words (Section 6.3.3).

e An application to assist users in parsing sentences witMe parser by pro-
viding information for more rapid disambiguation of ambags linkages (Sec-
tion 2.4).

e Atool for extracting local contexts from CMU linkages (Seat2.4).

A tool for extracting ME features from local contexts (SentR.4).

7.3.3 Data and Resources

e A subset of the Wordsmyth thesaurus with all nhouns manualbelled with
WordNet senses. This small corpus of thesaurus entrieseaded for evalu-
ating WSD systems for related nouns (Section 4.5.2).

e A subset of Semcor has been parsed using the CMU link gramansepfor the
development of WSD systems requiring syntactic informra{®ection 6.3.3).

o A set of local contexts, and ME features are available fordhleset of data
extracted from Semcor (Section 6.3.3).
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7.4 Final Thoughts

Overall, the work presented in this thesis has been suedegsiugh some results have
been modest. WSD still has far to go before truly automatstesys become robust to
the point of being practical without human intervention wéwer, the current trend of
research is producing ever more promising results withemsingly informed lexical
resources. An aspect of this work that is for the most parsimgsin existing research,
is use of semantic similarity to match words. The main jusdtfon given here for this
approach is to address the lexical bottleneck problem, abe table to disambiguate
words or word senses for which no examples were available.mdtivation for such
an approach can, however, be more ambitious. Once hightgWd$D approaches
are developed, once multilingual lexicons such as EuroWet@Vossen, 1997) reach
further maturity, and when a large enough corpus of examglegilable for one lan-
guage, using semantic similarity to match words opens tlssipihity to create WSD
classifiers for different languages using resources froly @me language. Whilst the
resulting WSD systems may have difficulty capturing somdefdultural differences
particular to different languages, this will greatly impegpossibilities for various tasks
within the NLP field.
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Appendix A

Using Hyponym Branching Similarity
Measures Comparable to Statistical
Alternatives for Word Sense
Disambiguation

(Originally published as (Dionisio et al., 2001))

A.1 Abstract

This paper presents 8 similarity measures for use with a wertgse disambiguation
system for tagging words from open texts with senses aaogrdi WordNet. These
similarity measures employ hypernym and hyponym infororatontained within the
WordNet taxonomy to assign a value representing the siityilaetween two word

senses. Comparative results show that the measures pesfgiragainst the Wu &

Palmer similarity measure, and thus is comparable to thggnali statistically based
measure of the word sense disambiguation algorithm used.

A.2 Introduction

Word Sense Disambiguation (WSD) is a major sub task of mantyridaLanguage
Processing (NLP) tasks (Kilgarriff, 1997), ranging fromahane translation of docu-
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A.2 Introduction

ments to information extraction. The main aim in WSD is to asalgorithm, or suite
of algorithms, to sense tag words in a document accordingrtedexical resource.

Two of the most widely used lexical resources in recent yhassbeen the Long-
man Dictionary of Contemporary English (LDOCE) (Proct&78) and, more increas-
ingly, WordNet (Miller et al., 1990; Fellbaum, 1998). Rettethniques can be classi-
fied into one of three types (Mihalcea and Moldovan, 1998):

1. WSD techniques solely making use of information fromdeakresources (Agirre
and Rigau, 1995), (Wilks and Stevenson, 1998b), (Lesk, 1986

2. Statistical WSD techniques trained from sense tagg@urgacorpora, referred
to as supervised training methods (Stetina et al., 199&)g(€t al., 1992b).

3. WSD using statistical techniques trained with untaggading corpora, referred
to as unsupervised training methods (Yarowsky, 1995), r{lRe4995a, 1999),
(Rigau et al., 1997).

Supervised training methods suffer from the “lexical tdck” problem due to
the lack of training examples. Attempts to alleviate thislpjem have used unsuper-
vised training techniques, making use of open texts witlseunse tagged information.
Finding sufficient training data to enable these techniqoegork well for open texts
still remains a problem. This paper investigates methotmigeng to the first class of
algorithms and shows results comparable to the statiséichhiques for tagging nouns
according to senses in WordNet, without requiring stat#tiraining.

The organisation of lexical information within WordNet che problematic for
techniques relying on its taxonomy in order to disambiglertamas. Resnik (Resnik,
1995a) shows that hypernym relations vary in the amount pégdisation they rep-
resent, therefore they are deceptive for measures relyirggige counting techniques.
Resnik tries to tackle this problem by weighting these refet according to statisti-
cally collected information.

Section 2 presents measures that take into account thenmgraf hyponyms for
each sense within a hypernym path when calculating the aiityilbetween two word
senses. These investigate the sensitivity of such measuneghly developed subhier-
archies of WordNet's taxonomy. Section 3 gives a WSD albarjtas presented in
(Resnik, 1995a), which is used as a vehicle for the comparidfothe measures
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A.2 Introduction

Siran&PaImer (Cla CZ) = m;) (a)
d(cy) + d(c2)
SiMgrepe (C1, C2) = shape(cy) , if shape(cy) < [hyponym(hyp(x))| (b)
[hyponym(hyp(cy))|
= |hyponym(hyp(c,))| , otherwise
shape(cy)
where G & ¢, have acommon subsumer
SiMgrepe (C1, C2) = shape(c;) _ *d(cy) , if shape(c;) < |nyporym(hyp(c2))| (©
lhyponym(hyp(cz))|
= |hyponym(hyp(c,))|' * d(cs) , Otherwise
shape(cy)
where ac; & ¢, have acommon subsumer, and ¢z is the most informative subsumer.
SiMgpe (C1, C2) = shape(c)  *(1-_1 ) ,if shape(cy) < lhyponym(hyp(cy))| (d)
[hyponym(hyp(cz))| d(cs)
= |hyponym(hyp(c,))|' * (1-_1 ) , otherwise
shape(cy) d(cs)
where G & ¢, have acommon subsumer, and c; is the most informative subsumer.
SiMgape (C1, C2) = shape(c,) . shape(cs) , if shape(cy) < |hyporym(hyp(cy))| (e
[nyponym(hyp(c,))|
= |hyponym(hyp(c,))| * shape(cs) , otherwise
shape(cy)
where G & ¢, have acommon subsumer, and c; is the most informative subsumer.
SiMgrape (C1, C2) = shape(c,) . (1-__1 ) if shape(cy) < |hyporym(hyp(cy))| ()
[nyponym(hyp(c))| shape(cs)
= |hyponym(hyp(c))| *(1-__1 ) ,otherwise
shape(cy) shape(cs)
where G & ¢, have acommon subsumer, and c; is the most informative subsumer.
SiMgrape (C1, C2) = shape(c))  * (1- 1 ), if shape(cy) < |hyponym(hyp(c,))[ (9
[nyponym(hyp(c,)|  ave_hyponym_branch(cs)
= |hyponym(hyp(cy))| * (1 - 1 ), otherwise
shape(c,) ave_hyponym_branch(cs)
where G & ¢, have acommon subsumer, and c; is the most informative subsumer.
SiMhybria (C1, C2) = SiMwug amer (C1, C2) * SiMghape (C1, C2) (h)
where 0 < SiMgyae (€1, C) < 1
SiMpyprig (€1, C2) = (L- _L )* (1- 1 ) 0]
d(cs) shape(cy) + shape(c,)
where g isthe most informative subsumer.
Wherefor al the above dgorithms:
i =d(cy) — d(cy)
and hyp = hypernym
and |hyponym(y)| is the number of hyponyms for sensey
and shape(x) =1 , if x isaroot node
shape(x) = shape(hyp(x)) * [hyponym(hyp(x))| , otherwise

Figure A.1: Similarity Measures
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presented in section 2. Section 4 compares the measurgsingut words taken from
categories of Roget’s Thesaurus (Procter, 1978) and showdHhese relate to results
in (Resnik, 1995a). Section 5 describes some of the ongoiddLaure direction of the
work presented in this paper.

A.3 Similarity Measures

Resnik (Resnik, 1999) presents a slightly revised versigheooriginal Wu & Palmer
similarity measure (Wu and Palmer, 1994), as shown in Fighire in (1a). Results
from (1a) are comparable to results from the original diatfly based similarity mea-
sure of the WSD algorithm (Resnik, 1999). This measure id asea baseline against
which the other similarity measures presented in Figure dari be compared. The
measure calculates values based on hypernym tree depx)ss ti{e depth of a par-
ticular hypernym subtree. Values foregd( and d¢,) are calculated from routes in the
hypernym subtrees af andc, respectively that contain a sensg,that is a common
hypernym to both of; andc;. This sensegs, is referred to as the most informative
subsumer (MIS).

In order to handle pairs of nhoun senses with no common serntseimhypernym
structures, a “virtual” node is used. A match at this nodeestthat the only similarity
between two senses is that they are nouns. The depth at thal viode, d(virtual), is
0. Other WordNet root nodes (e.g. entity, abstraction,.¢ttave a depth of 1. For the
hypernym structure in Figure A.2, if when compared to anoflemse’s structure the
MIS is liquid or fluid, d(brew) = 8. Otherwise in other casebrafv) = 7.

The measures (1b) to (1i) are all based around the idea thaesevith a larger
number of daughter nodes (hyponyms) have a more genetadiatselation to their
hyponyms. To reflect this idea in a similarity measure, theengym distances should
be related to the number of hyponyms of a sense’s hypernyms.nfition is the basis
of a measure that uses information about the taxonomy of Métrtb add biases to
hypernym distances along a hypernym subtree. shape(x) eaaure of the hyponym
branching along a path from parent(x) up to the virtual nadyough in practice it
is only necessary to calculate shape up to the MIS for thetispnses. In order to
give preference to senses where either of the two sensesaiscastor in the hyper-
nym subtree of the other sense, shape(x)/hyponyms(pg)eisteplaced with 1 in the
STMghape MEASUIES.
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entity, something

objed, physicd objed

substance, matter artifad, artefad

food, nutrient fluid drug
liquid

beverage, drink, drinkable, patable drug of abuse, street drug

alcohol, alcoholic beverage, drink, intoxicant, inebriant

*

brew, brewage

Figure A.2: Hypernym structure for the noun “brew” (Sense 1)

The motivation behind (1b) is to have a similarity measug th less sensitive to
some of the irregularities of WordNet’s taxonomy. The meaguefers senses where
the average number of hyponym branches along one sendets ganilar to the num-
ber of branches of the other sense’s hypernym.

Measure (1b) does not take into account information shayédddifferent senses,
only the differences. A measure of this common informatian be calculated from
the WordNet taxonomy using the subtree of the MIS. Measuteptp (1g) extend
(1b) using different multipliers, based on information taned above the MIS, to
prefer pairs of senses that share a MIS deeper in the hypesuptree.

Measures (1c) and (1e) use multipliers calculated accgrithe depth and shape
(respectively) above the MIS. The potential problem withsth measures comes from
the difference in magnitude between (1b) and the multiplie(1c) and (1e). As (1b)
produces values within the range of 0 to 1 and depth and shaasures produce
values above 1, the final measure may become overly influelngdte multiplier.
Measures (1d) and (1f) overcome this by normalising theiplidt to within the range
of 0 to 1. These measure produce values closer to (1b) thed#epMIS appears in
the subtree, but reduce the value of (1b) if the MIS is clogbeaoot.

In (1g), avehyponymbranch¢;) replaces shapey) to determine whether the av-
erage hyponym branching of the hypernyms of the MIS prodiuogsoved results.
This paper will only investigate a measure using the avelnggenym branching value
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A.4 WSD Algorithm

normalised to within 0 and 1.

Measures (1h) and (1i) combine ideas from both the Wu & Palmesisure (1a),
and from the hypernym branching methods. (1h) calculategtbduct of the results
from (1a) and one of the algorithms$m,y,q,., for measures wher@ < simgpqpe < 1
is guaranteed. (1i) is an adaptation of the (1a), using tipetmym branching measure
shape(x) instead of hypernym depths.

A.4 WSD Algorithm

The WSD algorithm presented in (Resnik, 1995a) producds tplity results when

disambiguating noun groupings (Resnik, 1995a, 1999), ande parameterised with
different similarity measures of the formim(sense,, sense,). Experiments have

shown that Resnik’s original statistical similarity messand the Wu & Palmer mea-
sure produce comparable results when used with this WSDitdgo(Resnik, 1999).

Given W ={w[1],...,w[n]}, aset of nouns

fori=1ton,forj=iton{
V[i, j] = sim(w[i], w[j])
c[i, j] = MISof w[i] and w[j]

for k =1 to num_senses(w[i])
if c[i, j] isan ancestor of senseli, k]
increment support[i, k] by v[i, j]

for k' = 1 to num_senses(w(j])
if c[i, j] isan ancestor of sensej, k']
increment supportj, k'] by V[i, j]

increment normali sation[i] by Vv[i, K]
increment normali sation[j] by Vv[i, k]

}

fori=1ton, for k =1tonum_ senses(w[i]) {
if I(normalizaion[i] == 0.0)
phi[i, k] = support[i, K] / normali sation[i]
ese
phi[i, k] = 1/ num_senses(w[i])

}

Figure A.3: Resnik’s Word Sense Disambiguation algorithm

Figure A.3 shows the Resnik WSD algorithm. The measure fadwsense k
is contained in the variable “phi”. The sense with the higmesasure is selected as
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the most suitable sense. In the case of a tie, the sense winthllest sense number
according WordNet'’s sense ordering is selected.

A.5 Comparison

The measures are compared using a thesaurus classes exakepldrom (Resnik,
1995a). This example was intended to show how Resnik’s W§0ri#thm, along with
Resnik’s statistically based similarity measure, periednwhen disambiguating the
highly ambiguous noun “line”. It is difficult to make a direcomparison with the
original example as the results from (Resnik, 1995a) uséfereint version of Word-
Net, and Resnik does not state which version was used. Addity, reproduction of
this work requires collection of the supporting data to wkestatistical information.
Hence the use of the comparable performing non statistice®Walmer measure as
the baseline.

The comparison uses words and phrases from 13 differenttRdlgesaurus cate-
gories containing the noun “line”, found online. Replacigategory number with
the Roget's category number of interest produces the eatrthe relevant category.
These words and phrases are then reduced to nouns with Woedhtis, omitting
obsolete and foreign words.

The noun “line” has 29 different senses according to WordNét A full de-
scription of these definitions can be obtained using the Wetdveb interface. Only
relevant senses used in the results in Figure A.4 are lisesl h

2. line — (a mark that is long relative to its width; “He drewirael on the chart”; “The
substance produced characteristic lines on the specpre@3yco

5. line — (a linear string of words expressing some idea; fétier consisted of three
short lines”)

7. line — (a fortified position (especially one marking thesntorward position of
troops); “they attacked the enemy’s line”)

9. cable, electrical cable, line, transmission line — (&tteical conductor connecting
telephones or television or power stations)

10. course, line — (a connected series of events or actiotevetopments; “the govern-
ment took a firm course” or “historians can only point out #nbses for which evidence
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is available”)
11. line — (a spatial location defined by a real or imaginargiomensional extent)

13. pipeline, line — (a pipe used to transport liquids or gase pipeline runs from the
wells to the seaport”)

14. line, railway line, rail line — (railroad track and roatf)
15. telephone line, phone line, line — (a telephone conmeti

17. lineage, line, line of descent, descent, bloodlinegdline, blood, pedigree, ances-
try, origin, parentage, stock — (the descendants of ongidhdil; “his entire lineage has
been warriors”)

18. line — (something long and thin and flexible)

19. occupation, business, line of work, line — (the princietivity in your life; “he’s
not in my line of business”)

20. line — (in games or sports; a mark indicating positionsaamds of the playing area)

24. agate line, line — (space for one line of print (one colwate and 1/14 inch deep)
used to measure advertising)

26. tune, melody, air, strain, melodic line, line, melodirgse — (a succession of notes
forming a distinctive sequence; “she was humming an air flBaathoven”)

27. note, short letter, line — (a short personal letter; pdmee a line when you get there”)

29. production line, assembly line, line — (a factory systarwhich an article is con-
veyed through sites at which successive operations arerpert on it)

Figure A.4 shows the results of the WSD algorithm using d#ife similarity mea-
sures. For each similarity measure, the top three senseelPsted are displayed in
the lefthand column, along with their respective measurdsa righthand column. For
measure (1h), (1b) is used as a suitaiste ;..

As (Resnik, 1995a) mentions, it is difficult to select acebjg senses of “line”
according to WordNet 1.6 for some of Roget’s categories usdlade comparison per-
formed (e.g. #200, #203 and #466). This explains some oetgedatisfactory results.

Figure A.5 shows how the selected senses in the above resuitpare to the
senses selected in (Resnik, 1995a). Results from #200, #20&466 have not been
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used for this comparison. Also, there is no assumption thatésults presented in
(Resnik, 1995a) are correct, only that they are good. Asudtréke percentages given
in Figure A.5 do not show accuracy, and are only intended aswgparison with results
of Resnik’s example. The reader could decide whether thétseis (Resnik, 1995a)
are actually correct (especially for Roget categories #4#¥%97), or if other senses
according WordNet 1.6 better describe the meaning of “liagainst the thesaurus
classes.

To get a clearer view of the comparison between the measupemiple were asked
to select suitable senses for each of the Categories uskd arg¢ation of Figure A.5.
The people were to select all appropriate senses from Wasitiefinitions of “line”.
These intuitions were then compared with the results frdanmalasures, including
those given in (Resnik, 1995a), and are summarised in FiguBe

Similarity measure (1e) is shown to consistently give pesultts for this example.
This shows that, due to the size of the values the shape(x3uregenerates, using
shape(x) as a multiplier in (1e) overly influences the megsuesults. It is interesting
that (1d) gives comparable results to (1f), which suggéstisthe normalised multipli-
ers used by the two measures improve results. Further igaéish is required to see
if the additional processing in (1f) has any advantage dimy.

A.6 Conclusions & Future Work

Results in Figure A.5, and especially those in Figure A.6\eng positive for all
measures presented in this paper apart from measure (1é3.sddgests that (1e)
performs badly against highly ambiguous words. The resilthe other measures
can be seen to be above the baseline provided by (1a), anithélyadre comparable to
results from Resnik’s statistically based measure.

Work is currently being undertaken to determine how wellgimeilarity measures
compare in other situations, including distributionalgrided noun groupings, to fur-
ther assess how well the alternative shape similarity nreaqerform against the Wu
& Palmer (1a) similarity measure.

Work to determine how well these techniques perform withtésk of open text
disambiguation is also being undertaken using a colleafd®emantic Concordance
files, SemCor (Miller et al., 1994; Fellbaum, 1998), whicle aemantically tagged
against WordNet 1.6. As the Resnik WSD algorithm has beeeldped to disam-
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biguate small groups of nouns with similar semantic meaniing likely that it will
not be adequate for the task of full open text WSD. Thus, approaches and algo-
rithms will be developed to try and maximise the efficiencysihg semantic similarity
measures for the task of WSD.

The techniques described here will be used along with @iffetechniques to re-
strict the senses of words to consider within a context, araksess the best possible
sense tags to assign to words according to WordNet.
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ROGUS | ) | @b | 9 | @) | @9 | @ | a9 | an | @)

Category

4 9 [0.650| 18]0.749| 9 [0.622| 9 [0.619| 9 [0.993 9 [0.671| 9 [0.672| 9 [0.529| 9 [0.771
Comnedion | 15/0:361| 9 |0.708| 15|0.493| 15/0.532| 15|0.006 15| 0.614| 15(0510| 15|0.468| 15|0.329

18/0.347| 15/0.688| 29/0.397| 29|0.448| 29|0.000| 29|0.550| 29|0.521| 18/0.429| 29|0.274
69 17(0.260] 17]0.487| 17]0.262[ 17[0.236| 26|0.954] 17]0.222| 18[0.308| 17[0.271[ 17[0.222
Continuity | 1£0|0:207|10|0.462| 10|0.226 10| 0.225 13(0.040| 26| 0.198] 26/ 0.274 10/0.242| 9 |0.198

26/0.121|18|0.401| 26/0.119| 26|0.181| 9 |0.002| 18]0.198 9 |0.272| 26|0.158| 13]0.119
165 17/0.530( 17]0.753| 17]0.650| 17[0.700| 13|0.988| 17]0.654| 17]0.602| 170.703[ 17[0.472
Feterrity 130.236| 7 |0.586| 13|0.205| 13|0.117| 9 |0.009| 13|0.176| 9 |0.162|13|0.159| 27|0.213

9 0.190| 9 |0.586| 9 |0.176| 2 |0.103|17]0.003| 14|0.176 15(0.162| 9 |0.144] 2 |0.211
s 9 [0.553| 9 [0.893| 9 [0.530] 9 [0.494] 9 [0.846 9 [0.594| 9 [0.620] 9 |0.548| 9 |0.456
Fostaity 15/0.553| 15|0.893| 15(0.530| 15(0.494| 15|0.846| 15|0.594| 15|0.620| 15|0.548| 15| 0.401

29/0.553| 29(0.893| 29/0.530| 29|0.494| 29|0.846( 29|0.594| 290.620| 29|0.548| 29|0.401
4200 9 [0.553| 9 [0.797| 9 [0.400] 9 |0.403| 9 [0.912 9 [0.377| 9 |0.468] 9 |0.326] 9 [0.375
! ength 15|0.553| 24|0.778| 24/0.285| 15|0.332| 15(0.085| 15|0.347| 15(0.434| 15/0.292| 24|0.316

29]0.553|15|0.778|15|0.260]| 29|0.332| 29|0.031|29|0.347| 29|0.434| 29|0.292| 27|0.128
#203 9 10.462|18|0.861| 9 [0.444| 9 |0.451| 9 |0.428| 9 |0.487| 9 |0.550| 9 |0.459| 9 |0.429
Narrowness |18|0.366| 9 [0.826|15|0.444|15|0.451|27|0.273|15|0.487| 15|0.550| 15|0.459| 15|0.243
Thinness 13]0.324{13|0.826|29|0.444|29|0.451| 2 |0.216]|29|0.487|29|0.550| 29|0.459|29|0.243
18]0.639|18(0.810( 18|0.503| 18|0.628| 9 [0.713|18|0.747|18|0.742| 18|0.663| 18|0.485

lﬁﬁ(al?nent 9 10.428| 9 |0.548| 9 |0.371| 9 |0.459]20|0.279| 9 |0.541]| 9 |0.554| 9 |0.342| 9 |0.441

13]0.376{13|0.527|15]|0.263| 15|0.367| 2 |0.047|13]0.447|15|0.452|15|0.295|13|0.327
478 11|0.326/11{0.701|{11|0.352|11|0.441|13(0.727|11|0.534| 11|0.505{ 11|0.405| 11|0.257
Diredion 7 10.178| 7 |0.516/14|0.138| 7 |0.214]14|0.090| 7 |0.285| 7 |0.245| 7 |0.208| 9 |0.191

9 10.122|14]/0.516| 7 |0.129]14|0.210|15|0.072|14|0.246|14/0.237| 9 |0.179| 7 |0.176
#413 27]0.294|26|0.736|27|0.311| 26|0.428| 26(0.988| 26|0.420| 26|0.450| 26|0.328| 27|0.641
Melody, 9 10.243| 9 |0.691| 9 |0.272| 9 |0.389|27|0.009| 9 |0.397| 9 |0.422| 9 |0.286| 2 |0.112
Concord 26]0.189|13|0.686|26|0.233|15|0.378| 9 |0.002|15|0.388|15|0.412|15|0.277|20|0.112
4466 9 10.577| 9 |0.760| 9 |0.538| 9 |0.588| 9 |0.657| 9 |0.555| 9 |0.612| 9 |0.496| 9 |0.564
Measurement 15|0.102|13|0.756| 15|0.527| 15|0.580| 2 |0.310|15|0.549|15|0.605| 15|0.488|27|0.135

29]0.102|14|0.756|29|0.527]| 29|0.580| 20|0.310| 29|0.549| 29|0.605| 29|0.488| 15|0.079
#590 9 10.370|26|0.797| 9 |0.376| 9 |0.433|27|0.525| 9 |0.521| 9 |0.410| 9 |0.414|27|0.508
Writing 27]0.358| 9 |0.796|27|0.338| 15|0.433|26(0.458| 15|0.521| 15|0.410| 15|0.414| 9 |0.301

15|0.268]15|0.796| 15|0.333] 29{0.433| 2 |0.014|29|0.521|29|0.410|29|0.414(15|0.214
#597 27]0.332|26|0.806|26|0.418| 26|0.454| 26(0.860| 26|0.491| 26|0.524| 26|0.448| 27|0.528
Poetry 26|0.273| 5 |0.794| 9 |0.310| 9 |0.365|27(0.134| 9 |0.404| 9 |0.427| 9 |0.334|26|0.163

9 10.150{11|0.767| 5 |0.285/15]|0.349| 5 |0.004{15|0.404|15|0.427|15|0.318| 5 |0.116
4625 19]0.516|19(0.734| 19|0.332| 19|0.457| 26{0.969| 19|0.479| 19|0.514| 19|0.571| 27|0.229
BUSINEsS 26|0.136/26|0.488| 9 |0.212|26|0.226|27{0.023| 26|0.244| 26|0.226| 26|0.170| 19|0.166

9 10.130] 9 10.472|26|0.205| 9 |0.189] 9 |0.003| 9 |0.215] 9 |0.195| 9 |0.141| 2 |0.162

Figure A.4: Comparison Results

(1 | Ab | (19 | Ad | (1¢ | (IO | (19) | (1) | (1)
| % Matching Results | 80% | 50% | 70% | 60% | 20% | 60% | 50% | 60% | 80%

Figure A.5: Percentages of the number of selections whidichmthe first selections
(the sense with the highest measure) from (Resnik, 1995a)
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(13 | (1b) | (o) | (1d | (e | @H | (1g) | (1) | (1) | Resnik
% Corred | 60% | 70% | 70% | 80% | 50% | 80% | 70% | 80% | 60% | 80%

Figure A.6: Percentages of the number of selected senseméteh with manually
selected tags
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Appendix B

Data and Scatter Graphs for Human
Similarity Judgement Correlation

B.1 Human Judgement Data

B.1.1 Rubenstein and Goodenough (1965) Human Judgements

Word 1 Word 2 Similarity
cord smile 0.02
rooster voyage 0.04
noon string 0.04
fruit furnace 0.05
autograph | shore 0.06
automobile| wizard 0.11
mound stove 0.14
grin implement 0.18
asylum fruit 0.19
asylum monk 0.39
graveyard | madhouse 0.42
glass magician 0.44
boy rooster 0.44
cushion jewel 0.45
monk slave 0.57
asylum cemetery 0.79
coast forest 0.85
grin lad 0.88
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B.1 Human Judgement Data

shore
monk
boy
automobile
mound
lad

forest
food
cemetery
shore
bird
coast
furnace
crane

hill

car
cemetery
glass
magician
crane
brother
sage
oracle
bird

bird

food
brother
asylum
furnace
magician
hill

cord
glass
grin

serf
journey
autograph
coast
forest
implement
cock
boy
cushion

woodland
oracle
sage
cushion
shore
wizard
graveyard
rooster
woodland
voyage
woodland
hill
implement
rooster
woodland
journey
mound
jewel
oracle
implement
lad
wizard
sage
crane
cock

fruit
monk
madhouse
stove
wizard
mound
string
tumbler
smile
slave
voyage
signature
shore
woodland
tool
rooster
lad

pillow

0.9
0.91
0.96
0.97
0.97
0.99

1.09
1.18
1.22
1.24
1.26
1.37
1.41
1.48
1.55
1.69
1.78
1.82
2.37
241
2.46
2.61
2.63
2.63
2.69
2.74
3.04
3.14
3.21
3.29
3.41
3.45
3.46
3.46
3.58
3.59

3.6
3.65
3.66
3.68
3.82
3.84
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B.1 Human Judgement Data

cemetery | graveyard| 3.88
automobile| car 3.92
midday noon 3.94
gem jewel 3.94

Table B.1: Rubenstein and Goodenough (1965) Human Judgemen

B.1.2 Miller and Charles (1991) Human Judgements

Word1 | Word 2 Similarity
rooster | voyage 0.08
noon string 0.08
glass magician 0.11
chord smile 0.13
lad wizard 0.42
coast forest 0.42
monk slave 0.55
shore woodland 0.63
forest graveyard 0.84
coast hill 0.87
food rooster 0.89
cemetery| woodland 0.95
monk oracle 1.1
journey | car 1.16
lad brother 1.66
crane implement 1.68
brother | monk 2.82
tool implement 2.95
bird crane 2.97
bird cock 3.05
food fruit 3.08
furnace | stove 3.11
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B.1 Human Judgement Data

midday noon 3.42
magician | wizard 3.5
asylum madhouse 3.61
coast shore 3.7
boy lad 3.76
journey voyage 3.84
gem jewel 3.84
automobile| car 3.92

Table B.2: Miller and Charles (1991) Human Judgements

B.1.3 Resnik (1999) Human Judgements

Word 1 | Word 2 Similarity
rooster | voyage 0
noon string 0
glass magician 0.1
chord | smile 0.1
crane | implement 0.3
coast | forest 0.6
forest | graveyard 0.6
lad wizard 0.7
monk | slave 0.7
coast hill 0.7
journey | car 0.7
monk | oracle 0.8
food rooster 1.1
lad brother 1.2
bird cock 2.1
furnace | stove 2.1
food fruit 2.2
brother | monk 2.4
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B.2 Rubenstein & Goodenough Human Judgement Correlations

tool implement| 2.4
midday noon 2.6
bird crane 3.4
magician | wizard 3.6
asylum madhouse| 3.5
coast shore 3.5
boy lad 3.5
journey voyage 35
gem jewel 3.5
automobile| car 3.9

Table B.3: Resnik (1999) Human Judgements

B.2 Rubenstein & Goodenough Human Judgement Cor-
relations

Wu and Palmer

Unnormalised Normalised
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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Appendix C

Word Sense Disambiguation
Algorithms for Noun Groups

C.1 Greedy WSD algorithm

A greedy WSD algorithm is produced by calculating the sumhef similarity for
each word sense in the noun-group against all other worcesenghe noun group.
Similarity is calculated using a function “similarity” talg four arguments, two words
and a word sense for each word. Therefore similarity is nreadoetween two word
sensesgword1l>#<senset and <word2>#<sense2. The sum is then normalised
using the sum of the similarity of each word senses of a wagdirst all other word
senses in the noun group. The algorithm selects the sensmadbr word with the
highest resulting value as the correct sense for the womrdirg to the noun group.

Listing C.1: Greedy WSD

Given the set of nouns W{wl, ..., wn}

for word.index1l =1 to n—1

{
wordl = W[word.index1]

for word_.index2 = wordindexl + 1 to n

{
word2 = W[word.index2]

for sensel =1 to noof_senses(wordl)

{
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C.2 Exclusive Greedy WSD algorithm

for sense2 = 1 to noof_senses(word2)

{

sim = similarity (wordl, sensel, word2, sense2)

normalization (wordindex1l) += sim
normalization (wordindex2) += sim
support(wordindexl , sensel) += sim
support(wordindex2 , sense2) += sim

}
}
}
}

for word_.index =1 to n

{

word = W[word.index ]
for sense = 1 to noof_senses (word)

{

if (normalization(wordindex) !'= 0)
support(wordindex , sense)\= normalization(wordindex)
¥

}

C.2 Exclusive Greedy WSD algorithm

This algorithm is similar to the Greedy algorithm, howewver &ll word senses only
similarity values greater than a specified percentage difitjieest similarity value per
word sense are considered. Such a percentage is specifigdrastzold ranging from

0to 1. The changes are made to avoid increasing supportdaetise of a word when
the similarity detected between pairs is low in comparismthe highest similarity

detected for another of the word’s senses.

Listing C.2: Exclusive Greedy WSD
Given the set of nouns W {wl, ..., wn}
for word_.index =1 to n

{

word = W[word.index ]
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C.2 Exclusive Greedy WSD algorithm

for sense = 1 to noof_senses (word)

{

max_similarity ( word.index , sense ) =
find_highestsimilarity ( word, sense, words )

}
}

for word_.indexl =1 to n— 1

{
wordl = W[word.index1]

for word.index2 = wordindexl + 1 to n

{
word2 = W[word.index2]

for sensel =1 to noof_senses(wordl)

{

for sense2 = 1 to noof_senses(word2)

{

sim = similarity (wordl, sensel, word2, sense2)

if (sim >= max_similarity (wordl, senseldthreshold)

{

normalization(wordindex1l) += sim
support(wordindexl , sensel) += sim

}

if (sim >= max_similarity (word2, sense2dthreshold)

{

normalization(wordindex2) += sim
support(wordindex2 , sense2) += sim

for word_.index = 1 to n

{

word = W[word.index ]
for sense = 1 to noof_senses (word)

{
if (normalization(word) != 0)
support(wordindex , sense)\= normalization(wordindex)
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C.3 WSD Using Only Related Senses

C.3 WSD Using Only Related Senses

Again, this algorithm is similar to the Greedy algorithmwmever for all word senses
only similarity values greater than a specified threshoddcansidered. Such a thresh-
old is selected such that any word-pair with a similarity \abthe threshold will be
classed as related, or similar, and anything below the hiotdsis considered suffi-
ciently different to not be semantically related. Thereftire algorithm only increases
support when two word sense pairs are significantly similar.

Listing C.3: Related Senses WSD

Given the set of nouns W {wl, ..., wn}

for word.index1l =1 to n—1

{
wordl = W[word.index1]

for word_.index2 = wordindexl + 1 to n

{
word2 = W[word.index2]

for sensel = 1 to noof_senses(wordl)

{

for sense2 =1 to noof_senses(word2)

{

sim = similarity (wordl, sensel, word2, sense2)

if (sim >= threshold)

{

normalization(wordindex1l) += sim
support(wordindex1l , sensel) += sim

}

if (sim >= threshold)

{

normalization(wordindex2) += sim
support(wordindex2 , sense2) += sim

}
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C.3 WSD Using Only Related Senses

}
}
}
}

for word_.index = 1 to n

{

word = W[word.index ]
for sense = 1 to noof_senses (word)

{
if (normalization(word) != 0)
support(wordindex , sense)\= normalization(wordindex)

}
}
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Appendix D

Manually Tagged Selected Entries
from Wordsmyth Thesaurus

This appendix includes all the entries selected from theddforth thesaurus for the
evaluation in Section 4.5.2. All nouns within each thesawntry used have been
manually tagged with their equivalent WordNet 1.6 sensesfse If a noun has no
sense tag, it is deemed not to have an adequate definitiordaugdo WordNet. Also,
some entries within Wordsmyth omit information such as dleédins.
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Adult

#DEF: 1. a person
who is fully grown,

mat ure, and consi dered
| egal |y responsi bl e.
adult, 1

grownup, 1

man, 1

woman, 1

#DEF: 2. a mature
ani mal or plant.

adult, 2

adul t hood

Air

#DEF: 2. an open

place in the frozen
surface of a | ake, pond,
or stream

air _hole, 1

outlet, 3

bl owhol e, 2

flue, 3

duct, 1

exhaust

spiracle

vent, 1

openi ng, 9

orifice, 1

w ndow, 2, 6
passage, 7

chi mey, 1
snokestack, 1
spout, 1

#DEF: 3. see air
pocket .
air_hole, 1

air_pocket, 1

#DEF: a route
regul arly used by
aircraft;

ai rway.

air_lane, 1

ai rway, 2

corridor

route, 1

#DEF: 1. the
tastel ess, odorless, and
col orl ess m xture of

ni trogen, oxygen, and

t her gases that forns
the earth’ s atnosphere.
air, 1

at nosphere, 3, 5

ozone, 1

stratosphere, 1

oxygen, 1

gas, 2

#DEF: 2. all that
above the ground; sky.
air, 3

sky, 1

heaven

at nosphere, 3, 5
stratosphere, 1

wel kin, 1

et her

ai rspace, 1

#DEF: 3. novenent of

t he at nosphere; breeze or
Wi nd.

air, 6
wnd, 1
airflow, 1
breeze, 1
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draft, 2

current

zephyr, 1

waf t

breath, 5

#DEF: 4. the

pecul i ar character,
manner, bearing, or aspect
of a person or thing:
#EXA: He has a
strange air.

air, 5 7

character, 2, 3

at nosphere, 6

aura, 3

anbi ance

manner, 2

bearing, 3

aspect, 1, 2

style, 2, 5

climte, 2

feel, 2, 3

i npression, 2
appearance, 1
denmeanor, 1

men, 1

tone, 3, 4, 5, 10
spirit, 2, 3

#DEF: 5. (pl.)
pretense or affectation:
#EXA: She is
putting on airs.

airs, 1

af fect edness, 1
affectation, 1
pretense, 4
pretension, 1
arrogance, 1

swank

#DEF: 6. travel or
transportation by aircraft.
#HEXA: He sent
them by air.

air, 2

ai rplane, 1

pl ane, 1

aircraft, 1

jet, 1

jetliner

Airplane

#DEF: any of
various aircraft that
are heavier than air and
are driven by propellers
or jet engines.

airplane, 1

aircraft, 1

pl ane, 1

jet, 1

propjet, 1

tur boprop, 1, 2
turbojet, 1

airship, 1

helicopter, 1

airliner, 1

Airport

#DEF: a large area
of |level |and where

ai rpl anes can | and and
take of f, usu. including
a passenger termnal and
cargo and repair
facilities.

airport, 1

airfield, 1
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airdrone, 1
flying _field, 1
airstrip, 1
| anding_field, 1
air_base, 1
termnal, 1

Album

#DEF: 1. a book or
bi nder with bl ank pages
or enpty pockets in

whi ch a coll ection can
be inserted, as of
phot ogr aphs, stanps, or
nenent os.

al bum 2

book, 2

scrapbook, 1

not ebook, 1

portfolio, 1

f ol der

file

conpilation, 1
cat al ogue, 2

bi nder, 3

#DEF: 2. a
phonograph record or set
of records, or the

j acket or binder thereof.

al bum 1
record, 2

LP, 1

di sk, 3
recording, 3
soundtrack, 1
CD, 4

conpact _disk, 1
tape, 5

#DEF: 3. a printed
coll ection of pictures,
or nusical or literary
sel ecti ons.

al bum 2

collection, 1, 2
ant hol ogy, 1

record, 5

docunent ati on

chronicle, 1

Alphabet

#DEF: 2. the
fundament al principles
of a subject; rudinents.
al phabet, 1

script, 3

witing, 4

letters

Arm

#DEF: 1. either of
the two upper |inbs of

t he human body, between
t he shoul ders and the
wists.

arm 1
forelimb, 1
br achi um
linb, 1

forearm 1

#DEF: 2. any part
that extends froma nain
body and resenbl es an
arm

arm 1, 2

appendage, 1
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brachium 1

linmb, 1 #DEF: 2. a part of
branch, 6 amlitary force.
ram fication arm 5
bough, 1 command, 2
of f shoot or dnance
projection, 4 power
Crosspi ece branch, 1
outfit, 1
#DEF: 3. the part
of an organi zation that #DEF: 3. (pl.) the
specializes in insignia of a famly or
oper ati ons or institution:
enforcenent; authority. #EXA: a coat of arns.
arm 5 arms, 2
authority, 5 coat _of arns, 1
power, 5 bl azon, 1
command, 2 heral dry, 2
division, 4 crest, 4
departrment, 1 insignia, 1
force, 5, 7 escut cheon, 3

det achnent, 4

#DEF: 1. (usu. pl.)

weapons, esp. those that Army

shoot or expl ode. #DEF: 1. the
arm 3 mlitary land force of a
firearm 1 nati on.

gun, 1, 2 arny, 1

r!fle, 1 soldier, 1

pistol, 1 soldiery, 1

revol ver, 1 troops, 1

si x-shooter, 1 nilita}y 1
shotgun, 1 arned_forces, 1
machi ne_gun, 1 artillery, 2
weapon, 1 cavalry, 1, 2

armanent, 1
munition, 1
ammuni tion, 1
cannon, 1, 3 #DEE:
artillery, 1
ordnance, 2

infantry, 1

mlitia, 1

2. a great
nunmber of people or

t hi ngs:
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#EXA: The si nger child, 1, 2, 5, 6

had an arny of fans. suckling, 1

arny, 2 nursling, 1

host, 2 weanl i ng

mul titude, 2 toddler, 1

| egion, 4 tot, 1

crowd, 1 kid, 1, 3

flock, 4 youngster, 1

horde, 1, 3

throng, 1 #DEF: 2. an young

bevy, 1 or newborn ani mal :

mass, 2 #EXA: Thi s

aggregation, 1 gorilla was tame when it
was a baby.

#DEF: 3. a large, baby, 3

or gani zed group. newborn, 1

army, 2 suckling, 2

| egion, 4 weanl i ng

battalion, 2 young, 1

bri gade, 1 pr ogeny

throng, 1

crowd, 1 #DEF: 3. the

flock, 4 youngest person in a

horde, 1, 3 famly or group

force, 4, 5, 8 baby, 4

assenbl age, 1 junior, 3

group, 1 youngst er

troop, 1, 2, 3, 4
#DEF: 4. a person
who behaves chil dishly or
i maturely

Baby baby, 5

#DEF: 1. an child, 3

extrenely young girl or nai f

boy; infant. .

baby, 1 #DEF: 5. (informal)

infant, 1 a young worman (usu. used

babe, 1 in direct address).

bambi no, 1 baby, 2

newborn, 1 babe

neonate, 1 sweet heart, 3

papoose, 1 honey, 2
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girlfriend, 2 causes it to rise.

gal, 3 bal | oon, 2
girl, 1, 4, 5 zeppelin, 1
| ass, 1 dirigible, 1
blinp, 2
#DEF: 6. (informal) airship, 1
sonet hi ng of personal aer ost at
concern or pride:
H#EXA: That #DEF: 2. such a bag
project is his baby. used to transport
baby, 6 passengers or scientific
pride, 5 equi pnent .
bal | oon, 2
aer ost at
zeppelin, 1
Backpack dirigible, 1
#DEF: a pack used blimp, 2
to carry objects, esp. airship, 1

canpi ng gear, on one’s
back; knapsack

backpack, 1
knapsack, 1 Bank
rucksack, 1 #DEF: at a bank,
packsack the funds credited to a
pack, 9 deposi tor and subject to
sack, 1 wi t hdrawal by himor her.
bag, 1, 6 bank_account, 1
pouch, 1 accunul ation, 4
tote, 1 mass
kit, 1 sedi ment
| uggage, 1 funds, 1
baggage, 1 deposit, 3
package, 2 | ees
valise, 1 dr egs

settlings

precipitate
Balloon silt .

al I uvi um
#DEF: 1. a bag nmade
of thin material that is #DEF: a prom ssory
filled wwth a gas that is note i ssued by an
lighter than air and aut hori zed bank.

252



bank note, 1

bill, 3
treasury note, 1
note, 6

paper _noney, 1

| egal tender, 1
noney, 1, 3

gr eenback, 1
currency, 1
certificate, 2
silver _certificate, 1
gold certificate
prom ssory _note, 1
loU, 1

green

tender, 1

#DEF: 1. a heap or
mass of sonet hing, such
as earth or clouds.

bank, 3, 7
heap, 1, 2
mass, 2, 3
pile, 1, 2
stack, 1, 2
drift, 4
accunul ation, 2
bundle, 1
cock

shock, 7

rick, 2

nmow

bale, 1

#DEF: 2. a sl ope,
usu. of earth.
bank, 2, 9
enbanknent, 1
mound, 4

sl ope, 1
acclivity, 1
incline, 1

di ke

| evee
par apet
drift
ridge, 1
rise, 3
hill, 2
knol
dune, 1
hill ock

#DEF: 3. the ground
at the edge of a river

or stream

bank, 2

shore, 1

edge

beach, 1

foreshore, 1

littoral, 1

#DEF: 1. a business
concerned with the

saf eguar di ng, exchangi ng,
and | endi ng of noney.
bank, 1

credit_union, 1

savi ngs_bank, 1

Feder al _Reserve_Bank, 1
thrift institution, 1
depository, 1

trust _conpany, 1

S and L

#DEF: 2. the reserve
of noney held by a
ganbl i ng establ i shnent.
bank, 8

kitty, 1, 2

pot, 6

#DEF: 3. a supply
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or reserve:
HEXA:

bank.

bank, 3, 4

st orehouse, 1
war ehouse, 1
repository, 1
store, 2, 4, 5
reservoir, 1
reserve, 2
depository, 1
stockpile, 1
stock, 4
supply, 1
fund, 2

pi ggy_bank, 1

a bl ood

Bath

#DEF: 1. a process
of washi ng or soaking
sonmething in order to

cl eanse, refresh, or heal
bath, 2

washi ng, 1

wash, 2

soak, 2

cl eaning, 1

cl eansing, 1

ablution, 1

i mrersion, 3

soaki ng, 3

rinse, 4

shower, 2

scrub, 2

scrubbing, 1

sponge

sauna

#DEF: 2. water or
ot her liquid used for

washi ng.

bath, 2

ablution, 1

water, 1

suds, 1

solution, 1

soak, 2

#DEF: 3. (often pl.)

an establishnent where
people go to take a bath
or to obtain therapy.
bath, 5

bat hhouse, 2

sauna, 1

sudat ori um

spa

sanitarium
Turkish_bath, 1, 2
heal th_cl ub
natatorium 1
sanatorium 1

#DEF: 4. a bat hroom
#PHR: t ake a

bat h.

bath, 5

bat hroom 1, 2
washroom 1
toilet, 1

| avatory, 1

wat er _cl oset, 1
WC, 1
restroom 1
can, 6

privy, 1

out house, 1
latrine, 1
powder room 1
| ounge, 2
confort _station, 1
comode, 1
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Bathroom

#DEF: aroomwth a
toil et and often
cont ai ni ng a sink,
bat ht ub, or ot her
facility for washing.
bat hroom 1, 2

bath, 5

washroom 1

toilet, 1

| avatory, 1

wat er _closet, 1

WC., 1

restroom 1

| adi es’ _room 1
men’s_room 1

can, 6

privy, 1, 2
out house, 1
latrine, 1
powder room 1
| ounge, 2

confort _station, 1
commode, 1

Bed

#DEF: 1. a piece of
furniture used for
resting or sleeping.
bed, 1

bunk, 2, 3, 5

cot, 2, 3
four-poster, 1
truckle, 1

trundl e_bed, 1

sack, 6

berth, 3

#DEF: 2. any pl ace
or thing used for resting
or sl eeping.

bed, 1

pallet, 2

sl eeping_bag, 1

berth, 3

r oost

chanber, 5

bedroom 1

#DEF: 3. an area of
ground used for planting,
or the plants thensel ves:
#EXA: a bed of
fl owners.

bed, 2

garden, 1

plot, 2

pat ch, 2

pl at

flat

#DEF: 4. the bottom
of a body of water:

H#EXA: a | ake
bed.

bed, 3

bottom 5

base

floor, 5

#DEF: 5. a
supporting base or |ayer:
#EXA: a bed of
gravel under the bricks.
bed, 6

foundation, 3

substratum 1

| ayer, 2

basis, 2
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support, 7
substructure, 1

stratum 1

deposit

seam 3

| ode, 1

base, 2, 8

Bible

#DEF: 1. the

princi pal sacred witings

of Judai sm conprising the

add Testanment, and of
Christianity, conprising
both the A d and New
Test anent s.

Bible, 1

Holy Scripture, 1
Scripture, 1

Holy Wit, 1
Good_Book, 1
The_Book
Wwrd, 7

A d Testanent, 1
New_Testanent, 1
CGospel, 1

#DEF: 3. (l.c.) any
book or text that is
consi dered authoritative
or official.

bi ble, 2

scripture, 1, 2
authority, 7

handbook, 1
gui de, 3
manual , 1

vade necum 1
gui debook, 1
reference, 4

prinmer, 1
t ext book, 1
text, 3

Bomb

#DEF: 4. (informal)
a failure:

#HEXA: H s
concert was a bonb.
bonb, 3

flop, 3

failure, 2

failing, 2

dud, 1

| enon

bust, 1

defeat, 1

fiasco, 1

fizzle

washout, 1

debacle, 3

m scarriage, 1
muf f, 2

Book

#DEF: 1. a
col | ection of bound paper
sheets, usu. containing
witten or printed words.
book, 1, 2, 8

vol unme, 3

edition, 1

folio

al bum 2

bookl et, 1

not ebook, 1

handbook, 1

diary, 2
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tome, 1
journal, 4

#DEF: 2.
wor k such as a novel or
vol une of poetry.

book, 1
edition, 1, 3
opus, 1

literature, 1
publication, 1
belles-lettres, 1
manuscript, 1

#DEF: 3. (pl.)
financi al or business
records:

HEXA:

t he books.
book, 5

| edger, 1
daybook, 1
journal, 1
log, 4, 5
blotter, 2
record, 1, 7
transcript, 1

He keeps

#DEF: 4.
Bi ble (prec. by the).
book

Bible, 1

wrd, 7

scripture, 1

Holy_ Scripture, 1
Good_Book, 1

Holy Wit, 1

CGospel, 1

A d Testanment, 1

New Testanent, 1

#DEF: 5. a set of

aliterary

(cap.) the

sim lar things bound
together into one unit,
such as matches, stanps,
or tickets.

book, 8

roll, 6

pad, 1

packet, 1

Boss

#DEF: 1. a person
who enpl oys ot hers or
supervi ses their work;
manager .

boss, 1

manager, 1

executive, 1

CEO 1

chief, 1, 2

| eader, 1

foreman, 1
superintendent, 1
super

master, 2, 4
supervisor, 1

head, 4

tasknaster, 1
overseer, 1

adm ni strator, 1

enpl oyer, 1

#DEF: 2. a
politician who donmi nates
a |l ocal party.
boss, 4

caci que

party, 5

man, 1

em nence, 1

ki ngmeker
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war - horse, 2
whi p, 2

#DEF: 1. a rounded
proj ection or swelling.
boss, 5

nub, 1

bubbl e, 1

knob, 1

node, 5

bul b, 5

stud, 2

knur |

nubbl e

blister, 1

bul ge, 1

bunp, 1

swell, 2

bill ow

#DEF: 2. an
or nament al proj ection,
such as a knob or stud.

boss, 5

stud, 2

nai |l head, 1, 2

knob, 4

burl, 3

Bottle

#DEF: 1. a container,

usu. made of gl ass and
havi ng a sl ender neck,

used mainly for storing
or serving liquids.

bottle, 1
carafe, 1
magnum 1

vacuum bottle, 1
dem j ohn, 1

decanter, 1
flagon, 1
flask, 1
cruet, 1
flacon

jug, 1

j eroboam 1

#DEF: 2. the anount
such a container wll

hol d:

H#EXA: | used a
bottle of wine in this
st ew.

bottle, 2

jar, 2

jug, 2

glassful, 1

quart, 1, 2

pint, 1, 3

cup, 2

gallon, 1, 2

#DEF: 3. fornmula or
cows mlk fed to infants
in place of nother’s
mlk, usu. contained in a
bottle fitted with a

ni ppl e.

bottl e

formula, 6

mlk, 1, 4

Bowl

#DEF: 1. a deep,
rounded di sh used nostly
for contai ning food,
liquids, or the like.
bow, 1, 3

di sh, 1
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saucer, 2
porringer, 1
cup, 1
tureen, 1

#DEF: 2. the
contents of such a dish:
H#HEXA: | ate a
bow of cereal

bow , 4

di sh, 3

cup, 2

#DEF: 3. the rounded,
di shli ke part of something,

as of a spoon, sink, or
toilet.

bow , 2

sink, 1

toilet, 2

washbasin, 2

basin, 1, 2

#DEF: 4. a rounded
val | ey or ot her

geogr aphi cal depression
or formation.

bow , 2

valley, 1

hol | ow, 2

basin, 4

depression, 3

i ndentation, 1

dip, 1

crater, 3

hole, 5

#DEF: 5. a rounded
st adi um or out door

t heater.

bow, 5

stadium 1

anphi t heater, 2
coliseum 1
arena, 3

#DEF: 6. in the
United States, a foot bal
gane played at the end of
t he season by specially
el ected teans:

#EXA: t he Super
Bow .

bow

tournanment, 1

pl ayoff, 1

chanpi onshi p

neet, 1

#DEF: 1. alarge
wooden bal |l shaped or

wei ghted so as to roll in
a curved path, used in

| awn bow i ng.

bow , 6
ball, 1
#DEF: 2. (pl., but

used with a sing. verb)

t he ganme or sport of |awn
bow i ng.

bow s, 1

| awn_bow i ng, 1

boul es

boccie, 1

#DEF: 3. aroll or
throw of the ball in
bow i ng or bow s.

bow

boul es

roll, 15

throw, 1
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spectators sit.

box, 2
Box conpart ment, 2
#DEF: 1. a contai ner L
made of cardboard, wood, #DEF: 6. adifficult
or other stiff naterial, s!tuatlon; predi cament ;
usu. rectangul ar and di | emma.
having a lid for the top. box, 7
box, 1 dilemm, 1
contai ner, 1 predi canent, 1
carton, 2 guandary, 1
crate, 1 plight, 1
trunk, 2 conundrum 1
package, 2 ,
parcel, 1 #DEF: a hit or blow
chest, 2 struck with the hand or
case, 7 fist.
paCk, 3 bOX, 10
packet, 2 bl ow, 1
hit, 2
#DEF: 2. the anount cuf f
contained in or the punch, 1
contents of a box; boxful. swat, 1
box, 3 slap, 2
carton, 1 smack, 6
boxful, 1 whack, 1
case, 10 belt, 6
t hwack, 1
#DEF: 3. any of buf f et
various encl osures t hat knock, 3, 5
contain and protect: sock
#EXA: t he gear jab, 1, 2
box of an autonpbil e.
box, 1
case, 7, 11, 13, 16 Boy
housi ng, 2
sheath, 1, 2 #DEF: 1. a male
j acket, 2, 4 child or adol escent.
casement boy, 1
youth, 1
#DEF: 5. an encl osed stripling, 1
area in a theater where child, 1, 2
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son, 1
youngster, 1
adol escent, 1
t eenager, 1
kid, 1, 3

#DEF: 2. (informal)
a man.

boy, 2

dude, 1

chap, 1

fellow, 1

man, 1

#DEF: 3. a young
i mmat ure nan.

boy, 1

youth, 1

|l ad, 2

Car

#1. an autonobil e.
car, 1

autonobile, 1
auto, 1

notorcar, 1
vehicle, 1

sedan, 1
coupe, 1
i nousine, 1
linD, 1

convertible, 1
roadster, 1
runabout, 1
hot rod, 1
rattletrap

j al opy, 1
crate

buggy, 1
heap, 3

cab, 3

taxi, 1
taxi cab, 1
hackney, 1
hack, 4

#2. a vehicle that runs
on rails, such as a
streetcar or railroad car
car, 2, 5

vehicle, 1

streetcar, 1

coach, 3
di ner, 2
sl eeper, 3
snoker, 3
caboose
Pul | man, 1
tram 1, 2
trolley, 1

cable car, 1

#3. an encl osure for
carrying people, as in an
el evator or ball oon.

car, 2, 3, 4, 5

cab, 1

el evator, 1

bal | oon, 1

trolley, 1

tram 1, 2

cable car, 1

Carpet

#DEF: 1. a heavy
fabric covering for floors.
(See rug.)

carpet, 1

rug, 1

mat, 1
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scatter_rug, 1

area_rug

throw rug, 1

runner

#DEF: 2. a covering
simlar to a carpet:
#EXA: a carpet
of flowers.

carpet, 1

rug, 1

mat, 1, 3

runner

covering, 2

Cave

#DEF: 1. a natura
hol | ow or series of
hollows in the earth,
esp. one with an openi ng
inahillside or cliff.

cave, 1

cavern, 2

grotto, 1

cove, 2

hol l ow, 1

cavity, 1

under ground, 2
den, 2

mne, 1

#DEF: 2. an

nder ground st or age
chanber, esp. a w ne
cell ar.

cave, 1

cellar, 1, 2, 3

wine cellar, 1
grotto, 1

vault, 1, 2

basenent, 1
chanber

Chair

#DEF: 3. the person
occupyi ng such a position;
anyone who presides over
a group or neeting.

chair, 3

chai rperson, 1

chairman, 1

facilitator, 1

noder at or, 2

head, 4

Chief

#DEF: t he forenost
or nost inportant person
in a group; |eader.
chief, 1

| eader, 1

head, 4

ki ngpin, 1

top

dozen

principal, 2

boss, 3

top_dog, 1

headman, 2

chieftain, 1, 2

master, 5

par anount

Child

#DEF: 1. a young
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human; baby.

child, 1,
kid, 1, 3
youngst er
juvenil e,
baby, 1
infant, 1
youth, 1
boy, 1, 3
girl, 2,

| ad, 2

| ass
stripling
junior, 4
tot, 1

t oddl er,
tyke, 2
pr et een

#DEF:
daught er.
child, 2
of fspring
son, 1
daught er,

3

1

2

1

1

descendant ,

progeny,
scion, 1
i ssue, 6

#DEF:

1

descendant .

child, 2
of fspring

descendant,

progeny,
scion, 1
i ssue, 6
son, 1

daught er,

#DEF:

1

1

1

1

1

1

2.

1

1

4.

a son or

soneone

who acts in a childish or
i mmat ure way.

child, 3

baby, 5

juvenile

adol escent

gr eenhorn

#DEF: 5. one who is
considered to be the
nat ural product of
particul ar tines or

ci rcumst ances:

#EXA: a child
of the revol ution.
child, 2

product, 3

son, 1

daughter, 1

of fshoot, 1

Church

#DEF: 1. a building
for public Christian

wor shi p.

church, 2

neet i nghouse, 1
tabernacle, 1

chapel, 1

cathedral, 1, 2

basilica, 1

temple, 1

#DEF: 2. such
worship itsel f.
church, 3

wor ship, 1

devotion, 4
service, 3

mass, 4
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conmuni on, 1
office, 6
vespers, 2
novena
matins, 1
conpline, 1

#DEF: 3.
congregation or
of a religious
denom nati on or
church, 1
congregation, 1
fold, 2
comuni on
parish, 1
laity, 1

flock, 1

t he
menber shi p

sect.

#DEF: 4. (often pl.)
a particular Christian
denom nation or sect:
H#EXA: t he
Bapti st Church.

church, 1

denom nation, 1

sect, 1

faith, 3

religion, 1, 2

cult, 1, 3

creed, 1, 2

per suasi on, 2

#DEF: 5. the | ocal
or national organization
and authority of a
particul ar religious
denom nati on.

church, 1

clergy, 1

mnistry, 1

hi erarchy, 2

epi scopacy
papacy, 1
Vatican, 1
presbytery, 1
vestry, 1

Chri stendom 1

#DEF: 6. organized
religion in general:
H#EXA: the role
of the church in daily
life.

church, 1

religion, 2

faith, 3

wor ship, 1

devotion, 3, 4

Clock

#DEF: a nechani ca
or electric device, other
than a watch, for
measuring or indicating
tine.

clock, 1

ti mekeeper, 3
ti mepi ece, 1

chrononeter, 1
time_clock, 1

Clown
#DEF: 1. a comc
performer, as in a circus,

who wears odd cl ot hes and
exagger at ed makeup and
entertains by jokes,
tricks, juggling, and the
like.
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clown, 2 scope included within it:

jester, 1 #EXA: t he

fool, 3 conpass of the town walls;

harl equin, 1 #EXA: t he

pantom ne, 1 conpass of the state’s

mme, 1 authority.

hurmorist, 1 conpass, 2, 3
circunference, 1

#DEF: 2. a person limt, 1, 3, 4

who acts in a comcal, circuit

pr anki sh manner . perimeter, 1

clown, 2 peri phery, 1

buf f oon, 2 boundary, 1, 2

jester, 1 border, 1, 2

zany, 1 margin, 1

wag, 1 edge, 2

farceur outline, 1

conedi an, 1

j oker, 1

cut up

merry_andrew, 1 Cup

harlequin, 1 #DEF: someone or

come, 1

prankster, 1 sonmething that is |iked

or known wel | :

H#HEXA: Those
#DEF: 3. a crude, peopl e aren’t ny cup of
inmpolite, or oafish tea:
person. #EXA: H's cup
clown, 1 of tea is fixing
boor, 1 conput ers.
churl, 1 cup_of tea, 1
! out, 1 netier, 1
j oker, 2 forte, 1
br ut e, 1 t hi ng
yahoo, 1 bag, 9
oaf, 1 partiality, 2
specialty, 1
predilection, 1
Compass prefgrence, 2
provi nce
#DEF: 2. a boundary

or limt, or the space or
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Cycle

#DEF: 1. an event
or sequence of events
repeated at regular or
approxi mately regul ar
time intervals:

#EXA: the cycle
of seasons in a year;
cycle, 1

circle

round, 2

revolution, 3

series, 1

sequence, 1, 2

course, 2

rotation, 2

#DEF: 2. the tine
interval required for
uch a sequence to occur;
periodicity.

#EXA: a
frequency of sixty cycles
per second.

cycle, 1

period, 1

time, 2

generation, 3

session, 2

periodicity, 1

#DEF: 3. a long
time; age; era.

cycle, 1

span

time, 2

eon, 2

years, 2

century, 1

decade, 1

#DEF: 4. a bicycle,

uni cycl e, notorcycle, or
the |ike.

cycle, 6

bi ke, 2

bicycle, 1

Diamond

#DEF: 2. a geonetric
shape with four equa

strai ght sides, two equal,
opposed acute angles, and
two equal, opposed obtuse
angl es.

di anond, 1, 2

stone, 5

preci ous_stone, 1
genstone, 1

rock, 2

gem 2, 5

jewel, 1

Dress

#DEF: 1. agirl’s or
wonman’ s one- pi ece gar nment
consi sting of a bl ouse
connected to the wai st

of a skirt.

dress, 1

frock, 1

gown, 1

shift, 8

shirtwaist, 1

#DEF: 2. apparel;
cl ot hi ng.

dress, 2

apparel, 1

clothing, 1
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rai nent, 1

garb, 1
habit, 3
habi | i nents
duds, 1
threads, 1
t oggery
wear, 2

costune, 1, 2, 3, 4
outfit, 2

getup, 1

togs, 1

#DEF: 3. fornal
cl ot hi ng.

dress, 2

vestnment, 1

attire, 1

eveni ng_dress, 1
white tie, 2
Sunday_best, 1
robe, 1

f or mal

di nner _j acket, 1
t uxedo, 1
apparel, 1
array, 3
caparison, 1

bl ack tie, 1

Drill
#DEF: 1. a tool

consisting of a shaft that

has sharp cutting edges

and i s used to make hol es

in wod, netal, or the
i ke, usu. by nmeans of

rotation; drill bit.
drill, 1, 2
bit, 9

borer, 1
rotary

#DEF: 2. a device
t hat hol ds and often
powers a drill bit or
drill shaft.

drill, 1, 2

borer, 1

rotary

#DEF: 3. a learning
or training procedure
consi sting of frequent
repetition of an action
or itemto be | earned:

#EXA: a mar chi ng
drill;

#HEXA: a

mul tiplication drill.
drill, 4, 5

exerci se, 3
training, 1
practice, 2
regi men

routine, 1

#DEF: 4. any of
vari ous marine nol | usks
that kill oysters and

the |i ke by maki ng hol es
in their shells.

dril

mol | usk, 1

gastropod, 1

Drink

#1. a liquid for
swal | ow ng; a beverage
or a certain quantity
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of |iquid.

drink, 3, 5

beverage, 1

qguaf f

liquid, 1, 3

refreshnent, 1
soft _drink, 1
soda, 2
juice, 1

#2. an al coholi c beverage.
drink, 3, 5
potation, 1

i ntoxi cant, 1
al cohol, 1
beverage, 1
[iquor, 1

W ne, 1

beer, 1
spirits, 1
booze, 1
sauce
noonshi ne, 2
firewater, 1

cocktail, 1
ni ght cap, 1
tipple, 1

#3. a certain quantity of
al cohol .

drink, 1, 5

gl ass, 3

bottle, 2

can, 2

sl ug

brew, 1

#4. excessive use of

al cohol :

#HEXA: Dri nk
caused himto | ose his
j ob.

drink, 2

i nsobriety

i nt enper ance, 2
drunkenness, 1, 2
i ntoxication, 1
inebriety, 1

al coholism 1, 2
di psomania, 1
crapul ence, 1
tipple, 1
boozing, 1

bi bul ous

#5. (informal) a body of
wat er :

H#EXA: | fell
off the boat and into the
dri nk.

drink, 4

wat er, 2

ocean, 1

sea, 1

brine, 1

briny, 1

| ake, 1

river, 1

pond, 1

Drum

#DEF: 2. a boom ng
sound produced by or as
if by a drum

drum 2

t hunder, 1

runble, 1

boom 1

roll, 8, 9

grow, 1

roar, 1

resonance, 3
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reverberation, 1

Earth

#DEF: 1. (often
cap.) the fifth | argest

pl anet in the solar
system which is third in
order fromthe sun and
has a di aneter of about

7, 930 m |l es.

earth, 1

gl obe, 1

#DEF: 2. all of the
i nhabitants that dwell
upon Eart h:

H#EXA: Earth
prays for peace.

earth

world, 1

manki nd, 1
humanity, 1
race, 3

popul ation, 1
people, 1

#DEF: 3. the outer
| ayer of the planet;

gr ound.

earth, 2, 3

| and, 4

ground, 1, 3

soil, 2

terra firm, 1

topsoil, 1

clay, 1

#DEF: 4. soil or
dirt.
earth, 2

ground, 3, 7

soil, 2, 3
dirt, 1
terra_firma,
clay, 2

sod, 1

dust, 1
Electricity
#DEF:

1

2. the

science concerned with
such a phenonenon and

its effects.
el ectricity

polarity
magneti sm
#DEF:

4. a state of

tensi on or excitenment.

electricity,
current, 1

3

direct _current, 1

DC, 2

alternating current, 1

AC, 2
power, 2
juice

Explosive

#DEF:

a subs

that is capable of
causi ng an expl osi on,
esp. an agent prepared

for that pur
as dynanmte.
#DER:
expl osi vel vy,
#DER:
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expl osi veness, n.
expl osive, 1
fulmnate
detonator, 1
charge, 15
dynamte, 1

TNT, 1
trinitrotol uene, 1
gunpowder, 1
cordite, 1
gelignite, 1
fuse, 2

Eye

#DEF: 1. the organ

of sight and the area

cl ose around it, including
the lids, |ashes, and brow.
eye, 1

orb, 1

eyebal I, 1

peeper, 2

#DEF: 2.
observi ng:
#EXA:

for color.

eye, 2

sense, 3
sensitivity, 1
awar eness, 1

j udgnment, 7

di scernnent, 4
perception, 4

skill in

an eye

#DEF: 3. (usu. pl.)
j udgnment or under st andi ng:
#HEXA: I n
society’'s eyes, they are
out | aws.

eye, 2

view, 5

opinion, 1

j udgment, 1
under standi ng, 1
estimtion, 4
ken, 1

#DEF: 4,
attention:
#EXA: Keep an
eye on ny things while
| " m gone.

eye, 3

wat ch, 3

| ookout

attention, 1

cl ose

#DEF: 6.
as of a storm
eye, 4

center, 1
mddle, 1

hub, 2

heart, 4
mdst, 1

t he center,

#DEF: 7. any of
vari ous things that
resenbl e an eye:
#EXA:

of the needl g;
#EXA:

of the target.
eye, 5

eyelet, 1

gr onmet

hol e

slit, 1

t he eye

t he eye

Family
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#DEF: 2. such
ancestors themsel ves.
famly tree, 1
ancestor, 1
predecessor, 1
forerunner, 1
forebear, 1
ancestress, 1
progenitor, 1
ancestry, 1

ant ecedent, 1

r oot

geneal ogy, 1

par ent age, 2

backgr ound

#DEF: 1. a group

consi sting of parents and

their chil dren.
famly, 1

folk, 3

househol d, 1
house, 4

nmenage, 1

kindred, 1

clan, 1

kKin, 1, 2

extended famly, 1

#DEF: 2. all of
one’ s ancestors and
descendants; those
rel ated by bl ood ki nship.
famly, 4, 5
relation, 3

peopl e, 4

kKin, 1, 2

kinfolk, 1

Ki ndred, 1

ancestry, 1

relative, 1

folk, 3

descendants, 1
offspring, 1
progeny, 1
ancestor, 1

#DEF: 3. all those
persons descended froma
common ancest or.

famly, 4

descendants, 1

of fspring, 1

progeny, 1

posterity, 1

i neage, 1

relation, 3

peopl e, 4

kinfol k, 1

ki ndred, 1

relative, 1

folk, 3

par ent age, 2

#DEF: 4. any group
l[iving together, as if
they were rel ated by
bl ood, in a single
househol d.

famly, 1

househol d, 1

nmenage, 1

house, 4

folk, 3

kindred, 1

clan, 1

peopl e, 4

#DEF: 5. any group
of things related in form
function, or period of
manuf acture or origin.
famly, 3

class, 1
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genus, 1
category, 1
group, 1
kind, 1
type, 1
order, 8, 10

Fan
#DEF: 1. a
nmechani cal apparat us, usu

driven by electricity,
that creates an air
current by noving severa
vanes or blades in
rotation.

fan, 1

bl ower, 1, 2
air_conditioning, 1
ventilator, 1

#DEF: 2. a hand-held
devi ce that opens out to
forma triangul ar shape
and that is used to cool
the face or body by wavi ng
back and forth.

fan, 1
pal m | eaf
punkah, 1
#DEF: an

ent husi astic foll ower of
an activity such as a
sport or a performng art,
for of a person or persons
who engage in tha

activity:
H#HEXA: a football
fan;
H#EXA: t he fans

of a novie star.
fan, 2, 3

ent husi ast, 1
af ficionado, 1
devotee, 1
buff, 1
fancier, 1
fol |l ower

hound

addict, 1

nut, 5

fiend, 3

j unki e
groupie, 1
votary, 3
disciple, 1

Feather

#DEF: 4,
or character:
H#EXA:

f eat her;

f eat her
shape, 6
condition, 1
trim 1

form 7
order, 5
fettle, 1
Kilter
health, 1

condi ti on

in fine

Festival

#DEF: 1. a day or
nore of celebration to
commenor ate a not abl e
occasi on, such as a
religious holiday.
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festival, 1
hol i day, 2
feast, 3
fete, 1

cel ebration, 2
observance, 2
holy_day, 1
gala, 1
revel, 1
jubilee, 1
cerenony, 1
carnival, 1
Saturnalia, 1
fiesta, 1
nanme_day, 1
occasi on, 2

#DEF: 2. a

regul arly occurring
cerenony or cel ebration:
#EXA: t he
harvest festival.
festival, 1

cel ebration, 2

fete, 1

observance, 2

cerenmnony, 1

revel, 1
jubilee, 1
gala, 1

carnival, 1
Saturnalia, 1
fiesta, 1
occasion, 2

#DEF: 3. a series of
presentations, or a
gathering of exhibitors in
one or nore of the fine
arts, theater arts, or
crafts, or such a

gat hering based on a

central thene, food,
season, or the like:

H#EXA: a nusic
festival;

#EXA: t he appl e
festival.

festival, 2

fair, 1

carnival, 3

Film

#DEF: 4. (often

cap.) notion pictures
generally, or the notion
pi cture industry.
film 1

novie, 1
notion_picture, 1
nmovi ng_picture, 1
picture, 6

feature, 3

show ng, 1

show, 4

screening, 1

ci nema

Fire

#DEF: a hydrant to
which a firefighting hose
can be attached; fireplug.
fire_hydrant, 1

hydrant, 2

fireplug, 1

plug, 6

#DEF: 1. the
ffects, such as heat,
light, and fl ames,
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produced by burning.
fire, 3

flame, 1

combustion, 1

[ight, 1

spark, 1

glow, 3, 5
illumnation, 3

i ncandescence, 2

sparkle, 2, 3
energy, 1
heat, 1, 2

radi ance, 2

#DEF: 2. a
parti cul ar burni ng,
a stove or furnace.
fire, 1, 3

bl aze, 1

bonfire, 1

as in

#DEF: 3. an instance
of destructive burning:
H#HEXA: There was
a fire at the library |ast
ni ght.

fire, 1

bl aze, 1

conflagration, 1

hol ocaust

wildfire, 1

i nferno, 3

flare-up

#DEF: 4. passion or
i magi nati ve excitenent:
#EXA: the fire
of her
fire, 6
fervor, 1
ardor, 3
passion, 1

poetry.

heat, 4

verve, 1

ent husiasm 1
power, 1
vehenence, 1
intensity, 1, 2
i magi nation, 1

#DEF:
trial.
fire, 7
trial, 6
ordeal, 1
trouble, 2, 3, 4
affliction, 1, 3
torture

5. a severe

#DEF: 6.
di schargi ng of
or weapons.
fire, 2

di scharge, 9
shot, 3

flak, 4
fusillade, 1
vol ley, 1
barrage, 2

sal vo, 2
cannonade, 1
enfil ade
gunfire, 1

t he
a weapon

Flower

#DEF: 2. a plant
capabl e of produci ng

bl ossons, grown primarily
for visual enjoynent.
flower, 1

bl ossom 1

i nfl orescence, 2
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bl oom 2
bud, 1

#DEF: 3. the best or
nost fl ourishing exanpl e
or state of sonething:
#EXA: He was the
fl ower of his generation;
flower, 3

prime, 2

effl orescence, 1

heyday, 1

bl oom 5

sunmt, 1

peak, 2

zenith

climax, 4

flush, 1

Foot

#DEF: 4. the part of
sonmething that is | owest
or opposite the head:
#EXA: t he foot
of the cliff;
#EXA:

of the bed.
foot, 3, 5
base, 2, 5, 8
rock _bottom 1
bottom 2
nadi r
foundation, 3
bel l'y

floor, 3, 5

t he foot

Freeway

#DEF: a highway with

limted access and no
tolls; expressway.
freeway, 1

t hruway, 1

t urnpi ke, 2

pi ke, 1
interstate
expressway, 1
route, 2

par kway, 1

aut obahn, 1

hi ghway, 1
speedway, 1

Fruit

#DEF: 2. sonet hing
that is a result or

out cone:

HEXA: These are

the fruit of my efforts.
fruit, 2

child, 2

product, 3

progeny, 1

i ssue, 6, 7

offspring, 1, 2

outcone, 1, 2

result, 1, 3

descendant, 1

heir, 2

of fshoot, 1

spawn

Fungus

#DEF: any organi sm
i ncl udi ng nmushr oons,
yeasts, nolds, rusts, and
ot hers, characterized by
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| ack of chl orophyll and
by subsi stence on organic
matter.

fungus, 1

nold, 5

m | dew, 2

smut, 3

rust, 4

parasite, 1

Game

#DEF: 2. any pl anned
strategy to reach an

obj ecti ve.

game_plan, 1

strategy, 1

pl an, 1

gamne

schene, 1

stratagem 2

#DEF: 1. sonething
done for anmusenent;

di versi on; pastine.

game, 3

di version, 1
pastine, 1

di straction, 3
entertai nnent, 1
recreation, 1
amusenent, 2

pl ay, 14

fun, 1

#DEF: 2. a usu.
conpetitive formof play
or sport having certain
rul es and equi pnent for
pl ay:

#EXA: a gane of

chess;

HEXA:

gane.

gane, 2, 3
sport, 1

pl ay
conpetition, 2
mat ch, 2
contest, 1

a foot bal

#DEF:

or plan.
gane
strategy, 1
pl an, 1
game_plan, 1
schene, 1
stratagem 2

3. a strategy

#DEF: 4. wild
animal s hunted for sport
or food.

gane, 4

quarry, 3

wldlife, 1

big ganme, 1

t ake

#DEF: 5. the flesh
of such aninals, used for
f ood.

ganme, 8

fow, 2

nmeat, 1

t ake

Garden

#DEF: 2. (often.

pl.) a public park or
recreation area, often
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devoted to the housi ng and
di splay of plants or

ani mal s.

garden, 1

plot, 1

pat ch, 2

bed, 2

pl at

flat

Gas

#DEF: 8. (sl ang)
somet hi ng anusi ng or
ast oni shi ng:

H#EXA: Those
crobats were a gas.
gas

chatter, 1

gossip, 1
smal | _talk, 1
chitchat, 1

prate, 1

pal aver, 2

gab, 1

j abber, 1

babbl e, 1

patter, 1

prattle, 1

gi bber, 1

twaddl e, 1

bl at her, 1

bl ab

blast, 5

bal |

Gate

#DEF: 2.
for entrance or

a passage
exit.

gate, 1
portal, 1
entry, 5
entranceway, 1
entryway, 1
ingress, 1
door, 2
doorway, 1
hall, 1, 2
entrance, 1
i nl et
approach, 3
driveway, 1
adit, 1
opening, 1
hat ch, 3
postern, 1
hal  way, 1
foyer, 1
access, 3

Gemstone

#DEF: a precious
stone fine enough to cut
and polish for jewelry.
genstone, 1

gem 2

bijou, 1

stone, 5

jewel, 1, 2
spar kl er

rock

Girl

#DEF: 1. a female
child or adol escent.
girl, 2

femal e, 2
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mai den, 1
| ass, 1
filly, 1
mai d, 2
gal, 3
nynmph, 3

#DEF: 2. an intimte
femal e friend; sweetheart.
girl, 4

girlfriend, 2

sweet heart, 1

i nanor at a

| ass, 1

#DEF: 3. (informal)
a woman.

girl, 1, 5

woman, 1

| ady, 1, 2

femal e, 2

God

#DEF: 2. (cap.) the

omi pot ent and omi sci ent
bei ng that is worshiped
by Christians, Jews, and
Muslinms as the creator
and rul er of the universe.
god, 1

angel, 1

seraph, 1

cherub, 2

ar changel , 1

goddess, 1

cel esti al

#DEF: 3. a physical
i mage or representation
of a supernatural being;

i dol .

god, 4
Manmon
deity,

1

religion
gol den_cal f,

i dol ,
effigy
st at ue
relic,
fetish
j oss,
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Appendix E

The Maximum Entropy Framework

A training sample of data yields some information about teeigilons made within
various contexts; however this only accounts for a smalliporof all possible situa-
tions due to the sparse nature of the data for the task beinglied. The task of ME
is to train a classifiep(d|c), that conforms to the empirical distributions of the trampi
sample but in addition remains as uniform as possible fastakr possibilities. Given
information about how features affect decisions made inidbedata, the task is to find
a classifier that uses these features to calcylate). That is to say, the principal of
maximum entropy is:

“To select a model from a sét of allowed probability distributions,
choose the model, € C' with maximum entropy H(p)”

ps = arg maxH (p) (E.1)

peC

where H (p) is the measure of uniformity. Berger et al. (1996) give thehematical
measure of conditional entropy as a measure of the unifgrofiip(d|c), as shown in
equation E.2.

H(p) = =) _p(c)p(dle) logp(d|c) (E.2)

To ensure that the classifier will conform to the informatadoout the features, the set
C of allowable classifiers is defined by equation E.3.

C={pePlp(fi) =p(fi) Nie{l,2,...,n}; (E.3)
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wheren is the number of features used by the classifiers.

Ratnaparkhi (1997) gives a simple example of the use of maximntropy. Con-
sider the task of estimating the distributipfr, d), where there are possible contexts
c € {z,y} and possible decisions € {0,1}. The only prior information available
is thatp(x,0) + p(y,0) = 0.6. Constructing a feature from the given information
produces function E.4 and the probability in E.5.

fled) = {1 . ifd=0 (E.4)

0 : otherwise
p(fi) = 06 (E.5)

It is apparent that there are a large number of distributibas will satisfy the
feature, such as table E.1. However, the maximum entropsoapp selects the clas-
sifier deemed to be most uniform, or non-committal, givenaiolé E.2. For small

p(c,d)| O 1
x|01 0.3
y 105 01
Total | 0.6 0.4 1

Table E.1: One Way To Satisfy The Constraints

p(c,d)| O 1
x{03 0.2
y 103 0.2
Total | 0.6 0.4 1

Table E.2: The Most Uniform Way To Satisfy The Constraints

examples, such as the one outlined above, the calculatiadhddaistribution is trivial.
However, for most problems of interest this is not the case skch cases, an alterna-
tive approach is required. Berger et al. (1996) and Bergg®{Lgive a method using
Lagrange Multipliers from the theory of constrained opsation:

e The problem of finding. € C' in the original optimisation problem is referred
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as the primal problem, given in equation E.6.

dp. = argmaxH (p) (E.6)

peC

For each featuref;, a Lagrange multiplier);, is introduced. The Lagrangian
A(p, M) is defined as E.7.

Alp,\) = H(p) + Zw(fz-) —p(fi)) (E.7)

wheren is the number of features.

The task is to find,, the classifier wheré\(p, \) reaches its maximum. For
this a new definition fop( f;) is required using the Lagrange multipliers. A dual
problem, ¥ (1)), is maximised to find the values of When this maximum is
reachesy (\) will be equal toA(p, \).

Dy = argergaxA(p,A) (E.8)
U\ = Alp, A (E.9)

The dual problem expresses the conditional distributi@tc) in terms of the fea-

tures that are active, where a feature is active when itevalli. The Lagrange multi-
pliers, \, weights the affect of each of the features in the final clessEquations E.10
to E.13 define the dual problem, and the new definition fordatingp(d|c) using the
Lagrange multiples.

pa(dlc) = Zj(c) exp (Z&ﬁ(a@) (E.10)

Zx(c) = Zexp <Z)\ifi(c>d)> (E.11)

pa(f) = D _ple)paldle) f(c,d) (E.12)
ceC,
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U(A) = = _p(c)log Zx(e) + 3_Xi(f:) (E.13)

ceC
Maximising the unconstrained dual function (E.13) givegto$ Lagrange multi-
pliers that also maximis&(p, \), therefore we solve the dual optimisation problem by
satisfying E.14.

I\, = argmax¥(\) (E.14)
A

It will sometimes be the case that cannot be calculated exactly. In the iterative
training algorithm introduced later in this section, eaighation,:, produces a set of
Lagrange multipliers);. () increases for each iteration of the algorithm, therefore
. can be estimated due to the fact that—\,,.

A fundamental principal of the theory of Maximum Entropye tiuhn-Tucker the-
orem, reinforces the relationship between the primal arad phwblems given here. So
it follows, as Berger et al. (1996) state:

“The maximum entropy model subject to the constraifithas the
parametric fornp,, where the parameters valugscan be determined by
maximising the dual functiof(\).” (Berger et al., 1996)

The optimal set of Lagrange multiples,, can be calculated using a number of
numerical methods given that the dual functiég\) produces a smooth convex-
graph againsi. Berger et al. (1996); Berger (1997) describe an improvegiive
scaling (11S) algorithm to calculate the Lagrange mulgpi. The algorithm itself is
a generalisation of the Darroch-Ratcliff procedure, andomffor the convergence of
the algorithm is given by Pietra et al. (1997, 1995). The aigm can be applied to
any model that meets the criteria in E.15.

Vee C-YdeD-Vie{l,2,...,n}- filc,d) >0 (E.15)

wheren is the number of features.

The main task of the algorithm in listing D.1 is to calculdte A \; that satisfies the

equality in 2a for each iteration. ¥ f(c, d) is constant forf;, A)\; can be calculated

directly. Rearranging the equality in 2a produces the eguat E.16.
1 p(f3)

A)\Z = In

e d) " o) (E.16)
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Algorithm D.1: Improved Iterative Scaling (11S) Algorithm
1. Vie{1,2,...,n}, ) =0
2.Vie{1,2,...,n},
(a) LetAM\; be the solution to
%ﬁ(dlcm(c, d) exp (AX# f(c,d)) = p(f)
where= f(c,d) = 3 fi(c, d).
(b) Update the value :;1 according to:\; < \; + A\;.
3. Return to step 2 if not all; have converged.

If # f(c,d) is not constant fof;, Newton’s method is applied to find\;. Newtons
method is illustrated in equation E.17.

— o — g(am)
Opy1 = Qyp g’(an) (El?)

For the dual problem (E.13)(«,,) is calculated using E.18.
g(an) - (Zﬁ(c)p)\(d‘c)fz(cv d) eXp (an#f(c> d))) - ﬁ(fz) (E18)
c,d

The derivative ofj(«a,) than be calculated trivially given rules E.19 and E.20.

flx) = mc™ —k (E.19)
f'(x) = nmd™” (E.20)

wherec, k, m andn are constants. Using these rulg$¢,,) is given by differentiating
g(ay,) is respect tay,, producing E.21.

9(am) = (Z#f(a d)p(c)pa(dlc) fi(c, d) exp (anit f(c, d))) —-p(fi)  (E21)

The recursive algorithm runs until(a.) = 0 is satisfied, and\\; = «.. In the
implementation used, it was found that Newton’s method wdnkell using E.22 for
ag. ~

1 p(f3)

Qg = In

average(#f(c,d))  pa(fi)
283
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An alternative divide-and-conquer algorithm, shown in ,Ocan also be used to
find g(«.) = 0 when selectingy, becomes problematic. If a change of sign is detected
between two valuesy, andq;, . must lie between the two values. A divide-and-
conquer algorithm is applied to find the valuexqfby testing the meany,, of «,, and
ay, and replacing the relevantto reduce the range of values considered untiand
oy converge. At this poing(«.) = 0. This is shown diagrammatically in Figure E.1.

g(a)
A

»o

Figure E.1: lllustration of Divide-and-Conquer Algorithm

Algorithm D.2: Divide-and-Conquer Algorithm to Calculaie

1. Start with two values, upper boung and lower boundy,.
2. Calculate the average of the two values
3. Ifnot(g(cw,) = 0) Then

(a) Calculates = sign(g(a.,))
(b) If (s="“+") Thena, = «,, Elsea; = a,

Else
(a) Returna,,
4, Goto 2

Given thato, lies betweeny,, andq;, the divide-and-conquer algorithm is guaran-
teed to findu,.
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Appendix F

Distribution of Examples for Word
Sense Disambiguation Tests

Number of Number of| Number Split
Word Training | Similar Training of Test

Examples Examples| Examples
Dog 25 364 13| 65.79%
Eye 113 72 45 | 71.52%
Family 83 407 45 | 64.84%
Give 406 32 178 | 69.52%
Information 81 225 40 | 66.94%
Instruction 10 270 51| 66.67%
Party 46 299 16 | 74.19%
Report 47 292 22| 68.12%
Suggestion 16 279 6| 72.73%
\ote 12 110 6 | 66.67%
Work 142 252 59 | 70.65%

Table F.1: Data Available for Each Word of Interest
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Dog Numper of . Numper of| Number ' .
Sense Training | Similar Training of Test Split Ratio
Examples Examples| Examples
1 25 4 13 65.79%
2 0 291 0 | No Examples
3 0 291 0 | No Examples
4 0 275 0 | No Examples
5 0 13 0 | No Examples
6 0 14 0 | No Examples
Table F.2: Data Available for “Dog”
Eye Numt?e_r of . Numb_er of| Number _ _
Sense Training | Similar Training of Test Split Ratio
Examples Examples| Examples
1 104 8 43 70.75%
2 6 0 0 100.00%
3 3 2 2 60.00%
4 0 61 0 | No Examples
5 0 1 0 | No Examples
Table F.3: Data Available for “Eye”
Family Numpe_r of o Numb_er of| Number _ _
Sense Training | Similar Training of Test Split Ratio
Examples Examples| Examples
1 40 34 19 67.80%
2 31 5 18 63.27%
3 6 16 4 60.00%
4 4 36 2 66.67%
5 1 317 1 50.00%
6 1 31 1 50.00%
7 0 71 0 | No Examples

Table F.4: Data Available for “Famliy”
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Give Numt?e_r of . Numb_er of| Number _ _
Sense Training | Similar Training of Test Split Ratio
Examples Examples| Examples

1 88 0 38 69.84%
2 88 10 39 69.29%
3 53 151 23 69.74%
4 39 1 17 69.64%
5 13 0 6 68.42%
6 16 4 8 66.67%
7 14 0 7 66.67%
8 13 0 6 68.42%
9 13 0 5 72.22%
10 7 0 2 77.78%
11 8 0 3 72.73%
12 6 3 3 66.67%
13 7 0 2 77.78%
14 6 0 3 66.67%
15 3 0 1 75.00%
16 4 0 2 66.67%
17 7 11 3 70.00%
18 4 1 1 80.00%
19 2 0 1 66.67%
20 4 0 1 80.00%
21 3 0 1 75.00%
22 1 0 1 50.00%
23 1 0 1 50.00%
24 4 1 2 66.67%
25 1 2 1 50.00%
26 0 0 0 | No Examples
27 1 0 1 50.00%
28-45 0 0 0 | No Examples

Table F.5: Data Available for “Give”
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Information Numl:?e_r of - N”mb.ef of|  Number . .
Sense Training | Similar Training of Test Split Ratio
Examples Examples| Examples
1 50 225 25 66.67%
2 0 140 0 | No Examples|
3 30 21 15 66.67%
4 0 22 0 | No Examples|
5 1 40 0 100.00%
Table F.6: Data Available for “Information”

Instruction Numl:_)e_r of - N”mb.ef of|  Number . .
Sense Training | Similar Training of Test Split Ratio
Examples Examples| Examples
1 5 134 3 62.50%
2 4 108 1 80.00%
3 1 21 1 50.00%
4 0 114 0 | No Examples|
Table F.7: Data Available for “Instruction”
Party Numb_e_r of . Numb_er of| Number _ _
Sense Training | Similar Training of Test| Split Ratio
Examples Examples| Examples
1 25 29 9 73.53%
2 4 2 0| 100.00%
3 7 2 3 70.00%
4 9 2 4 69.23%
5 1 264 0| 100.00%

Table F.8: Data Available for “Party”
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R Number of Number of| Number
eport g - g . .
S Training | Similar Training of Test Split Ratio
ense
Examples Examples| Examples
1 34 136 16 68.00%
2 7 145 1 87.50%
3 5 4 4 55.56%
4 1 12 1 50.00%
5 0 170 0 | No Examples
6 0 184 0 | No Examples|
7 0 0 0 | No Examples|
Table F.9: Data Available for “Report”
Suggestion Numper of . Numbpr of| Number . .
S Training | Similar Training of Test Split Ratio
ense
Examples Examples| Examples
1 9 17 4 69.23%
2 6 177 2 75.00%
3 1 49 0 100.00%
4 0 3 0 | No Examples
5 0 33 0 | No Examples
Table F.10: Data Available for “Suggestion”
Vi Number of Number of| Number
ote e - . . .
S Training | Similar Training of Test Split Ratio
ense
Examples Examples| Examples
1 11 13 3 78.57%
2 0 20 3 0.00%
3 1 27 0 100.00%
4 0 23 0 | No Examples
5 0 40 0 | No Examples

Table F.11: Data Available for “Vote”
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Number of Number of| Number
Work . . . ) .
S Training | Similar Training of Test Split Ratio

ense

Examples Examples| Examples
1 56 98 23 70.89%
2 49 44 25 66.22%
3 22 55 6 78.57%
4 12 0 3 80.00%
5 0 73 0 | No Examples
6 0 53 1 0.00%
7 3 9 1 75.00%

Table F.12: Data Available for “Work”
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