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Abstract

Word Sense Disambiguation (WSD) is a significant problem in Natural Language Pro-

cessing (NLP). Current NLP research employs WSD to aid taskssuch as Machine

Translation, Information Retrieval, Content Analysis, Parsing and Speech Processing.

Semantic Similarity using lexical taxonomies is investigated, producing specialised

WSD algorithms for the disambiguation of related noun groups. By creating semantic

similarity measures based on notions of the “shape” of WordNet’s lexical taxonomy

(SBSMs) containing only layman terms, results are producedthat significantly out-

perform existing state-of-the-art similarity measures intwo tasks; firstly in matching

human judgements, and secondly for disambiguating relatednoun-groupings. In the

human judgement experiment, results are evaluated using Pearson and Spearman corre-

lation coefficients. The best SBSM almost reaches the equivalent human performance

producing coefficients of 0.90 and 0.86 respectively.

A WSD system is presented for disambiguating related nouns groups, producing

88% precision and 90% recall for labelling a subset of Wordsmyth with equivalent

WordNet senses. These results improve those produced usingalternative similarity

measures, and when compared to the Wordsmyth experimental links to WordNet.

The SBSMs are used as part of a WSD system for disambiguating open-texts. The

proposed WSD system makes use of partial-taggers to reduce senses at different stages

of WSD. A final statistical component is investigated, usinga new linguistically based

definition of context. The SBSMs are used to match words according to similarity. Ex-

periments with 11 highly polysemous words give promising results at 37.7% precision

and recall for all words with an average polysemy of 22.1 senses, and 56.4% precision

and recall for nouns with an average polysemy of 6 senses. Using a smaller test set of

ambiguous contexts containing only test words produced 65.6% precision and recall

for all words. This WSD is also used to reduce the costs of manual tagging of words,

showing that a potential 60% reduction in cost is possible.
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“There is no need to do more than mention the obvious fact that a
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peoples of the earth, and is a serious deterrent to international
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Chapter 1

Overview

This chapter summarises the work presented in this thesis. Firstly, the motivations

behind this work are presented, followed by a simple exampleof the kind of ambiguity

of interest in language studied throughout the thesis. Lastly, a description of the overall

organisation of the thesis is given.

1.1 Motivation

The most popular approaches in current machine translationresearch are based on

the exploitation of statistical information from bilingual corpora (Brown et al., 1990;

Hutchins, 1995; Berger et al., 1996; Turcato et al., 1999). By calculating statistical

information about the translation of these texts, translation systems are able to deter-

mine the most likely translation of new sentences. A significant problem with such an

approach is that it is currently only possible to build systems for a small number of

languages due to the lack of available resources. The situation is even worse when a

language does not have any resources at all or even an accepted written form, such as

the various sign languages in the world (Veale et al., 1998).In order to be able to trans-

late between such languages, it is necessary to take a completely different approach.

The aim of this thesis is to investigate two natural languagesub-tasks which could

be used as part of a larger linguistically based translationsystem, such as is shown in

figure 1.1. In such an approach, a number of techniques are applied to the source text

in order to remove all language specific facets, thus producing an interlingua represen-

tation of the original source text. This intermediate representation is used to create a
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1.2 Example of Lexical Ambiguity

representation of the concepts expressed in the text in the target language.

Source Language - Interlingua Representation - Target Language

Figure 1.1: Framework for a General Translation System

The focus of concern for this thesis is the investigation of tools for measuring se-

mantic similarity and performing word sense disambiguation. In combination with fur-

ther natural language processing (NLP) tools, such as a part-of-speech recognition tool,

a syntactic parser and discourse reference structure generator, a system can be built to

generate an interlingua representation from which a translation of the original text can

be produced. By considering the semantic similarity of words, techniques can be devel-

oped to disambiguate semantically related word-groupingsproviding tools for linking

different lexical resources and to allow words to be matchedsemantically. Matching

words using semantic similarity allows the potential for statistical Word Sense Dis-

ambiguation (WSD) systems to gather adequate information from the existing limited

resources, by making use of information from similar words to increase the amount

of information available to disambiguate individual words. This also allows statisti-

cal WSD systems to disambiguate words or word senses for which no information

was available in the resources available. WSD in turn allowsfor the disambiguation of

concepts, and is especially important for translation as there are rarely one-to-one map-

pings from words to word senses between different languages. Therefore knowledge

of the conceptual meaning of a word permits the correct lexical term to be selected for

the translated text.

1.2 Example of Lexical Ambiguity

There are many different forms of ambiguity found in naturallanguages that pose prob-

lems to NLP tasks. Of these ambiguities, this thesis is particularly focused on ambigu-

ities concerned with the semantic definitions of words, particularly of nouns. If one is

to consider the definitions of a word within varying contexts, it is easy to find instances

of uses of different word senses:

John deposited his money in the bank.

2
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He was near the river bank.

I went to the bank.

In the first example, “bank” refers to a financial institute, whilst in the second example

it refers to a slope. The last example remains ambiguous, andrequires either further

information for accurate disambiguation or, in the absenceof further information, as-

sumption of the most prominent sense for the word. The problem of disambiguation

is typically more extreme as even in the case of “bank” one canfind many further

sense distinctions, for instance the lexical resource WordNet 1.6 (Miller et al., 1990;

Fellbaum, 1998) cites 17 sense distinctions.

This thesis presents a study of lexical ambiguity, firstly concerned with the disam-

biguation of semantically related words, and then moving tothe more general problem

of disambiguating the senses of words in open texts.

1.3 Organisation of Thesis

This thesis is organised into six further chapters, groupedinto four general sections as

follows:

1. Description of important resources and tools used for theresearch.

Chapter 2 introduces a number of tools that were used as the basis of the research

and that are referred to throughout the thesis.

2. Research into measuring semantic similarity.

Chapter 3 introduces some terminology and resources, and describes a number

of the better known existing similarity measures. Finally,a short discussion is

given about measuring similarity between verbs, and why thecurrent techniques

applied to nouns may not be as suitable for verbs. Chapter 4 discusses the diffi-

culties posed by use of WordNet for similarity measures relying on the informa-

tion contained within its lexical taxonomy. Given these difficulties, a number of

axioms are defined to support discussion of the use of WordNet’s lexical taxon-

omy for similarity between noun senses. From these axioms, aset of hypotheses

are formulated describing how WordNet’s lexical taxonomy can be used to mea-

sure similarity leading to the definition of a number of new similarity measures.
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These measures are then evaluated against human judgementsand semantically

related groups of nouns. Results show that some of the newly created measures

significantly outperform existing state-of-the-art similarity measures.

3. Research into a new approach for Word Sense Disambiguation.

Chapter 5 introduces the field of WSD. The chapter starts by showing the in-

terest that different sub-fields of NLP have for WSD in order to improve the

results within those fields. This is followed by a brief summary of the history

of important developments for WSD from early work in NLP. A selection of

recent influential techniques is given. The chapter concludes by describing the

gold-standard evaluation techniques for WSD. Chapter 6 discusses a new ap-

proach for WSD using a number of partial-taggers. The remainder of the chapter

concentrates on the development of statistical classifiersfor WSD based on the

maximum entropy framework. This statistical approach usesa new definition

of local context for words based-on the syntactic relationships between words

in a sentence. A new set of maximum entropy features are also defined using

this definition of local context, and utilising the most successful similarity mea-

sure from chapter 4 to match words and word senses given semantic similarity,

instead of matching words using their word-form.

4. Conclusions.

Finally, chapter 7 reviews the work presented in this thesisand the results for the

systems evaluated. This is followed by a description of possible future work. The

chapter concludes by listing the contribution the work of this thesis has made to

the NLP field.
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Chapter 2

Tools and Resources

A variety of tools and resources are introduced which are used in a number of differ-

ent examples of systems described throughout this thesis, and that have been used to

develop the similarity measures and Word Sense Disambiguation (WSD) systems de-

scribed in chapters 4 and 6 respectively. Each tool providesspecific functions for the

systems produced for the work presented in this thesis:

• Machine Readable Dictionary (MRD) – WordNet

• Sense Annotated Corpus – Semcor

• Parser – Carnegie Mellon University’s (CMU) Link Grammar Parser

• Custom Natural Language Processing (NLP) application

2.1 WordNet

WordNet (Miller et al., 1990) is a psycholinguistic lexiconwidely used in a number

of contemporary NLP systems. A psycholinguistic lexicon isa lexicon that models

information in accordance with principles believed to govern the human lexicon mem-

ory. WordNet’s growing influence in the field of WSD has been apparent over the last

decade, and is now used for WSD almost to the exclusion of all other dictionaries.

Its organisation of semantic information gives researchers one of the most compact

and rich sources of information for such tasks as measuring word similarity, and in

some cases has been used for full WSD of texts without the aid of further resources.
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Fellbaum (1998) presents a full description of WordNet and acollection of papers de-

scribing some of the research performed using WordNet.

The major difference between WordNet and other lexical resources is the way

in which lexical information is organised. As with most dictionaries, information is

grouped into different grammatical categories (nouns, verbs, adjectives and adverbs),

however rather than organising information primarily at the word-form level, WordNet

organises information at the conceptual level. Each concept, referred to as a synset

(set of synonyms) (Spark Jones, 1978), is then related to other concepts via a num-

ber of psycholinguistic relationships. Table 2.1 summarises the information available

in WordNet 1.6. Note that in table 2.1, the figures for “UniqueStrings” include both

Average PolysemyPart-Of-Speech Unique
Synsets (Excluding(POS) Strings

Monosemos Words)
Noun 94474 66025 2.73
Verb 10319 12127 3.57
Adjectives 20170 17915 2.80
Adverbs 4546 3575 2.50
Total 121962 99642

Table 2.1: WordNet v1.6 Summary

single words and word collocations contained in WordNet. Therefore, an entry like

“breach of trust with fraudulent intent” counts as a unique string.

Although a number of relationships are shared across different grammatical cat-

egories, the relationships available are different between the grammatical categories,

supporting the importance humans show in distinguishing between different relation-

ships for different grammatical categories. The relationships available per category are

as follows:

• General (Shared by all POS)

– Synonymy

– Antonymy

– Familiarity
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2.1 WordNet

• Nouns

– Hypernymy

– Hyponymy

– Co-ordinate terms

– Meronymy

– Holonymy

• Verbs

– Hypernymy

– Troponymy

– Entailment

– Causality

– Sentence Frames

• Adjectives

– “Value of”

– Pertainym

• Adverbs

– Pertainym

The remainder of this section briefly discusses the meaning of each of the relation-

ships above.

2.1.1 Synonymy

Synonymy is the most important relation for WordNet. The word synonym is derived

from the Greek word “syn-onoma” meaning “similar name”, andrefers to the relation-

ship between words with the same meaning. In general, this means that synonyms of a

word can substitute for each other without changing the meaning of a phrase.
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2.1.2 Hypernymy (is-a)

Hypernymy, coming from the Greek words “hyper” and “onoma” meaning “super

name” or “general name”, is a directional relationship defined between two concepts.

A concept,a, is the hypernym of another concept,b, if b “is an” a. That is to say,a is

a more general form ofb, for instance a “cat” is a “feline”. In general, most concepts

have at most one hypernym, although examples can be found where concepts have

more than one hypernym, such as a “person” is both a “life form” and a “causal agent”

according to WordNet 1.6.

Throughout this thesis, references to noun hypernym taxonomies, or structures,

shall be made. Hypernym taxonomies represent tree-like structures that are linked up-

wards. Each arc in the structure represents an asymmetric relationship, where travers-

ing up the tree reflects traversing up hypernym relations. Figure 2.1 shows the hyper-

nym taxonomy for person sense 1 according to WordNet. Note also the convention that

is used throughout this thesis of referring to a particular sense of a word by using the

notation<word>#<sense>.

life form#1 causal agent#1

person#1

entity#1

X
X

X
X
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XXy
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�
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�
�

�
�

�
��:

X
X

X
X

X
X

X
X

X
XXy

Figure 2.1: Multiple Hypernym Example

2.1.3 Hyponymy (kind-of)

Hyponymy is the inverse relation of hypernymy for nouns, therefore a concept,a, is

the hyponym of another concept,b, if a “is a” b, in other words ifa is a more specific

form of b, or a “kind-of” b. In hypernym taxonomies, traversing down the arcs in the

taxonomy is equivalent to traversing down hyponym relations.
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2.1.4 Troponymy (way-of)

Troponymy is, similarly to hyponymy, the inverse relation of hypernymy, but in this

case for verbs. The meaning of troponymy can also be seen in the meanings of the

juxtaposed Greek words “tropos” and “onoma”, meaning a “wayname” or “manner

name”, and is used to describe a particular way or manner of doing something. For

instance, to sprint is to run in a certain manner, therefore “sprint” is a troponym of

“run”. Troponyms also reflect a type of entailment, as an action cannot be performed

in a certain mannerwithout also performing the original action.

2.1.5 Antonymy (opposite-of)

Antonyms, derived from “anti” and “onoma” in Greek meaning “opposite name”, are

two words that can mean the opposite of each other, such as “true” and “false”, or

“night” and “day”, however some care must be taken in its interpretation. It does not

always follow that for two words,a andb, if a is an antonym ofb, then not-a meansb.

Consider the antonyms “rich” and “poor”, or “black” and “white”. If someone is not

rich, this does not automatically mean they are poor, and if something is not black, it

does not mean that it is necessarily white, yet both pairs of words are still antonyms of

each other.

2.1.6 Co-ordinate terms

Co-ordinate terms are concepts that share a common hyponym,for example the co-

ordinate terms for “car#1” in WordNet, meaning a 4-wheeled motor vehicle, are other

motor vehicles such as “motorcycle” or “truck”.

2.1.7 Meronymy (part-of)

The term meronym is derived from the Greek “meros” and “onoma” meaning “part

name”. A meronym of a concept,a, is something that is “part of”a. For example,

“engine” is a meronym of “car” because cars have engines, and“person” is a meronym

of “people” because people consist of persons.

9



2.1 WordNet

2.1.8 Holonymy

Holonymy is the inverse relation to meronymy. A concepta has a holonymb, if a is

part of b. The term is derived from the Greek “holo” and “onoma” meaning “whole

name”.

2.1.9 Entailment

Entailment relations exist between verbs, such as “snore” entails “sleep” meaning that

without sleep there would be no snoring. WordNet does not include troponyms in its

entailment relations.

2.1.10 Causality

The causality relations describe, as it suggests, the result that an action, or verb, causes,

such as “give” causes “have”.

2.1.11 Sentence Frames

WordNet assigns at least one of 35 generic sentence frames toeach verb sense, indi-

cating the required verbal arguments and prepositional phrases, along with some basic

semantic information about these arguments. In practice, the information available is

very limited. FrameNet (Baker et al., 1998) is a project thathad as an initial goal

the task of producing more complex sentence frames for verbsthan those provided by

WordNet. Work is still currently being undertaken and sensemappings for entries are

no longer one-to-one with WordNet.

2.1.12 Value of

The “value of” relation for adjectives links adjectives to nouns for which they can be

a value. For instance the adjective “rich” can be a value referring to some kind of

“financial condition”, and “fast” is a value of “speed”.
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2.1.13 Pertainym

Pertainyms relate adjectives and adverbs to word senses they pertain or relate to. For

instance the adjective “rural#2” pertains to the noun “country#5”.

2.1.14 Familiarity

The familiarity index of a word indicates its familiarity inday to day speech. Words

that are more familiar are more likely to be found in examplesof utterances or texts.

In previous versions of WordNet, other lexicons were used tocalculate the familiarity

index for words. However, version 1.6 of WordNet simply considers the polysemy of

a word as its familiarity index. This follows the largely accepted theory in linguis-

tics that the more polysemous a word is, the more likely it is to be used (Zipf, 1945;

Jastrezembski and Stanners, 1975; Jastrezembski, 1981).

2.2 Semcor

The Semcor corpus (Miller et al., 1994; Fellbaum, 1998) was selected to provide train-

ing and testing data for the purposes of the work on WSD presented in chapter 6. The

corpus has been hand-annotated with word senses according to WordNet and contains

POS tags produced by the Brill POS-tagger (Brill, 1992). Thetexts contained in the

corpus are a subset of the Brown-corpus (Kucera and Francis,1967; Francis, 1980;

Francis and Kucera, 1982), and are split into 3 groups summarised in Table 2.2.

Group Name Group Contents What is tagged?
brown1 103 documents from the Brown CorpusAll Content Words
brown2 86 documents from the Brown Corpus All Content Words
brownv 166 documents from the Brown CorpusOnly Verbs

Table 2.2: Summary of Semcor Texts

The Brown corpus consists of a number of texts from a range of topics and genres,

therefore it can be assumed that the Semcor corpus also varies across a number of

domains and genres. An earlier version of Semcor where wordsare tagged against

WordNet 1.5 senses, as described in (Landes et al., 1998), only used the 103 document

11
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collection from the Brown Corpus, together with a completely annotated version of

Stephen Crane’s novella “The Red Badge of Courage”. The latter text is not contained

in the latest version of Semcor tagged with WordNet 1.6 senses.

Annotation of the Semcor corpus was assisted with a tool called ConText. ConText

allows users to view the senses of polysemous words and select an appropriate sense

for each word. In order to ensure reliable tags are assigned to each word, the annotation

process was performed over a number of iterations. In the first run, a highly trained

human annotator assigned senses to each polysemous word of the corpus. The annota-

tor could also leave notes when an adequate sense did not exist in WordNet. A second

annotator verified the senses assigned, and made any necessary changes. The notes

about missing senses were later examined by lexicographerswho made changes, when

necessary, to WordNet’s information. ConText was used oncemore by an annotator to

assign senses to the leftover untagged words, thus completing the iterative process. To

ensure consistency, each Brown file was completely tagged byone tagger.

In order to ensure the quality of the annotations in Semcor, after the corpus was

annotated, every 11th semantically tagged word was examined. If mistakes were found

they were corrected. A list of particularly difficult words was created during the quality

control phase, and each instance of the difficult words was then re-checked to ensure

correctness. Finally, every 12th tagged word was re-examined to give a new error rate,

again correcting each mistake found.

The summary for the version of Semcor used with the WSD systemdescribed in

chapter 6 is given in the Table 2.3. A particularly useful piece of information that

Group NameCategory
brown1 brown2 brownv

Total

unique noun senses 11399 9546 0 20945
unique verb senses 5334 4790 6520 16644
unique adjective senses 1754 1463 0 3217
unique adverb senses 1455 1377 0 2832
unique adjective satellite senses 3451 3051 0 6502
Total unique senses 23393 20227 6520 50140
Total tagged words 107118 86255 41607 234980

Table 2.3: Semcor Summary

is unfortunately not available for Semcor is the inter-annotator agreement. Such a
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statistic would allow for an upper-bound to be set for computer-based WSD systems.

A possible source for such information can be calculated from considering matching

documents in the DSO corpus (Ng and Lee, 1996) which also usesa subset of the

Brown corpus. Because information about the individual annotators, such as age and

social background, is not provided, it is not possible to deduce what the reason for any

disagreement could be. The inter-annotator agreement between the two corpora is 57%

(Kilgarriff, 1998a).

2.3 CMU Link Grammar Parser

The Carnegie Mellon University (CMU) link grammar parser (Temperley, 1999) is

used to annotate and determine the context for the WSD systemdescribed in chapter 6.

The parser is used due to its flexibility, as words and rules can be added and changed

as required. WordNet could be used to provide the basis of a dictionary for the parser,

although this is not done for the work presented here as it would be an ambitious task

by itself. The parser is also robust, returning partial structures when not all necessary

constraints are satisfied for the words in the sentence and handling unknown words to

some extent.

The CMU link grammar parser produces grammatical structures between words

in a way related to dependency grammars. Each word is associated with directional

connectors of different types to its left and right. A link between two words is formed

if a left connector of one word can connect with the right connector of another word.

Figure 2.2: CMU Link Example

In total, there are 107 different link-types, with a number of further subscripts.

For example, the previous example shows a determiner link “D” between the words

“the” and “man”. The link’s subscript “s” means that the linkbetween the words is

for a singular relation. If the word had been “men”, the subscript of the link would

be “m*” for plural (where “*” can be replaced with “c” or “u” todistinguish between
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countable or mass nouns). A sentence is valid if all its wordsare connected in some

way satisfying the required word rules and certain global rules. Word rules, specified

in the parser’s dictionary, describe the combinations of connectors possible for words,

while global rules control the way words and links are limited. Two examples of global

rules are the “crossing-link” rule and the “connectivity” rule. The “crossing-link” rule

does not allow for links to cross each other, therefore the links in Figure 2.3 would be

invalid.

Figure 2.3: Example of Invalid Links Given the ’Crossing-Link’ Rule

The “connectivity” rule ensures that a valid sentence must have all of its words

connected, therefore the links in Figure 2.4 would be invalid.

Figure 2.4: Example of Invalid Links Given the ’Connectivity’ Rule

The global rules are defined in the parser’s knowledge file. The total structure

produced for an entire sentence is referred to as a linkage. More complex sentences are

likely to produce a large number of alternative linkages.

Whilst the linkage structures do not obviously look like thetypically known Chom-

skian parse trees, they can be used to produce traditional sentence structures. Version

4.0 of the CMU link grammar parser now has a feature to generate such structures

automatically.

2.4 NLP application

During the course of this work, an application has been developed to assist in the devel-

opment of the similarity measures and WSD systems produced.The application was

14
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created using the Microsoft Foundation Classes (MFC) and handles NLP documents

containing information about sentences, grammatical structures and semantic informa-

tion in the form of sense labels from WordNet. The application consists of a number

of ActiveX components wrapping the various tools describedabove. A further set of

experimental tools have been incorporated within the application, written in either Pro-

log or C++. Figure 2.5 shows all the tools used in the NLP application. The additional

Figure 2.5: NLP Application Tools

tools are provided to assist users in reducing syntactical ambiguity before producing

information for the WSD system:

• POS checker

This tool reports to the user ambiguities, if they exists, for the POS of words in

the sentence contained in the set of adequate linkages. For each possible ambigu-

ous POS, the checker also returns the frequency of the POS, where frequency is

defined as the number of linkages for which the word is tagged with the POS.

The user can then systematically select the correct POS for each word and thus

reduce the number of linkages considered for a sentence.

15
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• Linkage checker

This tool is similar to the POS checker, however it returns information about the

ambiguous links available in the linkages, along with theirfrequencies according

to the linkages. Again, this information can be used to assist in reducing the

ambiguity of the linkages produced by the CMU parser.

• Local Context Extractor

This tool extracts the local contexts for all words in a text according to the defini-

tion of context given in chapter 6. The local contexts are extracted from the first

valid linkage for each sentence the CMU parser returns, where the first linkage

is most likely to be correct. This information forms the basis of the corpus for

the WSD system also described in chapter 6.

• Collocation Detector

The collocation detector examines multi-word terms in a sentence to determine

if they are treated as collocations according to WordNet. Any combinations of

words detected to be potential collocations are reported tothe user, therefore the

phrase “breach of trust with fraudulent intent” can be interpreted as consisting of

the terms “breach trust fraudulent intent”, “breachof trust fraudulent intent” or

“breachof trust with fraudulentintent” according to WordNet.

Each of the “checkers” above are used to maximum efficiency ifthe user validates

or invalidates the most frequent POS or Linkages first. This way, the largest number of

linkages can be potentially reduced. The following list summarises the features of the

application:

• Sentence linkages can be viewed graphically, rather than the ASCII based dia-

grams or relational structures produced by the CMU parser, and navigated via

toolbar buttons. Linkages can also be manually invalidatedusing this graphical

interface.

• Linkages can be reduced rapidly using a number of available tools. These changes

are shown in the resulting linkage diagrams for the sentences, as invalid links are

identified.

• The application handles multiple sentences and documents.
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2.4 NLP application

• All linguistic information about the text handled within a document is saved and

loaded together with the text.

• The application can perform WSD for noun groups (See 4.5.2).

At this current stage, the WSD system developed for open-texts is not yet used

directly by the NLP application, although the framework used is such that the system

can be attached with ease and minimal additional work. Figure 2.6 shows a screenshot

of the NLP application.

Figure 2.6: Natural Language Processing Application
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Chapter 3

Introduction to Semantic Similarity

Semantic similarity has a long history in the field of artificial intelligence and natural

language processing. Many of the ideas currently exploitedare originally derived from

the field of psychology, where similarity is believed to lie close to the core of cognition.

As William James states “This sense of sameness is the very keel and backbone of our

thinking” (James, 1950). In general, the aim of the work is tocreate a measure accept-

ing two or more terms as input (where a term is a word, concept or word sense) and to

return as output some classification of their similarity. Measures of general similarity

(i.e. visual or semantic similarity) can be split into four psychological models:

• Geometric – Stimuli are represented in terms of their valueson different dimen-

sions.

• Feature-based – Stimuli are represented in terms of the presence or absence of

weighted features.

• Alignment-based – Stimuli are represented in terms of alignment processes over

structural representations.

• Transformational – Stimuli are represented in terms of transformation processes

on sensory input to match with predetermined subconscious rules. Of the best-

known transformation models is Chomsky’s Transformational Grammar for mod-

elling the human process of understanding syntax (Chomsky,1957, 1965) (al-

though Chomsky himself never claimed that his theories presented a psycholog-

ical model).
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3.1 Terminology

Prior to creating such similarity measures, the type of similarity being measured must

be defined.

This chapter introduces the field of semantic similarity, although discussion is re-

stricted to techniques determining similarity between nouns. Section 3.1 introduces

some basic terminology, explaining the details of different types of measure between

words. Section 3.2 gives details of different representations used when distinguish-

ing similarity between terms. Section 3.3 discusses the different resources typically

used for measuring semantic similarity. Section 3.4 introduces a number of the cur-

rent well-known, state-of-the-art techniques used for calculating semantic similarity.

Finally, section 3.5 briefly discusses verb similarity.

3.1 Terminology

The term ‘similarity’ when applied to lexical information must be clearly understood.

Three main distinctions of how word and word sense similarity can be defined are

typically found in literature (Budanitsky, 1999):

• Semantic Relatedness

• Semantic Similarity

• Semantic Distance

This section defines the above distinctions.

3.1.1 Semantic Relatedness

Semantic relatedness between words makes use of information other than pure lexical

semantics of concepts or words, and therefore measures of semantic relatedness re-

quire additional information than that found in WordNet’s lexical taxonomy. This extra

information may be of a particularly subjective form uniqueto individuals, such as in-

formation about their personal view of the world. Consider the two words “strawberry”

and “tennis”. Some people would associate some relation between the two words be-

cause strawberries are typically found at some tennis games. However it is difficult

to see how any information in their semantic definitions could link the two. Other

examples of such associative relations would include:
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3.1 Terminology

• “tennis” and “scone”

• “ice cream” and “summer”

• “car” and “journey”

• “car” and “petrol”

• “train” and “passenger”

Of the three common definitions of lexical similarity, thesekinds of associations

are the least explored area, mainly due to difficulties in producing adequate knowledge

resources from which to define measures. It is also difficult to give a clear definition

of semantic relatedness due to its inherently subjective nature. However, statistical

techniques based on Latent Semantic Analysis (LSA) (Landauer and Dumais, 1997) or

Context Vectors (Chen and You, 2002) are able to implicitly capture some of this type

of relatedness if given enough training examples.

3.1.2 Semantic Similarity

Semantic similarity is a more restricted notion than semantic relatedness. It charac-

terises similarity only in terms of the lexical semantics ofwords or word senses. Such

a definition of similarity would assign low similarity for the previous word pair associ-

ations, as each word-pair shares little semantic information.

The increase in publicly available machine-readable dictionaries and semantic net-

works has stimulated the development of a large number of techniques to calculate

semantic similarity. These techniques typically assign a scalar value denoting the sim-

ilarity of two words or word senses according to a semantic taxonomy. Prior to these

more recent techniques, other techniques were developed making use of thesauri (Mor-

ris and Hirst, 1991; Okumura and Honda, 1994), relying on thesemantic relations im-

plied by the thesaurus entries to give a more coarse grained similarity distinction.

3.1.3 Semantic Distance

Semantic distance describes how different two words are by showing how far apart they

are semantically. Since only semantic information is takeninto account, a measure of

this type can be considered as the inverse of semantic similarity. The more “distant”
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3.2 Representations of Similarity

two words or senses are, the less similar they are. Indeed, most recent semantic simi-

larity approaches use semantic distance in order to determine semantic similarity.

3.2 Representations of Similarity

The choice of representation for similarity varies with thetask for which the similarity

measures are intended. Techniques generally use one of the following representations

for similarity:

• Boolean judgements

Given the limitations of earlier knowledge sources, early systems typically gave

results merely in terms of “similar” or “not similar” (Budanitsky, 1999). Whilst

the techniques developed in the next chapter are designed toproduce numerical

values, later work in chapter 6 only considers boolean results from the techniques

developed.

• Enumerated judgements

Later techniques, such as thesaurus based measures (Morrisand Hirst, 1991;

Jarmasz and Szpakowicz, 2001a,b, 2003), use improved knowledge sources al-

lowing for a coarse but more refined representation of similarity, compared with

simple boolean judgements. Such a representation generally produced an answer

from a predefined set of possibilities.

• Scalar judgements

The goal of most modern techniques (Rada et al., 1989; Kozimaand Furugori,

1993; Sussna, 1993, 1997; Wu and Palmer, 1994; St-Onge, 1995; Hirst and St-

Onge, 1998; Richardson and Smeaton, 1995; Agirre and Rigau,1995, 1996;

Resnik, 1995a,b, 1999; Jiang and Conrath, 1997; Lin, 1997, 1998a,b,c; Lea-

cock and Chodorow, 1998) is to assign numerical values of similarity to words.

Whilst, in practice, the notion of assigning a numerical value can be deemed as

an abstract task compared with human cognition, it allows for a finer distinction

of similarity between different pairs of words. This representation is typically of

greater use for a number of applications as it may be used to produce finer dis-

tinctions of similarity according to some target application’s requirements. It is
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3.3 Resources for Calculating Semantic Similarity

also often useful to normalise the final results so that all word pairs are measured

within a pre-set range of values.

3.3 Resources for Calculating Semantic Similarity

The resources used for calculation of semantic similarity play a fundamental role in a

similarity measures. Such a resource must contain the information necessary to cal-

culate similarity. Apart from a small number of exceptions using hand-tailored or

specialised lexicons, the majority of well-known similarity measures make use of, or

have been adapted to make use of, one of the following machinereadable dictionaries:

• Roget’s Thesaurus

Prior to the public availability of structured machine-readable dictionaries, a

large body of similarity measure work made use of various versions of Roget’s

Thesaurus. Although information is generally insufficientto calculate scalar val-

ues of similarity, the structure is sufficient to produce a number of different

classes of similarity (Jarmasz and Szpakowicz, 2003). Researchers make use

of the format of information within entries, such as the way information within

entries is separated by punctuation marks, to produce sub-entries or groups of

words. Some versions of Roget’s thesaurus group entries into more general

classes, allowing the exploitation of a simple hierarchy between words as a fur-

ther source of information.

• Longman’s Dictionary of Concise English

Probably the most widely used resource in earlier work with machine read-

able dictionaries (Guthrie et al., 1996), and also the first dictionary to be pub-

licly available to researchers (Budanitsky, 1999), is the Longman’s Dictionary

of Concise English (LDOCE) (Procter, 1978). The most significant influence

that LDOCE has had on semantic similarity measures was the provision of some

structure between words, although this structure is not given as explicitly or to

the same level of detail as in WordNet. Information is organised into domains

using subject fields, and box codes are used to hierarchically organise words.

Further to the organisation of words within the LDOCE, the Longman Defining

Vocabulary (LDV) was developed to give LDOCE a controlled vocabulary for
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3.4 Existing Techniques

its headword definition. The collection of words was selected based upon results

from West’s (West, 1953) work about restricted vocabulary,producing a collec-

tion of 2,851 words in the LDV. All headword definitions in LDOCE are defined

in terms of the LDV collection of words.

• WordNet

WordNet (Miller et al., 1990; Fellbaum, 1998) was the first psycholinguistic dic-

tionary available in a machine-readable form and has provenextremely influ-

ential in the field of similarity measurement. Details for this machine-readable

dictionary are given in chapter 2. Currently, the majority of work concentrates

on measuring similarity between nouns, almost exclusivelyusing hypernym rela-

tions. The most likely reason for this may lie in the shape of the noun taxonomy.

Compared to other parts of speech, the noun hypernym taxonomy of WordNet is

deep, rather than wide, resulting in longer path lengths between nodes. Whilst

the structure of the verb taxonomy is still fairly large and detailed, it seems that

little positive work has emerged to this point making use of WordNet alone.

Given the way people distinguish the similarity between verbs, verb argument

structure is essential for measuring such similarity, and unfortunately WordNet

is weak in this area. The taxonomies for adjectives and adverbs are far less devel-

oped than those for nouns and verbs, making them less suitable for calculating

similarity without additional information.

3.4 Existing Techniques

The most common techniques for measuring semantic similarity can be split into the

following general classes:

• Thesaurus techniques

• Taxonomic techniques

• Statistical techniques

• Hybrid techniques

Most recent techniques follow the geometric tradition of similarity; where word simi-

larity is a metric of distance measured according to lexicalrelations (Tversky, 1977).
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3.4 Existing Techniques

As standard, such geometric techniques assume the following conditions (Tversky,

1977):

• Minimality: dist(A,B) ≥ dist(A,A) = 0

• Symmetry:dist(A,B) = dist(B,A)

• Triangle Inequality:dist(A,B) + dist(B,C) ≥ dist(A,C)

Even though Tversky criticises the properties above, most modern techniques still

abide by these properties. The next section introduces to the most recent well-known

techniques according to the classification above.

3.4.1 Similarity Calculated from Thesaurus information

Some of the earliest techniques for the calculation of similarity between words made

use of thesauri as the main knowledge source. Morris and Hirst (1991) used Ro-

get’s Thesaurus (Chapman, 1977) and Okumura and Honda (1994) used an equiva-

lent Japanese thesaurus called Bunrui Goi Hyo (Shuppan, 1964). Given the limited

information available in thesauri for calculating semantic similarity, the results of such

techniques are typically presented using boolean or enumerated values, for instance the

similarity between two words might be classified as either “close” or “not close” (Bu-

danitsky, 1999). Another aspect of these techniques is thatgiven the wide variety of

related words within a single thesaurus entry, such techniques tend to detect semantic

relatedness, rather than semantic similarity. As such, these techniques do not produce

scalar values for similarity and are of limited use for many applications.

More recently, techniques have appeared using thesaurus information to produce

similarity measures with more detailed distinctions of similarity. Whilst in many cases

results from such techniques are given as numbers, these numbers still represent a

ranked set of enumerations. Jarmasz and Szpakowicz (2001a,b, 2003) present a tech-

nique using Roget’s Thesaurus of English Words and Phrases (Kirkpatrick, 1998) to

measure semantic distance. Distances between two words areselected according to the

organisation of information in the thesaurus. Distances are selected according to the

following criteria relating two words:

• Length 0 – The same semicolon group of the thesaurus entry.
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3.4 Existing Techniques

• Length 2 – The same paragraph of the thesaurus entry.

• Length 4 – The same part of speech entry in the thesaurus entry.

• Length 6 – The same head.

• Length 8 – The same head group.

• Length 10 – The same thesaurus sub-section.

• Length 12 – The same thesaurus section.

• Length 14 – The same thesaurus class.

• Length 16 – Both words are in the thesaurus.

Similarity is calculated by subtracting the path length from the maximum path length,

therefore:

SemanticDistance = L (3.1)

SemanticSimilarity = 16− L (3.2)

3.4.2 Similarity Measures Based on Taxonomies from a Machine-

readable Dictionary

A much more widely researched approach is to use the relationships between words

contained in modern machine-readable dictionaries (MRDs). The premise of such

techniques is that considering lexical relations as edges in trees gives a way to measure

the geometric distance between two words or word senses. Such a conceptual distance

measured from path lengths can be used to calculate how similar the two words are.

Rada et al. (1989) present one of the earliest path length techniques. Given the inherent

simplicity of such approaches, a number of different techniques have been developed

over a relatively short period of time that can all be appliedusing WordNet’s lexical

taxonomy.

Rada et al. (1989) implemented a technique for measuring thesimilarity of two

concepts solely considering the path-lengths between themaccording to a semantic

network. Using the Medical Subject Headings (MeSH) knowledge source (MeSH,
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3.4 Existing Techniques

1995), a semantic network consisting of medical terms, Radaet al. show that semantic

distance can be calculated simply from the shortest edge distance between two nodes

in the semantic network. Rada et al. also show that such a pathlength alone is enough

to satisfy Tversky’s properties of a distance metric (Tversky, 1977). The edges used in

MeSH conform closely to WordNet’s hypernym taxonomy, however they occasionally

reflect holonym (part-of) information. Semantic distance is given as:

distRada(c1, c2) = minimum number of edges fromc1 to c2 (3.3)

wherec1 and c2 are terms or concepts in a semantic network or taxonomy. Rada’s

algorithm can be adapted to measure similarity with the following changes:

simRada(c1, c2) = 1/distRada(c1, c2) (3.4)

Resnik (1995a,b, 1999) gives a more refined approach to measuring similarity using

such a distance metric, along with an algorithm specificallytailored to work with pol-

ysemous words:

simResnik(w1, w2) = 2dmax −






min

c1∈senses(w1),

c2∈senses(w2)

len(c1, c2)






(3.5)

wherew1 andw2 are words,c1 andc2 are senses ofw1 andw2 respectively anddmax is

the maximum depth of the taxonomy.

Whilst Rada’s simple approach takes into account differences in the semantic infor-

mation of two words, it makes no attempt to use information common to both words or

concepts, and the technique also assumes that all edges in the semantic network have

equal distances. Whilst this technique works well with the MeSH knowledge source,

Richardson and Smeaton (1995) found that the inherent irregularities of a taxonomy

such as WordNet have a negative impact on Rada’s approach.

Sussna (1993, 1997) addresses the issue of non-uniform distances between nodes

in WordNet using a depth-relative scaling technique. This takes into account different

weights for WordNet’s various semantic relationships, andconsiders depth in order to

assign shorter distances to relationships of nodes found deeper in taxonomies. Firstly,

each relation,r, is assigned a minimum and maximum weight as shown in Table 3.1.
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3.4 Existing Techniques

The actual weight for the relationship between two directlyconnected nodes is given

Relation (r) minr maxr
Synonymy 0 0
Hypernymy 1 2
Hyponymy 1 2
Holonymy 1 2
Meronymy 1 2
Antonymy 2.5 2.5

Table 3.1: Sussna’s Lexical Relation Weights

in equation 3.6.

w(c1 −→
r
c2) = maxr −

maxr −minr

nr(c1)
(3.6)

wherenr(c1) is the number of arcs of relationr connected toc1. Note that given

the above definition, the weight of a relationship between two nodes is dependant on

the direction in which the relationship is used. Taking “hammer#2” as an example,

the weight assigned from “hammer#2” to “hand tool#1” via a hypernymy relation is

calculated usingc1 = “hammer#2”,c2 = “hand tool#1”,r = “hypernymy”,minr = 1,

maxr = 2 andnr = 1 according to WordNet 1.6, resulting in a weight of 1.

The actual distance between two directly connected nodes iscalculated as the av-

erage weights of the relationship in both directions. Sussna also adjusts the distance of

two nodes using the depth where the relationship occurs in the taxonomy. The resulting

distance measure is shown in 3.7.

distSussna(c1, c2) =
w(c1 −→

r
c2) + w(c2 −→

r′
c1)

2d
(3.7)

wherer′ is the inverse of relationr, a relation connectingc1 andc2, andd is the depth of

the relationship, that is ifr is a hypernym relation,r′ is the hyponym relation between

c2 and c1. Using the depth of the relationship in such a way ensures that smaller

distances are assigned between nodes found deeper in the taxonomy. For the previous

example with “hammer#2” and “hand tool#1”,r′ = “hyponymy” givingw(c2 −→
r′
c1) =

1.97, and this in turn givesdistSussna(c1, c2) = 0.19 whered = 8, according to WordNet

1.6. Using this definition of distance between two adjacent nodes, the total distance

between any two arbitrary nodes is calculated as the sum of the distances of the nodes
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3.4 Existing Techniques

along the path connecting both nodes, as with Rada et al.’s technique. Similarity is

calculated from the distance using a similar approach to Rada et al. (1989).

Wu and Palmer (1994) introduce a metric for measuring similarity between two

concepts that, whilst assuming equal distance for all relations in a taxonomy, makes

use of information common to these concepts. The general form of the metric, shown

in equation 3.8, measures the ratio of semantic informationcommon to both concepts

to the amount of total semantic information.

sim(c1, c2) =
common information(c1, c2)

total information(c1, c2)
(3.8)

Similarity is measured using the path length between nodes in a conceptual hierarchy,

for instance consider Figure 3.1. In this figure, c1 and c2 represent two arbitrary con-

Figure 3.1: An Example of a Conceptual Hierarchy

cepts, c3 represents the deepest concept common to both c1 and c2, and n1, n2 and n3
are path lengths within the taxonomy. For hypernym taxonomies, c3 is referred to as

the most informative subsumer (MIS) of both c1 and c2 in later discussions. The path

from the root of the taxonomy to the MIS denotes the semantic information common

to the two concepts being compared, and the nodes below the MIS represent semantic
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information distinct to c1 and c2. The path lengths from those parts of the taxonomy

are used to measure similarity as in equation 3.9.

simWu&Palmer(c1, c2) =
2d3

d1 + d2
(3.9)

whered1, d2 andd3 are the depths ofc1, c2 andc3 respectively. Considering the two

word senses “hammer#2” and “drill#1”, the MIS is “tool#1”,d1 = 8,d2 = 9 andd3 = 6,

giving a total similarity of 0.71 according to WordNet 1.6 and Wu and Palmer (1994).

St-Onge (1995) and Hirst and St-Onge (1998) introduce a measure carefully de-

signed to make use of further relations in WordNet, other than and including hypernym

relations. The main intention behind this work was to use theideas developed by Mor-

ris and Hirst (1991), which used Roget’s thesaurus, with WordNet. St-Onge defines 3

types of relations according to WordNet:

1. Extra-Strong – This only occurs if both words are identical.

2. Strong – This occurs if one of the following conditions is satisfied:

• The two words can be synonyms of each other.

• The two words or concepts are related by a horizontal link. St. Onge defines

a horizontal link as one of antonymy, similarity and “see also” relations

from WordNet.

• One word is a compound word or phrase that contains the other word, and

the two words are connected via a link in WordNet.

3. Medium-Strong – A number of allowable relational patterns are defined. Any

configuration of relationships up to a path length of 5 that fitwith the allow-

able patterns are said to constitute a medium-strong relation. Such patterns were

carefully selected whilst considering the psycholinguistic relationships they rep-

resent in order to ensure their validity. In general, all patterns containing no more

that one change in direction are allowed. Full details of allowable and disallowed

patterns are given in (St-Onge, 1995; Hirst and St-Onge, 1998).

Given this framework, Hirst and St. Onge calculate similarity as follows:

• If w1 andw2 are related via an extra-strong relation,simHirst&StOnge(w1, w2) =

3C
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• If w1 andw2 are related via a strong relation,simHirst&StOnge(w1, w2) = 2C

• If w1 andw2 are related via a medium-strong relation,

simHirst&StOnge(w1, w2) = C − distRada(w1, w2)− (k × δ),

whereC andk are constants,δ is the number of direction changes in the path

fromw1 tow2, anddistRada(w1, w2) is the path length fromw1 tow2.

A further similarity measure using path length in WordNet’shypernym structure

is given by Leacock and Chodorow (1998). Again, this measuremakes use of a se-

mantic distance between two concepts similar to Rada’s. However, the final value is

normalised against the maximum depth of the taxonomy. The measure presented takes

words as input, rather than word senses or concepts, as shownin equation 3.10.

simLeacock&Chodorow(w1, w2) = − log

min
c1∈senses(w1),

c2∈senses(w2)

len(c1, c2)

2dmax
(3.10)

wheredmax is the maximum depth of the taxonomy andlen(c1, c2) is the number of

nodes connectingc1 andc2, rather than the number of edges between the nodes, there-

fore synonyms are assigned a length of 1 apart. According theWordNet 1.6 with a

maximum hypernym taxonomy depth of 17, Leacock and Chodorow’s similarity mea-

sure will range from 0 to almost 5.1 (usinglog2). Considering the two words “hammer”

and “drill”, min len(c1, c2) = 4 over all senses of “hammer” and “drill”, giving a simi-

larity of 3.09 according to WordNet 1.6 and Leacock and Chodorow (1998).

A number of other measures appear in recent publications that do not explicitly

publish sufficient details in order to be reproduced, such asRichardson and Smeaton

(1995) and Agirre and Rigau (1995, 1996). The latter technique employs a different

approach to the use of a semantic network for the calculationof semantic similarity.

Their approach was to develop a measure sensitive to the following conditions:

• The shortest length of any path connecting two concepts.

• The depth of concepts in a taxonomy in order to assign higher similarity to deeper

concepts.

• The conceptual density of the taxonomy, such that senses in denser taxonomies

are deemed closer than those in sparser taxonomies.
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A metric for the conceptual density of a hierarchy for use in measuring semantic sim-

ilarity is given. However, no explicit formula for the calculation of similarity is given.

The definition of conceptual density is given in equation 3.11 and 3.12.

CD(c,m) =

m−1
∑

i=0

nhyp0.2
i

descendants(c)
(3.11)

descendants(c) =
h−1
∑

i=0

nhypi (3.12)

wherec is the top most node of a sub-hierarchy containing the concepts under consid-

eration,nhyp is the average number of hyponyms contained inc’s sub-hierarchy,m is

the number of concepts under consideration withinc’s sub-hierarchy andh is the height

of c’s sub-hierarchy. The value 0.2 used in the formula was selected experimentally in

order to fine-tune the algorithm. The techniques introducedin chapter 4 show some

similarity with Agirre and Rigau’s approach, although the lack of published results,

a complete similarity measure and details of howc is selected means that no direct

comparison is possible.

3.4.3 Similarity Calculated using Statistical Information

Kozima and Furugori (1993) automatically generate a semantic network called

Paradigme using entries from LDOCE whose headwords belong to the LDV. The ex-

tracted sub-dictionary, referred to as Glosseme, contains2,851 entries from LDOCE

containing 101,861 words. The network, referred to as Paradigme, is generated from

Glosseme by creating a node for each headword, and creating links between each head-

word node and all other nodes for headwords contained in the dictionary entry’s defini-

tion. Given this technique for generating the semantic network, the links of the network

are defined as one of two types:

• Référant links - Where a node,x, is linked to another node,y, becausey contains

a word contained in the definition ofx.

• Référé links - Where a node,x, is linked to another node,y, becausex contains

a word contained in the definition ofy.

Each link in turn is also assigned a ‘thickness’ calculated from the frequency of its
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headword in Glosseme and other sources. The result is a 2,851node semantic network

related via 295,914 unnamed weighted links.

Using the semantic network produced, Kozima and Furugori (1993) calculate sim-

ilarity by analysing the spreading activation of the network. An activation value, de-

noted byavn, is associated with each node of the network, and equation 3.13 calculates

for each iterationT , avn(T + 1).

avn(T + 1) = ϕ

(

Rn(T ) +R′

n(T )

2
+ en(T )

)

(3.13)

whereT is the current iteration of activity,Rn(T ) andR′

n(T ) are the composite activ-

ities of the référants and référés ofn at timeT . ϕ is a function normalising the values

of avn to lie within the range[0, 1] (see Kozima and Furugori (1993)). The similarity

of wordswk andwl is calculated as follows:

1. The activity for all nodes in Paradigme is reset.

2. Nodek, associated with wordwk, is activated with strengthek = s(wk). The

terms(wk) is the significance ofwk, calculated using the normalised information

content value according to the 5,487,056-word West corpus (West, 1953). The

normalised information content value is calculated using equation 3.14.

s(w) =
log(freq(w))

log(1/C)
(3.14)

whereC is the word count of the entire corpus.

3. The activation pattern for the network is calculated over10 iterations.

4. Similarity is calculated using equation 3.15.

simKozima&Furugori(wk, wl) = s(w1)× α(P (wk), wl) (3.15)

whereα(P (wk), wl) is the activation value forwl in the pattern produced bywk

in the activation patternP (wk) produced by Paradigme.

This gives a way of measuring the similarity between any two words from the LDV

collection. However, the LDV words only account for 5% of thetotal words contained

in LDOCE.
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In order to extend the measure to any word of LDOCE, Kozima andFurugori adapt

their algorithm to use of the definitions of words from LDOCE as input for the simi-

larity measure. Using the words in the definitions of one of the two words, any words

also contained in the LDV set are activated with strength using equation 3.16.

simKozima&Furugori(W,W
′) = ψ

(

∑

w′∈W ′

s(w′)× α(P (W ), w′)

)

(3.16)

whereP (W ) is the pattern produced using all the words in the setW .

3.4.4 Hybrid Approaches

Some of the most accurate techniques developed recently augment lexical taxonomies

with statistical information. The augmented information helps to reduce problems pro-

duced by irregularities found in practical lexical taxonomies (Resnik, 1995a,b, 1999).

The earliest technique to do this using WordNet’s lexical taxonomy is Resnik’s Infor-

mation Content similarity measure (Resnik, 1995a,b, 1999). Resnik’s approach is to

add the informationp(c) to each synset in WordNet, wherep(c) is defined in terms of

concept frequencies, as given in equation 3.17.

freq(c) =
∑

n∈words(c)

count(n) (3.17)

wherewords(c) is the set of words subsumed by the synsetc, andcount(c) is calcu-

lated from a corpus. In Resnik’s work with WordNet, the set ofsubsumers of a concept

is given as the hypernyms of the concept.

p(c) =
freq(c)

N
(3.18)

whereN is the total number of nouns contained in the given corpus. Resnik uses the

Brown Corpus of American English (Kucera and Francis, 1967;Francis, 1980; Francis

and Kucera, 1982) containing 1,014,232 words of text from a range of genres. Simi-

larity is calculated from the information content (Ross, 1976) of the most informative

subsumer (MIS) of the two words, quantified using the negative log likelihood of the
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3.4 Existing Techniques

synset, as shown in equation 3.19.

simResnik(c1, c2) = max
c∈S(c1,c2)

(− log p(c)) (3.19)

whereS(c1, c2) is the set of concepts common to both conceptsc1 andc2. Only the

deepest node for the concept in the setS(c1, c2), the MIS, is used as this node will

have the largest negative log-likelihood. Notice that no further information about the

taxonomy is used in the calculation of similarity. Again, Resnik’s work only uses

hypernym relations from WordNet’s lexical taxonomy.

The similarity between two words is deemed to be the maximum similarity between

any two senses of the words, and is calculated in equation 3.20

simResnik(w1, w2) = max
c1∈senses(w1),

c2∈senses(w2)

(simResnik(c1, c2)) (3.20)

A number of criticisms have been made about Resnik’s approach. Firstly, similarity

is not assigned in a standard normalised scale across words.This is most noticeable in

the similarity of synonyms, and even the similarity of a wordwith itself, as similarity in

these situations varies across words where one might assumeit should not. This leads

to “exaggerations” in the content values, depending on the shape of the taxonomies

used in the calculation of similarity (Richardson et al., 1994; Richardson and Smeaton,

1995). Further criticism is made that such a similarity measure makes no further use of

WordNet’s lexical taxonomy’s structure and relationships, and therefore any concepts

sharing the same most informative subsumer will be assignedequal similarity.

Jiang and Conrath (1997) refine the notion of similarity measures using informa-

tion content, making use of further information from the structure of the lexical taxon-

omy. The technique measures semantic distance between two words considering the

information content of both the most informative subsumer of two concepts and the

information content of the concepts of the words themselves. This way the measure

considers both common information and disjoint information between two words.

distJiang&Conrath(c1, c2) = 2 log p(mis(c1, c2))− (log p(c1) + log p(c2)) (3.21)

wheremis(c1, c2) is the MIS ofc1 andc2.

Lin (1997, 1998a,b,c) gives a further information content approach, this time also
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3.5 Discussion of Verb Similarity

addressing the problem of normalised similarity values across words. The technique

is related to Wu and Palmer’s approach (Wu and Palmer, 1994) in that it measures the

ratio of information shared by two concepts against their disjoint information. This is

shown by equation 3.22.

distLin(c1, c2) =
2 log p(mis(c1, c2))

log p(c1) + log p(c2)
(3.22)

All these hybrid techniques solely make use of WordNet’s hypernym relation. Such

techniques could be improved further by considering further relations to calculate

semantic similarity. Some work, such as (Richardson et al.,1994; Richardson and

Smeaton, 1995), examine the possibility of using further relations, although work is

still ongoing.

3.5 Discussion of Verb Similarity

Whilst most of the current state-of-the-art similarity measures making use of Word-

Net’s taxonomy are restricted to nouns, finding equivalent measures for measuring sim-

ilarity between verbs is not easy. This may be because WordNet’s taxonomy lends itself

well for similarity measures using path length as the noun taxonomy is deep meaning

that a reasonable variation in distance exists between nounsenses. The same cannot

be said in WordNet for words belonging to other gramatical classes. Resnik and Diab

(2000) is the most notable work currently available using WordNet to evaluate verb

similarity. They adapt Resnik’s earlier information content approach from (Resnik,

1995a,b, 1999) to evaluate the similarity of verbs. Experimental results showed that

results are poorer for verbs compared with nouns, and that the average inter-agreement

rate for human evaluation of the similarity of verb pairs is also lower, suggesting that

“word similarity is harder for subjects to quantify for verbs than for nouns”. All other

path length based similarity measures can also be used with WordNet’s verb taxonomy,

however current research chooses not to present results forverbs. This suggests, along

with the fact that WordNet’s verb taxonomy is far shallower than its noun taxonomy,

that the type of information present in WordNet is less suited for directly measuring

similarity amongst verbs.
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Chapter 4

Using Lexical Taxonomies for

Measuring Semantic Similarity

The previous chapter defined semantic similarity, and surveyed the various techniques

that have been created to automatically calculate the similarity or distance between

two word senses. This chapter introduces a number of new techniques for calculating

semantic similarity between nouns. In order to improve on the current body of work, a

number of difficulties are considered and strategies are proposed to tackle these diffi-

culties. The work presented here was first presented by Dionisio et al. (2001). A copy

of the seven page version of the paper is included in appendixA.

The first section discusses the difficulties arising for techniques making use of

WordNet’s lexical taxonomy for calculating the similarityof two concepts. Section

4.2 re-visits the question of what constitutes similarity and introduces a number of ax-

ioms which characterise desirable qualities for the results of techniques making use

of WordNet’s lexical taxonomy. These axioms are introducedwith a description fol-

lowed by a logical representation of the axiom. Section 4.3 introduces a number of

hypotheses about WordNet’s taxonomy that form the basis of the similarity measures

introduced in section 4.4. Section 4.4 presents several newsimilarity measures based

upon variations of the ideas introduced in section 4.2 and 4.3. Section 4.5 evaluates

the quality of the results from the measures introduced in section 4.4. Finally, sec-

tion 4.6 describes further work arising from the ideas presented here, and section 4.7

summarises the chapter.

36



4.1 Problems with Current Techniques

4.1 Problems with Current Techniques

The most widely recognised issue in assessing similarity between words or word senses

using WordNet’s taxonomy arises from irregularities within its taxonomy (Richardson

et al., 1994; Resnik, 1995a,b, 1999; Leacock and Chodorow, 1998). Inspection of

different parts of the taxonomy reveals aspects that are unhelpful in trying to replicate

human judgement about similarity, for instance:

• There is no uniform way in which senses are split into subsequent hypernyms,

making some sub-hierarchies more developed than others.

• There are missing word senses.

• The taxonomy includes terms that are not in most people’s regular vocabulary,

such as technical terminology.

• Some relations that seem natural between words do not exist.

• Some words have more than one definition, where the extra definitions seem

superfluous. This is partly due to the fine-grained nature of WordNet.

4.1.1 Different Levels of Sub-hierarchy Development

Figure 4.1 shows how sub-hierarchies of WordNet’s noun taxonomy can show large

differences in how detailed and developed they are. Sub-classes of “animal#1” illus-

trate a highly developed taxonomy, including detailed sub-classifications of different

types of animals. This can be seen in the detail of the taxonomy between “cat” and

“animal” in Figure 4.1a. Typically, a path length of over 4 hypernyms is used to sub-

classify different biological classes of animals, thus making these structures reasonably

deep. In contrast, the sub-hierarchy for “person#1” tends to be very shallow, and does

not contain the detailed sub-classifications found in the animal sub-hierarchy.

Techniques that only make use of hypernym relations to calculate similarity and as-

sume that hypernym relations always express the same level of generalisation fall foul

of such irregularities. Many animal nouns, such as cat, dog,rat, etc. . . have alternative

meanings relating to different types of people. The following list shows the senses and

glosses of the words “cat” and “dog” that refer to a type of person. Note that in some

cases a synonym of “cat” or “dog” is used in the glosses:
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(a) (b)

Figure 4.1: Hypernym Taxonomy for “cat#1” (a) and for “person#1” (b)

cat#2 – (an informal term for a youth or man; “a nice guy”; “the guy’sonly doing it

for some doll”)

cat#3 – (a spiteful woman gossip; “what a cat she is!”)

dog#2 – (a dull unattractive unpleasant girl or woman; “she got a reputation as a

frump”; “she’s a real dog”)

dog#3 – (informal term for a man: “you lucky dog”)

dog#4 – (someone who is morally reprehensible; “you dirty dog”)
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As a result, when considering two polysemous nouns that normally refer to animals, but

contain senses referring to types of people, their “people”definitions will be assigned

much higher similarity values when path length alone is usedas a measure. This is

clearly an undesirable situation for all path length based similarity measures, but one

that occurs often in WordNet.

4.1.2 Missing Word Senses

The previous examples show that WordNet is a huge lexical resource giving fine-

grained distinctions between definitions. However, some everyday word meanings are

still missing, for instance:

• The word “chip” has no reference to its equivalent British meaning, as in “fish

and chips”.

• The word “Greece” has no reference to ancient Greece, nor does WordNet con-

tain an entry for “ancient Greece”.

• The word “fiducial” is missing a sense for when it is used as a reference or

comparison “a fiducial mark”.

• There is no entry in WordNet for “viva”, not for its examination meaning or any

of its other alternatives.

4.1.3 Terminology in Hypernym Structures

A number of the highly developed substructures within WordNet relate to a large num-

ber of scientific, or domain specific terms. Such terms shall be referred to as non-

layman terms. Comparing two different hypernym structures, such as Figure 4.1a and

4.1b, it can be seen that an algorithm based on path lengths would generally assign

a greater similarity to pairs of senses with less technical hypernym structures. When

people make decisions about similarity in such situations,the scientific terms included

in Figure 4.1a would not normally be taken into account. Mostpeople would not even

consider such terms, even if they are known, as these terms are normally only used to

group things into abstract families.
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4.1.4 Missing Relations

The relation that an “animal cub” is a “young mammal” is made explicitly in WordNet.

However, there is no relation to the fact that a “young mammal” is also a “mammal”.

This makes “animal” the most informative subsumer (MIS) between a kind of “young

mammal” and elder equivalent. It would seem natural that by virtue of an animalx

being a younger version of an animaly, thatx also be ay such as is the case between

“young mammal” and “mammal”. This is also the case for all hyponyms of “cub”,

including “bear cub”, “lion cub” and “tiger cub” where no explicit relation is made

between the cub and the class of animal that the cub belongs to. Such situations extend

to other WordNet relations such as meronymy.

Figure 4.2: Hypernym Taxonomy for “bear cub#1”

4.1.5 Unnecessary Additional Word Senses

Examples can be found within WordNet of words that contain sense distinctions that

may be considered overly fine-grained for calculating semantic similarity, such as the
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word carnivore:

carnivore#1 – (terrestrial or aquatic flesh-eating mammal; terrestrialcarnivores have

four or five clawed digits on each limb)

carnivore#2 – (any animal that feeds on flesh: “Tyrannosaurus Rex was a large carni-

vore”; “insectivorous plants are considered carnivores”)

This brings about undesirable situations in the assessmentof word similarity, as it can

produce situations where senses of other words are related to only one of the very

closely related senses of a word. For instance, a “canine#2”(any member of the canine

family, such as “dog#1”) is related via hypernymy to “carnivore#1” above but not

related to “carnivore#2”. However, a “canine#2” is an animal that feeds on flesh.

4.1.6 Problems for Hybrid Similarity Measure Techniques

Hybrid methods try to avoid some of the problems above by making use of statistical

information. However, they fall foul of other problems. Themost common problem for

such hybrid statistical approaches is due to the lexical acquisition bottleneck problem

(Gale et al., 1993), where insufficient examples of words or word senses are available

to train classifiers that generalise well to new examples. This causes these statistical

techniques to overly prefer senses within particular domains of meanings due to bias

introduced by their training data.

Some of the hybrid methods also do not make use of the information contained

within the intermediate structures between the two meanings being tested and the MIS.

Techniques, such as Resnik’s information content approach, assign equal values to a

large number of meanings when there is an obvious, even if only slight, difference in

their similarities. The consequence of this is that similarity distinctions are coarser and

bias may be present within sub-hierarchies for which more data is available.

4.2 What Constitutes Similarity in a Lexical Taxonomy?

Before creating a similarity measure, it helps to revisit the problem of word similarity

and define what aspects of a lexical taxonomy help in assessing similarity between

terms. The approach taken here is to define semantic similarity between two terms in

a similar approach to that taken by Lin (1997). Lin makes a number of assumptions
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in order to define similarity according to WordNet. Lin then produces a measure that

is “proven” by ensuring it satisfies the initial assumptionsmade about similarity. The

following axioms introduce a new general definition of similarity calculated using a

lexical taxonomy. To assist in understanding the logical representation given for each

of the axioms, each axiom is introduced with an informal description.

4.2.1 Axiom 1: Synonymy

It is clear that synonyms represent terms with the exact samemeaning, therefore syn-

onymy represents the closest form of similarity between terms (see 2.1.1). Thus it

seems natural that a similarity measure should assign synonyms an upper bound value,

as no two words can be any more similar than two synonyms. While this is an advan-

tage, development of the measures is not restrained to guarantee this condition as long

as synonymy is still treated as the most similar state between any two distinct terms.
∀x, y : sense ·

x ∈ synonyms(y) ∧

s = sim(x, y) ⇒

∀z : sense ·

sim(x, z) ≤ s ∧

sim(y, z) ≤ s

wheresynonyms(w) is the set of synonyms for a word sensew.

4.2.2 Axiom 2: Hypernymy

The hypernyms of any sense are closely related to the original sense. The similarity

represented by this relation is related to the distance froma word sense to one of its

inherited hypernyms along a hypernym tree. The closer a wordsense is to one of its

inherited hypernyms, the higher the similarity shared by the two senses.
∀x, y, z : sense ·

y ∈ hypernyms(x) ∧

z ∈ hypernyms(x) ∧

distance(x, y) < distance(x, z) ⇒

sim(x, y) > 0 ∧

sim(x, z) > 0 ∧

sim(x, y) ≥ sim(x, z)
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wherehypernyms(x) is the set of all hypernyms of a word sensex anddistance(x, y)

is the path distance betweenx andy.

4.2.3 Axiom 3: Depth of the Most Informative Subsumer in the

Taxonomy

Senses that are common to the hypernym structures of two other word senses can be

used to determine the information common to the two word senses. Assuming two

separate pairs of word senses, both with equal path distancebetween each other, the

pair that shares the deepest MIS in the taxonomy should be deemed as more similar, as

this pair shares more common information.
∀a, b, c, x, y, z : sense ·

z = MIS(x, y) ∧

c = MIS(a, b) ∧

distance(x, y) = distance(a, b) ∧

depth(z) > depth(c) ⇒

sim(x, y) ≥ sim(a, b)

wheredepth(a) is the depth of a sensea in a given hypernym structure andMIS(a, b)

is the MIS for two senses,a andb.

4.2.4 Axiom 4: Meronymy/Holonymy

The use of meronymy/holonymy relations to calculate the similarity between two senses

needs to be handled with care. In general, it is agreed that such relations contribute to-

ward similarity (Budanitsky, 1999; Budanitsky and Hirst, 2001). However, it has been

difficult to define effective similarity measures that take advantage of these relations.

Considered here is a fairly restricted use of meronymy. Two senses,x andy, share

some similarity ifx is an inherited meronym ofy or vice versa, even ifx andy share

no common subsumer in their hypernym structures.
∀x, y : sense ·

(x ∈ inherited meronyms(y) ∨ y ∈ inherited meronyms(x)) ⇒

sim(x, y) > 0

whereinherited meronyms(x) is the set of all meronyms ofx, including the meronyms

of meronyms.

As holonymy is the inverse of meronymy, it is implicitly handled in the above
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definition. For the purposes of this work and due to the difficulties of using meronym

relations in similarity measures, not all the new measures produced are guaranteed to

follow this axiom. This will allow the usefulness of this axiom to be tested.

4.2.5 Axiom 5: Co-ordinate terms

Co-ordinate terms are already deemed to be similar according to the previous axioms.

However, it helps to give this relation a special status. Forthe purposes of this work, the

definition of co-ordinate terms will be extended to include senses that share a common

hypernym that are “generalised” by the hypernym by a similaramount (see 4.3.2).

Terms sharing a similar level of “generalisation” from their MIS are deemed to be

more similar than words at different levels of “generalisation”.
∀x, y, z,m : sense ·

m = MIS(x, y) = MIS(x, z) ∧

(|Gen(x,m)−Gen(y,m)| < |Gen(x,m)−Gen(z,m)|) ⇒

sim(x, y) > sim(x, z)

whereGen(a, b) is the generalisation ofb to its hyponyma.

4.3 Towards a Better Similarity Measure

In addition to the new axioms introduced earlier in the chapter, the following new

hypotheses are introduced regarding the use of taxonomies to assess similarity between

words and word senses.

4.3.1 Hypothesis 1: Hyponym Branching Information AdjustsHy-

pernym Path Lengths

Within a hypernym hierarchy, sub-hierarchies differ in thegranularity of development.

The number of hyponyms a word sense has can be seen to influencethe perceived dis-

tance between the word sense and its hyponyms. The hypothesis is that word senses

with fewer hyponyms have a closer relation to their hyponyms, and as such, the hy-

pernym distance between a word sense and its hypernym is related to the number of

hyponyms it has.

Figure 4.3, shows three examples of word senses and their associated hypernyms.
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(a) (b) (c)

Figure 4.3: Hyponym Branching Adjusted Hypernym Distance Examples

To the right of each word sense is a label showing the number ofhyponyms it has.

This number can be used to calculate how close hyponym and hypernym relations are

as it gives an indication of the level of abstraction or generalisation between a word

sense and its hyponyms. Figure 4.3a shows a close relation asthe only hyponym of

“mentor#1” is “guru#1” and differences between “mentor#1”and “guru#1” are min-

imal; Figure 4.3b shows a relatively close hypernym relation between “equine#1”

and “horse#1”. However, it is not as close as the relation between “mentor#1” and

“guru#1” as “horse#1” is only one instance of a hyponym of “equine#1” out of a pos-

sible 6 different hyponyms; Figure 4.3c shows a distant hypernym relation between

“person#1” and “adult#1” due to the large number of hyponymsbeneath “person#1”.

This large distance does not necessarily mean that there is asubstantial difference

between “person#1” and “adult#1”. It does, however, recognise that there are a sub-

stantial number of semantic features that differentiate the 203 different hyponyms of

“person#1”, therefore the relation is deemed to be more general than for the previous

examples. This brings about rules 4.1 and 4.2 about hyponym distance.

∀x, y : sense ·

y ∈ direct hyponyms(x) ∧

hyponym distance(x, y) = f(#(direct hyponyms(x)))

(4.1)

∀x, y, a, b : sense ·

y ∈ direct hyponyms(x) ∧

b ∈ direct hyponyms(a) ∧

#(direct hyponyms(x)) < #(direct hyponyms(a)) ⇔

hyponym distance(x, y) < hyponym distance(a, b)

(4.2)
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wheredirect hyponyms(x) is the set of word senses that have a hyponym path length

of 1 to termx, andf(x) is a function of the valuex.

Normally, the hypernym distance is the relation of interestwhen assessing word

similarity. As hyponym relations are the inverse of hypernym relations, equation 4.3

shows the definition of hypernym distance used.

hypernym distance(y, x) = hyponym distance(x, y) = #(direct hyponyms(x))

(4.3)

This approach adjusts the hypernym path distances to compensate for differences in the

degrees of refinement of sub-hierarchies of a lexical taxonomy. Wider structures, such

as for the term “adult#1”, are thus penalised by being assigned longer path lengths to

the hypernym relation between word senses. Longer, thinnersub-structures, such as

for “horse#1”, are conversely assigned short distances. Measures using this approach

are less sensitive to differences in degrees of sub-hierarchy development.

4.3.2 Hypothesis 2: A Different Word Similarity Approach other

than Using Edge Distances or Statistical Augmentation

All similarity measure techniques described in the previous chapter, with the exception

of (Agirre and Rigau, 1995, 1996; Rigau et al., 1997), are based solely on the hyper-

nym relations of WordNet’s taxonomy. Hypothesis 2 extends the idea of co-ordinate

terms to start considering the use of further relations in WordNet’s taxonomy of use for

improving similarity measures. Whilst the resulting similarity measures are still based

in essence on WordNet’s hypernym taxonomy, they differ significantly in the approach

of existing techniques.

Axiom 5 states that co-ordinate terms have a special relation to each other in addi-

tion to being members of the hyponym set of a word sense. Examination of different

senses in a lexical taxonomy reveals that the hypernym edge distances between some

word senses are distant, but the senses may still be considered to be semantically close.

It also follows that such word senses can be more similar to one another than their hy-

pernyms would be, thus showing that path-distance may sometimes produce inaccurate
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evaluations of similarity. For example, consider when the situation in 4.4 is true:

∃x, y, z : sense ·

hypernym path distance(x, y) < hypernym path distance(x, z) ∧

sim(x, z) > sim(x, y)

(4.4)

wherehypernym path distance(a, b) is the number of arcs in a hypernym tree be-

tween two word senses,a andb.

An alternative approach to using edge distance to calculatethe similarity of two

word senses is to assess the difference in abstraction foundin their hypernym struc-

tures to a hypernym common to both word senses. This can be achieved when consid-

ering the number of hyponyms directly below each word sense.To clearly show this

alternative method, consider a taxonomy where all senses other than terminal senses

have exactly two hyponyms, illustrated by the binary tree structure in Figure 4.4. In

Root Level


Level 3


Level 2


Level 1


Level 4


Figure 4.4: Binary Tree Example

the binary tree, each node represents a word sense, and the arcs represent hypernym

relations between the senses. By definition, all word senseswith a common direct hy-

pernym are co-ordinate terms. Also of interest are all the senses that share a common

hypernym at the same amount of generalisation. For example,it is easy to see that

words denoting feline animals are semantically similar dueto co-ordinate term rela-

tionship. However, the words “cat” and “dog” are normally considered similar to some

lesser extent. Furthermore, people would associate “cat” and “canine” less strongly

than they would associate “cat” and “dog”, even though the edge distance between

“cat” and “canine” is smaller. This situation is analogous to “cat” and “dog” being at
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Figure 4.5: Binary Taxonomy Example for “Cat” and “Dog”

approximately the same level of generalisation from some common node (in this ex-

ample this node is “mammal”) in a binary tree, as they are at the similar depths in the

taxonomy, as shown in Figure 4.5. In a real world lexical taxonomy, such as WordNet,

depth alone is not a reliable source of information for measuring the generalisation be-

tween two word senses on a particular hypernym path. An alternative way to calculate

this difference in the amount of generalisation that avoidsrelying on such word senses

being at the same depth is to use information about the branching of the hypernym sub-

trees of word senses. This branching information will be referred to as the “shape” of

the hypernym structure for a word sense, where the structureof interest goes from the

word sense to a hypernym that is common to some other given word sense. Given the

shape information for two word senses, the ratio of generalisation between two word

senses is given in equation 4.5.

Generalisation Ratio =
shape(x)

shape(y)
(4.5)

Given that “shape” is a function of the hyponym branching along a hypernym path,

two methods of calculating the “shape” of a hypernym structure are given by 4.6, or by

4.7 if a sensem is not known.

shape(w,m) =

{

1 : if w = m

#(ψ(λ(w))) <OP> shape(ω(w), m) : otherwise
(4.6)

shape(w) = shape(w, root(w)) (4.7)

wherew andm are word senses,m is a hypernym ofw (normally the MIS between
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w and another word sense),ψ(x) is the set of hyponyms for a word sensex, λ(x) is

a hypernym of a word sensex, <OP> can be either+ or ×, #s is the number of

element in a sets androot(w) is the root of the hypernym structure forw. The term

#(ψ(λ(w))) can be thought of as the number of hyponyms for the hypernym ofword

sensew.

The two different arithmetic operators give different interpretations of the notion of

“shape”. Using the+ operator, shape will measure the pure hyponym branching along

the path, that is to say the number of nodes that branch off thehypernyms of a particular

structure. This is referred to as shape+. The× operator gives an estimate of the total

number of senses in a substructure of the hypernym structure. It is only an estimate

because nodes outside the hypernym structure are unlikely to branch to a comparable

degree. This is referred to as shape×. Consider the hypernym structure in figure 4.6. In

Figure 4.6: Hypernym Taxonomy for “animal#1”

order for either shape+ or shape× to be calculated, the number of direct hyponyms for

each inherited hypernym of “animal#1” must be known, in thiscase 36 hyponyms for

“life form#1” and 14 hyponyms for “entity#1”. Whilst assuming a virtual root above

“entity#1”, shape+(“animal#1”) = 36 + 14 + 1 = 51 andshape×(“animal#1”) =

36 ∗ 14 ∗ 1 = 504, where in both casesroot(“animal#1”) is the virtual root.

Such a definition for the ratio of generalisation becomes necessary with WordNet’s

taxonomy in order to create similarity measures that are less sensitive to differences

in path length between a word sense and its hypernym. For instance, consider the

following two noun senses:

• “mammal#1” sense 1 has 5 direct hyponyms;

• “man#1” sense 1 has 45 direct hyponyms.
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As “mammal#1” has fewer immediate hyponyms than “man#1”, these hyponyms are

deemed to be more closely related to “mammal#1” than the hyponyms of “man#1”

are to “man#1”. In other words, the hyponyms of “mammal#1” show a smaller level

of specialisation and are therefore only slightly more specific classes of “mammal#1”,

whereas the hyponyms of “man#1” show a larger level of specialisation and are there-

fore more specific sub-classes of “man#1”. Path distances should reflect this level of

specialisation, or generalisation if considering hypernym path distance, so the path dis-

tance from “mammal#1” to one of its hyponyms is closer than that between “man#1”

to one of its hyponyms.

4.3.3 Hypothesis 3: Collapsing WordNets Taxonomy to Include

Only Layman Terms

WordNet’s taxonomy has a large number of domain specific terms that are not used

in day to day conversation, or even known by many people. Examples of such words

include scientific terms used to sub-classify animal nouns.Terms such as “placental

mammal” are not often considered by people when they assess the similarity of terms

like “dog” and “cow”. Such terms artificially increase hypernym path distances be-

tween senses thus making them seem less similar.

Work has been previously performed to reduce the hypernym structures to include

only layman terms. Tengi (1998) makes use of WordNet 1.5’s familiarity index to

detect non-layman terms in hypernym structures. The work was used to reduce terms in

WordNet’s taxonomy to closer match what Tengi refers to as the “mental lexicon” using

psycholinguistic principles. For WordNet 1.5, the familiarity index is not based on

occurrence frequencies taken from corpora, as such frequencies would be inadequate

for a lexicon as large as WordNet due to the lexical bottleneck problem. Instead, an

alternative method is used, based upon the correlation between occurrence frequency

and polysemy (Zipf, 1945; Jastrezembski and Stanners, 1975; Jastrezembski, 1981).

Every word in WordNet 1.5 has a familiarity index calculatedfrom the polysemy of

the word according the Collins online dictionary. Given this familiarity index, Tengi’s

approach is then to remove all words with an index less than orequal to 1.

Figure 4.7, taken from (Tengi, 1998), shows the words of hypernym structure for

“bronco#1” and their associated familiarity index according to WordNet 1.5. The ef-

fectiveness of using the familiarity index to reduce hypernym structures to layman
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hypernym structures is seen clearly in this simple example.

Figure 4.7: “Bronco#1” Hypernym Structure Reduction from (Tengi, 1998)

Version 1.6 of WordNet no longer calculates familiarity indexes from an alterna-

tive dictionary, but from the polysemy counts within WordNet itself. As a result, the

frequency indexes between WordNet 1.5 and 1.6 differ significantly and can no longer

be applied to Tengi’s technique for reducing hypernym structures. Taking the initial

hypernym structure in Figure 4.7, the frequency indexes forthe words bronco to entity

in WordNet 1.6 using Tengi’s approach are:

1, 1, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1
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The main difference with Tengi’s example is that “animal” and “entity” are lost in the

layman structure. Another issue is that the most common wordin WordNet 1.6 for

each sense in the hypernym structure of “bronco#1” is not thesame as those given in

the example. The most common word for the synset of “organism” in the example

is “life form” which has a polysemy count of 1. Therefore another term would be

lost if an automatic system is based upon using the most common word of a WordNet

synset. This produces a problem regarding which word for a WordNet synset should

be selected to calculate the polysemy count automatically.

Figure 4.8: “Bronco#1” Hypernym Structure Reduction UsingNew Approach

A new approach to reducing WordNet 1.6 hypernym structures is presented here,
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which takes into account the polysemy of all words in a given synset. Once their

polysemy is established, the average polysemy for all the words in the synset can be

used as an alternative familiarity index for a synset. Similar results to those produced

by Tengi’s proposal are possible with this alternative approach. For instance, applying

this technique to the “bronco” hypernym structure gives theresults shown in Figure

4.8. Now the only difference with the example using WordNet 1.5 is that “entity” is

lost.

Using Layman Hypernym Structures with Similarity Measures

Reduced hypernym structures can be readily used with similarity measures that only

consider path distance between two senses. As such measuresare only adding a value

to an ongoing distance, if a term is a layman term the distanceis increased, other-

wise it remains unchanged. For the similarity measures using shape×, more thought is

necessary.

When multiplying the hyponym branching of senses, the shapemeasure estimates

the number of nodes beneath a sense in some given hypernym sub-structure, therefore

ignoring technical terms may lose vital information. As such, there are two possibilities

to be considered:

• Ignore the hypernym branching for non-layman word senses (Layman Hypernym

Structure).

• Retain the branching information of non-layman word senseswhilst disregard-

ing the nodes for the non-layman word senses. This is achieved by adding the

sum of the hypernym branching of non-layman word senses to the branching

of the next layman word sense. This corresponds to flatteningthe non-layman

terms to the same level as layman terms in a hypernym structure so that their

information is not lost. This is only applicable for shape× (Flattened Hypernym

Layman Hypernym Structure). If this were applied to shape+, this would pro-

duce approximately the same results as when considering theentire hypernym

structure.
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4.3.4 Hypothesis 4: Handling Hypernym Trees with Multiple Paths

from Sense to Root Sense

A complete definition of a similarity measure based upon information contained in a

hypernym taxonomy requires a decision regarding how alternative paths are handled

when calculating the final similarity. For instance, whilstconsidering hypernym rela-

tions, there are a number of concepts in WordNet, such as “brew#1”, that have multiple

alternative hypernym paths.

The approach taken here is similar to the approaches in previous work (Rada and

Bicknell, 1989; Rada et al., 1989; Lee et al., 1993; Resnik, 1995a,b, 1999). Where mul-

tiple paths are available from a synset to the root of a hypernym tree, the shortest path

including the MIS between two senses in the hypernym structure is used. For instance,

Figure 4.9 shows the complete hypernym structure for “brew#1”. Each synset in the

structure has been additionally labelled with its depth relative to a virtual root node

above “entity#1”. In practice, the depth of “brew#1” will bedependant on the word

sense it will be compared to. Normally a depth of 7 will be assigned to “brew#1”. How-

ever, should the MIS to “brew#1” and another synset by either“fluid#1” or “liquid#1”,

its depth becomes 8 as the hypernym path being considered contains an extra edge.

Figure 4.9: “Brew#1” Hypernyms
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Such a criterion has been followed in previous work in order to maximise the simi-

larities assigned to words when using path distances to calculate similarity. When con-

sidering layman hypernym structures, following the same criteria will produce equiv-

alent results, however the resulting MIS will be likely to change. Such a technique

for selecting a unique path may not generate the best possible similarity when using

generalisation ratios to calculate similarity.

4.4 Shape-Based Similarity Measures (SBSMs)

Following the “shape” definition given in hypothesis 2, a number of new similarity

measures, referred to as SBSMs, have been implemented usingvarying approaches to

assign similarity measures to word sense pairs. Work and evaluation of SBSMs was

first published by Dionisio et al. (2001).

4.4.1 Similarity Measures based on Hypernym Structure Shape

The first of the new SBSMs, shown in equation 4.8, is a simple test of the ratio of

generalisation between two senses and forms the basis of further SBSMs.

SimSBSM1(c1, c2) =































shape(c1)
shape(c2)

:
if shape(c1) < shape(c2)∧

c1 6= MIS ∧ c2 6= MIS

shape(c2)
shape(c1)

:
if shape(c1) > shape(c2)∧

c1 6= MIS ∧ c2 6= MIS

1 : otherwise

(4.8)

wherec1 andc2 share at least one common subsumer in their hypernym structures.

Such a measure is intended to demonstrate behaviour described in axioms 1, 2

(although different depths for the MIS are not considered),5 and hypotheses 1 and 2.

In order to tackle structures with multiple paths, the shortest structure containing the

MIS is selected in accordance with hypothesis 4.

This measure makes no provisions for handling information common to two senses,

as stated in axiom 3. The following SBSMs adjust values fromSimSBSM1, referred

to simply asSBSM1, with a multiplier calculated from information contained in the

hypernym taxonomy above the MIS, where the multiplier determines a value for the

amount of common information between two word senses.
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4.4.2 Similarity Measures based on Hypernym Structure Shape

Adjusted by a Common Information Multiplier

There are a number of ways in which information in a hypernym structure above the

MIS of two senses can be used to calculate similarity:

1. Path distance from the MIS to the root of the taxonomy. Thisgives a measure of

how deep in the taxonomy the MIS occurs.

2. Shape from the MIS to the root of the taxonomy. This gives anestimate of the

amount of common information that is expressed above the MIS.

3. Average hyponym branching of nodes from the MIS to the rootof the taxonomy.

This gives an estimate of the overall abstraction the root has relative to the MIS.

These notions give a means of measuring information that is common to two word

senses which can be used to adjust measures by considering common information.

This produces three further SBSMs, shown in equations 4.9, 4.10 and 4.11.

SimSBSM2(c1, c2) = SimSBSM1(c1, c2)× d(c3) (4.9)

SimSBSM3(c1, c2) = SimSBSM1(c1, c2)× shape(c3) (4.10)

SimSBSM4(c1, c2) = SimSBSM1(c1, c2)× β(c3) (4.11)

where in each casec1 andc2 share a common subsumer,c3 is the MIS ofc1 andc2,

d(c) is the depth of sensec’s hypernym structure andβ(c) is the average hyponym

branching of a word sensec.

As SBSM1 will always produce values within the range0 < SimSBSM1(c1, c2) ≤

1, the common information multipliers (CIMs) inSBSM2, SBSM3 andSBSM4 can

overly influence the final result. In order to reduce the influences the measures of

common information have on the final SBSM, they can be normalised to be within

the range0 ≤ CIM ≤ 1. This guarantees that the CIMs will not be the overall-

determining factor of similarity. In order to restrict the range of values, the CIMs are

normalised as shown in equation 4.12.

normaliseCIM (CIM) =

{

1− 1
CIM

: if CIM > 1

k : otherwise
(4.12)
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wherek is a constant for each SBSM. This constant is used so that a CIMof 1 or

less will not produce undesirable results. For instance, ifthe CIM is 1, the normalised

multiplier would be 0 therefore producing a similarity measure of 0 which is clearly

inappropriate as some similarity has been found in the taxonomy. A small enough

value fork was selected experimentally for each measure:

• k = 0.1 for SBSM2

• k = 0.00001 for SBSM3

• k = 0.05 for SBSM4

The last value ofk is contentious, as when the values of the average hyponym branch-

ing of a structure lie between 1 and 1/0.95, the value produced by the normalisation

function will produce values smaller than 0.05. This is overlooked due to the unlikely

event of such values being encountered.

Given these new common information multipliers, another three SBSMs are pro-

duced as shown by 4.13, 4.14, 4.15.

SimSBSM5(c1, c2) = SimSBSM1(c1, c2)× normaliseCIM(d(c3)) (4.13)

SimSBSM6(c1, c2) = SimSBSM1(c1, c2)× normaliseCIM(shape(c3)) (4.14)

SimSBSM7(c1, c2) = SimSBSM1(c1, c2)× normaliseCIM(β(c3)) (4.15)

where in each casec1 andc2 share a common subsumer,c3 is the MIS ofc1 andc2,

d(c) is the depth of sensec’s hypernym structure andβ(c) is the average hyponym

branching of a word sensec.

4.4.3 Similarity Measures based on Hybrid Versions of Hypernym

Structure Shape

The new SBSMs described thus far consider similarity as a function of the ratio of gen-

eralisation between two hypernym structures, with some added adjustment given by a

function of the information common to the two structures. Previous work has mostly

been based upon path distances, so it would be useful to determine if the shape function

could improve results from such measures. The Wu and Palmer (1994) similarity mea-

sure can be readily adaptable to make use of these ideas, therefore two further hybrid

SBSMs are also considered.
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The simplest hybrid form for a SBSM would be to use the productof two measures,

as shown by equation 4.16, therefore making use of the discriminating aspects of both

measures. The final value from such an approach will be a compromise from the values

of the individual measures used.

SimSBSM8(c1, c2) = SimWu&Palmer(c1, c2)× SimSBSM?(c1, c2) (4.16)

Only SBSMs assigning values between the range of 0 and 1 will be used so that overall

neither term can overly bias results of the similarity measure.

Wu and Palmer (1994) uses an approach that measures the differences and sim-

ilarity between two measures in order to calculate the final similarity value. Such a

similarity measure can be easily adapted to make use of shapein order to assign differ-

ent weights to different hypernym edges, as shown in equation 4.17.

SimSBSM9(c1, c2) =
2shape(c3)

shape(c1) + shape(c2)
(4.17)

wherec3 is the MIS ofc1 andc2.

Using shape×, it is unlikely that the above function will produce well-distributed

similarity values immediately. This is mainly due to the difference in magnitude for

values of shape. Results can be improved by post-processingthe results from the shape

function, for instance considering logarithms of the shape. This is possible as each

of the different SBSMs are designed to make use of WordNet’s lexical taxonomy in

different ways. However, fine-tuning of the distribution ofsimilarity values across

differing levels of similarity is left open to further investigation. Given the design of the

SBSMs, it is natural that some measures may assign high values for word-pairs with

low similarity. However, it is expected that the relative ordering of different word-

pairs according to the similarity values assigned by the SBSMs will be reasonable.

Post-processing values from the SBSMs presented here is considered only to a limited

extent during the evaluation.

58



4.4 Shape-Based Similarity Measures (SBSMs)

4.4.4 Calculating the Average Hyponym Branching of the Hyper-

nym Structure

Some of the SBSMs use the average hyponym branching of a structure. This value

is calculated given the shape and depth of the hypernym structure below some word

sense,x. For shape+, an accurate measure of the average branching is given by 4.18.

β(x) =
shape+(x)

d(x)
(4.18)

For shape×, an approximation of the average branching is given by 4.19.

β(x) = shape×(x)
1/d(x) (4.19)

4.4.5 SBSM Parameters

In their current state, the SBSMs implement ideas from axioms 1, 2, 3 and 5, and

from hypothesis 1, 2 and 4. In order to test the remaining axioms and hypothesis,

parameters in the form of flags will be used that change some ofthe characteristics

of the measures. Each different combination of parameter values can be thought of

as producing a different similarity measure, although given that the parameters only

slightly modify the behaviour of the SBSMs they need not be considered as such.

Indeed, one of the main aims of this work is to determine the best combination of

parameters for measuring similarity. The parameters for the SBSMs are:

• Use of layman structures (from hypothesis 3)

• Use of flattened layman structures (from hypothesis 3)

• Consider the meronym/holonym terms of the senses being tested (from axiom 4)

• Normalisation of results so that values fit into a standard scale (axiom 1)

The latter parameter follows from axiom 1 so that an upper bound value is assigned

when synonyms are tested. ForSBSM1 andSBSM9 this is not an issue, as all syn-

onym pairs will be assigned values of 1, andSBSM8 is dependant on the SBSM

chosen to work with the Wu and Palmer measure. The other SBSMs, however, assign

different similarity values to different synonym pairs. This is a situation that seems
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undesirable because if two terms represent the same idea, surely there is no way they

can be anymore similar to each other. Further, it seems unnatural to say that two pairs

of identical terms differ in their magnitude of similarity.SBSMs 2 to 7 assign differ-

ent values to synonym pairs depending on their depth in the taxonomy, therefore it is

these measures that must be normalised so that final values are equal for all synonym

pairs. Currently, this normalisation has been implementedfor SBSM5 to SBSM7

using equation 4.21 and 4.22.

ν(c1, c2) = max(CIM(c1), CIM(c2)) (4.20)

ϕ(c1, c2) =

{

1− 1/ν(c1, c2) : if ν(c1, c2) > 1

c : otherwise
(4.21)

SimnormalisedSBSM(c1, c2) =
SimSBSM (c1, c2)

ϕ(c1, c2)
(4.22)

wherec1 andc2 are word senses,ϕ(c1, c2) is the normalisation factor, andCIM(c) is

the CIM calculation for a given SBSM applied using a word sense c. Such a normali-

sation technique is used with all results so that they fit within the range of 0 to 1, where

1 signifies perfect synonymy.

4.5 Evaluating Similarity Measures

The question of what constitutes an adequate evaluation method for similarity mea-

sures remains open. Previous work on objectively evaluating similarity measures has

proven difficult as similarity measures differ in the task for which they are used, indeed

quite often no formal evaluation is performed on the similarity measures in isolation of

the task for which they are created. Where similarity measures are evaluated, the most

common approach is to compare these with results from measures of human judge-

ments on a set of word-pairs, such as the Rubenstein and Goodenough (1965) or Miller

and Charles (1991) word-pairs. More recently, Finkelsteinet al. (2002) made available

a larger set of human judgements consisting of similarity judgements for 353 word-

pairs, although this is not used to evaluate the measures introduced in this chapter as it

became available too late. Some work, for instance (Lin, 1997), prove that their mea-

sures possess certain desirable qualities, such as the properties specified by the axioms

and hypotheses introduced earlier in this chapter. Other work, for example (Resnik,
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1995a,b, 1999; Budanitsky, 1999; Budanitsky and Hirst, 2001), develop more rigor-

ous application-orientated tests rather than collecting the data required for comparison

against human judgements. Resnik (1995a,b, 1999) tests a similarity measure against

the senses of semantically related word groups collected from thesauri entries and from

known collections of noun groupings in order to have an application-oriented evalua-

tion. However, human judgements are still required for the final evaluation. The results

from the similarity measures are used to disambiguate the words against each other,

given the senses available in WordNet. Budanitsky (1999) and Budanitsky and Hirst

(2001) set about the problem of evaluation with an alternative application-orientated

approach, this time automatic detection of malapropisms intexts. Malapropisms are

spelling mistakes that occur due to confusions made betweenwords that sound similar,

such as “diary” and “dairy”. Such errors prove difficult to detect, as the spelling of

the mistake is itself correct for another word and is also often syntactically appropri-

ate. The evaluation involved adding artificial malapropisms into a corpus, by replacing

words with variations that appear in WordNet. Budanitsky (1999) and Budanitsky and

Hirst (2001) used 500 documents from the Wall Street Journalcorpus, with 1408 arti-

ficially created malapropisms as in Hirst and St-Onge’s original experiment (Hirst and

St-Onge, 1998). The results of the similarity measures werereduced to boolean values,

related or unrelated, by analysing the scatter graphs produced by the measures given

the Rubenstein-Goodenough word-pairs. For example, whilst examining Figure 4.10,

the chart for the Rubenstein-Goodenough human judgements,a gap is seen between

the similarity values assigned to “magician-oracle” and “crane-implement”. Given this

information, similarity values from human judgements above 2 were deemed as being

meaning that two words are similar. The similarity measureswere also used to detect

malapropisms by testing nouns with other nouns within a particular context window.

A noun with no senses related to the senses of words in its surrounding context win-

dow became a suspected malapropism. If a spelling variationof the suspect word was

found to be related to any of the words in the context window, it was diagnosed as a

malapropism. The results of the evaluation were given in terms of precision, recall and

f-measure.

Two tests are performed to evaluate the performance of the new SBSMs with two

different tasks:

• Comparing similarity values against human judgements.
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Figure 4.10: Scatter Chart of Rubenstein and Goodenough Human Similarity Judge-
ments

The similarity measures are used to produce similarity values for the word-pairs

from Rubenstein and Goodenough (1965), Miller and Charles (1991) and Resnik

(1999). The results are compared against human judgements using Pearson’s and

Spearman’s correlation techniques.

• Disambiguation words against thesaurus entries.

Simple Word Sense Disambiguation (WSD) techniques using similarity mea-

sures are used to disambiguate thesaurus entries in order toperform a more

application-orientated evaluation. Disambiguating thesaurus entries seems a nat-

ural use for such similarity measures as words in thesaurus entries are already se-

mantically related, therefore considering only semantic information should yield

highly precise results. The simple WSD techniques use semantic similarity be-

tween words to assign a sense to each word in a thesaurus entry. The sense

assigned is deemed to be an adequate sense for the word as it relates to the whole
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thesaurus entry. The results of the WSD systems are then compared to a gold-set

of human classifications for each word.

4.5.1 Human Judgement Comparison

Commonly, researchers have assessed the accuracy of similarity measures by compar-

ison with results from human judgements. In such evaluations, human judgements are

taken as a gold standard established by human intuition about semantic similarity, al-

though arguments can be made against such an assumption. Unfortunately there are no

large data sets of human judgements publicly available for evaluating semantic similar-

ity measures. The two most commonly used sets are the Rubenstein and Goodenough

(1965) set, containing 65 word-pairs, and the Miller and Charles (1991) set, a subset

of 30 word-pairs from the Rubenstein and Goodenough word-pair list. A further set

of human judgements for the Miller and Charles word-pairs can be found in (Resnik,

1999), although word-pairs with “woodland” were removed due to a lack of training

data for the Resnik similarity measure. As these data sets were collected using peo-

ple with different social backgrounds and at different periods of time, all three sets of

human judgement data are used in the evaluation presented inthis chapter in order to

reduce any unwanted bias that may be present. The word-pairsare listed in Appendix

B together with their respective human judgements.

It is interesting to note how the method of collecting data for human judgements

differs between the different approaches. Rubenstein and Goodenough used 51 under-

graduates split into two groups. Each individual was given ashuffled deck of 65 slips

of paper with a pair of words on each slip. They were then askedto order the pieces

of paper from least similar pair to most similar pair. Once this was completed, the in-

dividuals assigned similarity values from 0 (no similarity) to 4 (perfect synonymy) to

each of the word-pairs on the slips of paper. The average of the similarity value given

for each word by the human test subjects was then taken to represent the human judge-

ment of similarity for the word-pair. Such an approach forces the individuals to make

definitive choices even when they may be uncertain about differences, and by initially

ordering the word-pairs, some bias may have been introducedto the similarity values

assigned to the word-pairs. The Miller and Charles data set was produced by carefully

selecting 30 of the word-pairs from the Rubenstein-Goodenough collection that repre-

sented word-pairs with high, medium and low levels of similarity. 38 undergraduates
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were then given the word-pairs and asked to give each pair a value representing the

similarity of meaning, again within the range of 0 to 4. The average of the given sim-

ilarities assigned was once again taken as the human judgement. Resnik approaches

the experiment in a similar way to Miller and Charles using the same word-pair set

with entries containing “woodland” removed. A group of 10 computer science stu-

dents, both undergraduate and postgraduate, gave judgements about the similarity of

the word-pairs. Half of the candidates were given the word-pairs in a random order,

and the other half were given the word-pairs in descending similarity order, according

to the similarity judgements giving by Miller and Charles. The two tests did not force

people to order the word-pairs before assigning a similarity measure to them, and this

may have influenced the results.

The evaluation of the SBSMs introduced in this chapter involves calculating word-

pair similarity using each of the SBSMs with each of the various parameters where

applicable. The final word-pair similarity is defined similarly to the Resnik (1995a,

1999) approach, as given by equation 4.23.

WordPairSim(A,B) = max
x∈senses(A),

y∈senses(B)

Sim(x, y) (4.23)

Using the results produced by each similarity measure, a comparison is made against

each of the human judgement sets to see how well the results correlate. This compar-

ison will be made using two different correlation coefficients, both giving measures

between -1 (perfect negative correlation), 0 (no correlation) and 1 (perfect positive

correlation):

• Pearson’s Coefficient

Also known as the product-moment correlation coefficient, Pearson’s correlation

coefficient is the most commonly used correlation coefficient. The coefficient

measures the strength of the linear association between twosets of data, and

not the relative ranking of the values within the datasets. As a result, some

correlation tests may look misleadingly low between two related data sets if their

relationship is not linear, for instance when the distribution between the values

is different. Given two data sets,X andY , with elementsxi ∈ X andyi ∈ Y

wherei = 1, . . . , N , Pearson’s coefficient is estimated using 4.24.
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r =

∑

i

(xi − x̄)(yi − ȳ)

√
∑

i

(xi − x̄)2
√
∑

i

(yi − ȳ)2
(4.24)

• Spearman’s Rank Coefficient

This is an example of a non-parametric correlation coefficient measure. Such a

coefficient makes no assumption about the relationship between values, such as

distribution, other than the rank of the values within a dataset. This is often a

better coefficient to consider as it gives a clearer impression of the possible re-

lationship between two data sets, without allowing the distribution of the values

to introduce noise into the coefficient. The final function issimilar to Pearson’s

coefficient, but uses the relative ranking between values and not the values them-

selves. Eachxi ∈ X is used to calculateRi, the rank ofxi within the data set.

For situations where more than one element is allocated the same rank, a mid-

rank1 value is assigned to each instance. The same is done for eachyi ∈ Y to

calculateSi. The resulting function is the linear correlation between the ranks,

calculated using 4.25.

r =

∑

i

(Ri − R̄)(Si − S̄)

√

∑

i

(Ri − R̄)2

√

∑

i

(Si − S̄)2
(4.25)

Some sources use an alternative form of Spearman’s correlation, as shown in

4.26

r = 1−





6
∑

i

(Ri − Si)
2

N(N2 − 1)



 (4.26)

Given the difficulty of collecting accurate metric values inhuman tests, it may be more

sensible to consider relative ranking of word-pairs, as themain interest is the accuracy

to which similarity measures order the similarity between word-pairs. This latter task

seems natural for a human to perform. However, for a human to assign a similarity

value seems unnatural and forced. Pearson’s coefficient however gives a reasonable

estimate of how good the values of the similarity measures are, and this may be of use

1Mid-rank = the average of the ranks that would be assigned to arange of values that are equal in
some data set.
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in evaluating their usefulness in further applications.

Previous work has used correlation values between human judgements to define an

upper target for the expected performance of a computerisedtechnique. Resnik (1999)

uses the average correlation over his 10 subjects against Miller and Charles results,

ending with an upper target ofr = 0.88 (only for Pearson’s coefficient). For the

evaluation presented here individual human judgements were not available, therefore

the lowest coefficient between the different human judgement tests will be used as an

upper target. Using table 4.1, a Pearson’s coefficient and Spearman’s coefficient of 0.9

Goodenough’ Goodenough’ Miller’
vs. Miller’ vs. Resnik vs. Resnik

Pearson’s
Product-Moment

0.968 0.896 0.955

Spearman’s Rank 0.891 0.944 0.937

Table 4.1: Inter Human Judgement Data Set Correlation

is taken as an upper target for the machine based similarity measures in this evaluation,

by rounding the lowest results in table 4.1 up to one significant figure.

Pearson and Spearman correlation coefficients are calculated for each similarity

measure and parameter combination tested. These results are summarised in Figures

4.11, 4.12 and 4.13 and more detailed results are presented in Appendix B. The charts

show the results for each similarity measure separated by the vertical lines. Note that

for SBSM8, SBSM1 is used with the Wu and Palmer measure for the evaluation. For

each measure, six results are given:

1. Basic use of the similarity measure, denoted using “∗”.

2. Basic use of the similarity measure, but with normalised results, denoted using

“•”.

3. Layman structures used, denoted using “�”.

4. Layman structures used with normalised results, denotedusing “8”.

5. Flattened layman structures used, denoted using “�”.

6. Flattened layman structures used with normalised results, denoted using “/”.
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In order to save space, results considering meronyms terms have not been given, as

they do not affect the result for any of the word-pairs, as no word-pair from the hu-

man judgement data sets is associated via inherited meronymy within WordNet. Each

correlation coefficient is statistically significant withp < 0.01. These charts show the

effect of using shape× (the first 9 SBSM results), and of using shape+ (the last 9 SBSM

results). In order to evaluate the effect of normalising common information multipliers

(SBSM5 to SBSM7), the normalised results have been arranged next to their non-

normalised counterparts. The charts also show two results for each similarity measure

and parameter combination; Pearson’s coefficients are shown in blue and Spearman’s

coefficients are shown in red.

Rubenstein & Goodenough Data−Set Result Summary

Wu &
Palmer 1 2 5 3 6 4 7 8 9

SBSM×
1 2 5 3 6 4 7 8 9

SBSM+

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.11: Pearson’s and Spearman’s Coefficients for Rubenstein and Goodenough
(1965) Word-Pairs
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Miller & Charles Data−Set Result Summary

Wu &
Palmer 1 2 5 3 6 4 7 8 9

SBSM×
1 2 5 3 6 4 7 8 9

SBSM+

0
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1

Figure 4.12: Pearson’s and Spearman’s Coefficients for Miller and Charles (1991)
Word-Pairs

Overall Measure Performance

Tables 4.2, 4.3 and 4.4 give the ranks in ascending order, from 1 to 16, of the best result

for each measure, without considering any parameters at this stage. From these tables

it is possible to see which measures give the best results when compared to each other.

The tables show that linear correlation techniques, such asPearson’s coefficient, may

not present the most reliable evaluation for objectively comparing the performance of

similarity measures. Pearson’s correlation coefficient leads to discounting measures

that produce improved ordering of similarity between word-pairs. The results show

that shape× produces better values for SBSMs based on the ratio of generalisation be-
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Resnik Data−Set Result Summary

Wu &
Palmer 1 2 5 3 6 4 7 8 9

SBSM×
1 2 5 3 6 4 7 8 9
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1

Figure 4.13: Pearson’s and Spearman’s Coefficients for Resnik (1999) Word-Pairs

tween two senses than using shape+ to a statistical significance ofp < 0.01, measured

using Wilcoxon’s matched-pairs signed-ranks test. However, the SBSM+s produce

interesting results when only considering the relative ordering of word-pairs. For in-

stance, inherent in the design ofSBSM3 is the fact that the shape measure of infor-

mation common to two word senses has a large influence in the final measure, and that

the distribution of the similarity values is likely to be quite dramatic. It is interesting

to see that this type of similarity measure consistently produces a good ordering of

word-pairs.

The effect of normalising the multipliers ofSBSM2, SBSM3 andSBSM4 sees

an improvement in most cases. This implies that measuresSBSM2, SBSM3 and
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Rubenstein Pearson’s Spearman’s
& Correlation Correlation

Goodenough Rank Coefficient Rank Coefficient
SBSM×1 12 0.69 18 0.70
SBSM×2 6 0.82 13 0.78
SBSM×3 17 0.35 7 0.80
SBSM×4 10 0.77 17 0.73
SBSM×5 2 0.87 8 0.80
SBSM×6 8 0.81 9 0.80
SBSM×7 7 0.82 14 0.77
SBSM×8 1 0.87 11 0.78
SBSM×9 11 0.70 6 0.80
SBSM+1 16 0.52 16 0.73
SBSM+2 9 0.80 12 0.78
SBSM+3 15 0.64 15 0.76
SBSM+4 18 0.38 10 0.79
SBSM+5 5 0.83 4 0.81
SBSM+6 14 0.66 1 0.81
SBSM+7 13 0.67 3 0.81
SBSM+8 3 0.85 5 0.81
SBSM+9 4 0.84 2 0.81

Table 4.2: SBSM Summary of Evaluation using Rubenstein and Goodenough (1965)
Data Set

Pearson’s Spearman’sMiller &
Correlation CorrelationCharles

Rank Coefficient Rank Coefficient
SBSM×1 11 0.73 18 0.68
SBSM×2 5 0.85 10 0.79
SBSM×3 17 0.47 5 0.80
SBSM×4 10 0.80 16 0.75
SBSM×5 2 0.87 9 0.79
SBSM×6 6 0.85 1 0.84
SBSM×7 4 0.85 15 0.77
SBSM×8 1 0.88 13 0.79
SBSM×9 15 0.67 8 0.80
SBSM+1 16 0.52 17 0.73
SBSM+2 8 0.82 12 0.79
SBSM+3 14 0.70 6 0.80
SBSM+4 18 0.47 11 0.79
SBSM+5 9 0.82 14 0.78
SBSM+6 12 0.71 2 0.83
SBSM+7 13 0.70 4 0.82
SBSM+8 3 0.86 7 0.80
SBSM+9 7 0.84 3 0.82

Table 4.3: SBSM Summary of Evaluation using Miller and Charles (1991) Data Set
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Pearson’s Spearman’s
Resnik Correlation Correlation

Rank Coefficient Rank Coefficient
SBSM×1 11 0.75 17 0.78
SBSM×2 3 0.90 11 0.85
SBSM×3 17 0.53 3 0.87
SBSM×4 10 0.78 18 0.77
SBSM×5 2 0.91 8 0.86
SBSM×6 4 0.88 1 0.89
SBSM×7 5 0.88 5 0.86
SBSM×8 1 0.91 7 0.86
SBSM×9 15 0.70 12 0.84
SBSM+1 16 0.58 16 0.80
SBSM+2 7 0.84 15 0.83
SBSM+3 12 0.73 14 0.83
SBSM+4 18 0.52 4 0.87
SBSM+5 9 0.82 9 0.85
SBSM+6 13 0.71 2 0.88
SBSM+7 14 0.70 6 0.86
SBSM+8 6 0.87 10 0.85
SBSM+9 8 0.84 13 0.84

Table 4.4: SBSM Summary of Evaluation using Resnik (1999) Data Set

SBSM4 need no longer be considered as they are consistently improved bySBSM5,

SBSM6 andSBSM7.

Overall SBSM Performance Summary

In summary, SBSMs based on shape×, SBSM×s, generally produce better values than

SBSMs based on shape+, SBSM+s. Also, all SBSMs that adjustSBSM1 with infor-

mation about the semantics common between two senses improve the ranking order of

the word-pairs.

It seems that measuresSBSM1, SBSM×7, andSBSM9 can be disregarded due to

their poor performance. One may also choose to ignore measuresSBSM2, SBSM3

andSBSM4 as their results are regularly improved by normalisation oftheir multi-

pliers. This leaves measuresSBSM5, SBSM6, SBSM+7 andSBSM8 for further

consideration.
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Similarity Measure Parameter Evaluation

The effects that the parameters have on each measure are now evaluated. Only mea-

sures that thus far are deemed to produce reasonable resultsare considered here. Table

4.5 shows the relative effect that each parameter has on similarity measure2. The re-

sults were created by counting the number of instances wherea particular parameter

improved results from the SBSMs. If only 50% of the instanceswere improved, this

means overall the parameter did not improve results. For this reason, two results are

shown in the table; Firstly, the number of improved instances is shown, followed by the

overall improvement shown by using the parameter, calculated using equation 4.27.

improvement=
n− (m/2)

(m/2)
× 100 (4.27)

wheren is the number of improved instances, andm is the number of results consid-

ered.

Pearson’s Spearman’s
Correlation Correlation

Results improved by
normalisation of the final

35 of 45 40 of 45

values
56% Improvement 78% Improvement

Results improved by
considering layman 20 of 24 19 of 24
structures instead of the 67% Improvement 58% Improvement
full WordNet 1.6 structure
Results improved by
considering flattened layman

12 of 24
14 of 24

structures instead of the
No Significant

17% Improvement
full WordNet 1.6 structure

Improvement

Results improved by
considering flattened layman 3 of 21 6 of 21
structures instead of non- 71% Decline 43% Decline
flattened layman structures

Table 4.5: SBSM Parameter Evaluation Summary

The results in the top three rows of table 4.5 show that all theparameters tested

2Only where parameters are applicable.
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have positive effects over the basic similarity measures. Normalisation of the final

values has a consistent positive effect with most of the measures and in combination

with other parameters. Layman structures also improve results, especially when us-

ing non-flattened layman structures. The last row of table 4.5 suggests that flattened

layman structures have no significant advantage over non-flattened layman structures,

however in some cases the correlation difference between the two different techniques

for the same similarity measure is very close, suggesting that there is little significant

advantage for either technique in such cases. Further analysis is needed to determine if

flattened layman structures have any advantages.

Analysis of Scatter Graphs

Appendix B presents the scatter graphs produced by each of the selected SBSMs.

These scatter graphs indicate how well these measures perform compared to each other,

and whether they produce the desired characteristics. Theyalso give information about

which word-pairs are constantly assigned poor similarity so they may be investigated

further.

The spread of values forSBSM5, SBSM×6 andSBSM8 are quite tight and show

a reasonably linear association to the human judgements. However, the spread of val-

ues forSBSM+6 andSBSM+7 is more sparse. The result of this sparseness in the

scatter graphs can, in part, account for the lower Pearson’scorrelation. By using a

function of the values produced from the similarity measures, the distribution of the

values in the scatter graphs may be improved. Figure 4.14 shows the results of raising

the results ofSBSM+7, using layman structures and normalised results, to the power

of 15. The values ofSBSM+7 are raised by a power as the original distribution shows

a logarithmic association to the human judgement values. The power of 15 was chosen

by considering the resulting line of best fit, produced usinglinear regression for the

values, to more closely match the line of best fit for the scatter graph produced by the

human values against word-pair. A line of best fit has been added to the figure to show

the resulting trend for the data.

The result of raising the results fromSBSM+7 by a power of 15 improves the

Pearson correlation of the results to 0.85. However, the rank correlation is not changed

as the relative rank order of the similarity values remains constant, as intended. This

raises the question of the suitability of using Pearson’s correlation results to evaluate
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Figure 4.14: Result of raising similarity values fromSBSM+7

the overall performance of similarity measures, especially given the abstract nature of

the task for a human to assign a similarity value to a word-pair. For a human to order

word-pairs according to similarity seems natural. However, the subjective nature of

assigning similarity values may make these values less suitable for objective evaluation

of similarity measures. For instance, what does a similarity value of 1.5 in a scale of 0

to 4 mean?

The SBSMs presented in this chapter were created by considering different ways

of using information within a lexical taxonomy to evaluate similarity between nouns.

However, more consideration can be made about the values produced by the SBSMs.

Such a technique of adjusting values to improve Pearson’s correlation with human

judgements can be used to fine tune the values produced by the SBSMs; however this

is unnecessary as this does not necessarily change the performance on the specific

tasks for which these measures may be used. Indeed, the need to adjust the similarity

values is dependant on the task for which the measures will beused. For instance, the

WSD system presented in chapter 6 uses a similarity measure to detect if two nouns

are similar to each other, and therefore only requires a boolean result calculated by

detecting if the similarity between two nouns is above a predefined threshold. Whilst

the threshold is dependant on the values produced by the measure, changing the initial

distribution of the values will not change the performance of the measures in this case,

as long as the threshold used is also changed accordingly.

In general, where the SBSMs consistently give poor similarity values for a word-

pair, it can be seen that the values assigned are generally pessimistic (i.e. low). Specific
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word-pairs that consistently show poor results can be assessed to explain the poor val-

ues. The information in WordNet’s lexical taxonomy used by the SBSMs to assess

the similarity for each of the word-pairs has been analysed to determine if sufficient

information is available to adequately calculate similarity, or if poor results can be ex-

plained by considering potential missing information. Thefollowing list presents the

word-pairs that consistently show poor values for all selected SBSMs, and the most

likely reasons that these poor value assignments arose according to WordNet’s tax-

onomy. If reasons are left empty, no obvious answer was foundsolely considering

WordNet’s taxonomy:

Forest, Graveyard There is no information that “forest” is a place or location in a

similar way to “graveyard”, therefore the MIS between the two words is “object”.

Food, Rooster There is no information in the hypernym taxonomy of rooster that

rooster is a kind of food. However, the meronym structure forrooster makes

reference to rooster being part “chicken meat”, which in turn has food in its hy-

pernym structure. Therefore to make use of this relation themeasures would also

need to make use of the hypernym structures of all meronyms ofa word sense.

Cemetery, Woodland This situation is identical to forest and woodland, where ceme-

tery is a synonym of graveyard, and woodland is a synonym withone of the two

senses of forest according to WordNet 1.6.

Shore, VoyageAn association between shore and voyage would require semantic re-

lations other than hypernymy and meronymy.

Furnace, Implement

Car, Journey The similarity between “car” and “journey” comes for information about

how both concepts relate to each other in the real word, i.e. “journey#1” requires

“transport#1” and “car#1” is a “transport#1” via its hypernym structure therefore

the two are related. However, this information is not considered for semantic

similarity.

Cemetery, Mound Again, the relations that make an association between the word-

pair possible are not available, therefore the similarity assigned is low.

Sage, Wizard
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Oracle, Sage

Furnace, StoveThe description in WordNet for furnace states that a furnaceis a heat-

ing device; however this information is not reflected in furnace’s hypernym struc-

ture.

Comparison with other Similarity Measures

A number of existing similarity measures have been tested with the word-pairs used

for this evaluation. Budanitsky (1999) gives results for 5 similarity measures using the

Rubenstein and Goodenough (1965) and the Miller and Charles(1991) word-pairs:

• St-Onge (1995); Hirst and St-Onge (1998)

• Jiang and Conrath (1997)

• Leacock and Chodorow (1998)

• Lin (1998a, 1997, 1998b,c)

• Resnik (1995a,b, 1999)

Using the results presented by Budanitsky, and results calculated for the Wu and Palmer

(1994) similarity measure, Pearson’s and Spearman’s correlation coefficients are cal-

culated for each of the algorithms and compared to the results ofSBSM×5, SBSM×6

andSBSM×8 with layman structures and normalised results. The Jiang-Conrath mea-

sure produces negative correlation as it measures semanticdistance as oppose to simi-

larity. The results are shown in Table 4.6. From the current results, the chosen SBSMs

correlate more closely with human results using both Pearson and Spearman correla-

tion techniques.

Human Judgement Comparison Conclusions

Whist the product-moment coefficient forSBSM×5 andSBSM×8 comes close to the

upper target of 0.9, there is still room for improvement for the similarity values pro-

duced bySBSM×6. In general, values from the SBSMs are reasonably good. How-

ever, it seems that the order in which the SBSMs rank the word-pairs contains some
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Rubenstein & Miller &Similarity
Goodenough Charles

Resnik
Measure

Pearson Spearman Pearson Spearman Pearson Spearman
Wu &
Palmer

0.827 0.805 0.810 0.786 0.806 0.824

Hirst &
St−Onge

0.786 0.767 0.744 0.735 0.775 0.793

Jiang &
Conrath

-0.781 -0.712 -0.850 -0.813 -0.861 -0.840

Leacock &
Chodorow

0.834 0.783 0.816 0.766 0.829 0.818

Lin 0.819 0.777 0.829 0.782 0.860 0.840
Resnik 0.778 0.753 0.774 0.749 0.803 0.806
SBSM×5 0.867 0.799 0.873 0.782 0.908 0.857
SBSM×6 0.808 0.799 0.839 0.833 0.884 0.894
SBSM×8 0.864 0.783 0.879 0.788 0.914 0.858

Table 4.6: Comparison Between Existing Similarity Measures and the Best SBSMs

errors. The SBSMs show a significant improvement over other existing similarity mea-

sures. Results for all of the human judgement comparison, including all scatter graphs,

are contained in Appendix B.

4.5.2 Disambiguation Words Against Thesaurus Entries

The second evaluation of the SBSMs is performed using a system to disambiguate the

nouns contained in thesaurus entries. This provides a more application-oriented ap-

proach to evaluating similarity measures. The applicationof thesaurus entry labelling

was chosen as words in thesaurus entries are already semantically grouped by idea

(Rubenstein and Goodenough, 1965) and therefore provided anatural platform to test

similarity measures. A number of simple WSD algorithms are tested using the SBSMs

to disambiguate words contained in the entries of the Wordsmyth thesaurus. The best

combinations of WSD algorithm and SBSM are then compared against results from

Resnik’s WSD approach (Resnik, 1995a,b, 1999) on the Wordsmyth thesaurus. The

evaluation is split into the following sections:

• Developing adequate WSD algorithms.
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• Producing test data.

• Evaluation of the algorithms together with existing similarity measures and the

SBSMs.

• Comparing best results against the results provided by Wordsmyth.

WSD Algorithms for Labelling Thesaurus Entries

For the task of disambiguating the senses of nouns in thesaurus entries, an algorithm is

required which accepts a bag of nouns as input, and returns a list of senses per word and

the likelihood that each sense is correct for the given groupof nouns. Each of the WSD

algorithms presented below only makes use of semantic information to disambiguate

noun groupings. Their basis is that senses of a word similar to senses of other words

in the word group are likely to be the best candidates for mostclosely relating it to the

word group as a whole. Therefore the algorithms use the results of similarity measures

to increase support for senses of the nouns in the noun groups. The last two algorithms

attempt to improve results further by selectively increasing support only for certain

senses.

Two baseline algorithms are considered for the thesaurus labelling tests, selecting

the first sense of words and the Resnik algorithm for disambiguating noun groupings

(Resnik, 1995a,b, 1999). Three new WSD algorithms are also considered:

• A Greedy WSD algorithm is produced by calculating the sum of the similarity

for each word sense in the noun-group against all other word senses in the noun

group. This sum is then normalised using the sum of the similarity of each word

sense of a word, against all other word senses in the noun group. The algorithm

selects the sense for each word with the highest resulting value as the correct

sense for the word according to the noun group.

• The Exclusive Greedy algorithm is similar to the basic Greedy algorithm. How-

ever, for all word senses only similarity values greater than a predetermined pro-

portion of the highest similarity value assigned per word sense are considered.

The changes are made to avoid increasing support for the sense of a word when

the similarity detected between pairs is low in comparison to the highest similar-

ity detected for another of the word’s senses.
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• Again, the ‘Related Senses Only’ algorithm is similar to theGreedy algorithm.

However, for all word senses only similarity values greaterthan a specified

threshold are considered. The threshold is selected such that any word-pair with

a similarity above the threshold will be classed as related,and anything below

the threshold is considered sufficiently different not to besemantically related.

Therefore the algorithm only increases support when two word sense pairs are

significantly similar.

The thresholds for each similarity measure are calculated using a genetic algo-

rithm, trained with manually tagged Wordsmyth entries for the randomly se-

lected, reasonably polysemous wordsCar, Cat, Drink, Key, Line, Man andRe-

port, that maximises accuracy, where accuracy is calculated using 4.28.

Accuracy = (C +D)/N (4.28)

whereC is the number of correct word sense classifications,D is the number of

words correctly left unclassified andN is the number of words evaluated.

Appendix C gives the pseudo code for each of these new WSD algorithms. The fol-

lowing section describes how the noun groupings were collected from the Wordsmyth

entries.

Test Data

Test data is collected from the Wordsmyth thesaurus. Noun entries were selected from

a randomly generated set of 214 nouns. From these 214 noun entries, all isolated nouns

are extracted to form the noun group for the thesaurus entry.Only entries containing

more than one noun are used for the test, reducing the number of main words to 62,

producing a test set of 1365 nouns in 186 thesaurus entries. The extracted nouns in the

noun groups were manually sense labelled with all applicable WordNet senses for the

thesaurus entries to which they belong. When no applicable sense exists in WordNet,

no senses were given but the word is still considered during the evaluation. A copy of

the human classification is presented in Appendix D.

Finally, the results from the algorithms presented here arecompared to results of

Resnik’s algorithm (Resnik, 1999) for disambiguating noungroupings. This WSD al-

gorithm makes use of Resnik’s information content based similarity measure (Resnik,
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1995a,b, 1999), created by bootstrapping statistical information to WordNet’s lexi-

cal taxonomy. This evaluation uses the Wordsmyth thesauruscontaining experimental

links to WordNet calculated using the Resnik WSD algorithm (data supplied by Dr.

Robert Parks via personal communication). The data used wasautomatically gener-

ated and has thus far not been formally evaluated against human judgements. Also,

not all nouns for each thesaurus entry used are labelled withWordNet senses, although

given the description of Resnik’s technique it is assumed that all nouns in the thesaurus

entry were used as input for the WSD algorithm. This is likelygiven the number of

examples where only one noun is labelled, due to the fact thatthe WSD algorithm he

presents requires at least one pair of nouns.

Evaluation of Noun Group WSD Techniques

The evaluation of the SBSMs is performed by testing the best SBSMs with each of the

WSD algorithms discussed earlier. Each test produces a number of statistics evaluating

different aspects of the system:

• Accuracy

The overall accuracy of a system evaluates the percentage ofcorrect sense classi-

fications and correctly unlabelled words over all words in the test. The equation

is given in 4.29.

Accuracy = (C +D)/N (4.29)

whereC is the number of correct word sense classifications,D is the number of

words correctly left unclassified andN is the number of words evaluated.

• Precision

Precision evaluates the percentage of correct decisions made by a classifier over

all classifications made by the classifier. The equation is given in 4.30.

Precision = C/Z (4.30)

whereC is the number of correct word sense classifications andZ is the number

of words classified.

• Recall
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Recall evaluates the ratio of test words with adequate senses in WordNet cor-

rectly disambiguated by a classifier, as given in 4.31.

Recall = C/M (4.31)

whereC is the number of correct word sense classifications andM is the number

of words with at least one adequate sense according to WordNet.

• No Sense Accuracy

The number of words with no sense correctly left unlabelled by the classifier is

evaluated to see how well systems can detect when no adequatesense exists in

WordNet. This is of interest because using information about all word senses for

a word group may introduce relationships between words not normally consid-

ered by humans for particular thesaurus entries. The equation is given in 4.32.

NoSenseAccuracy = D/(N −M) (4.32)

whereD is the number of words correctly left unclassified,N is the number of

words evaluated andM is the number of words with at least one adequate sense

according to WordNet.

• Average number of senses considered

Lastly the average number of senses considered by a system isof interest. Senses

considered by a system are defined as the senses given supportgreater than zero.

Note that only the best scoring sense is selected. The equation is given in 4.33.

Ave.SensesConsidered = S/W (4.33)

whereS is the total number of word senses considered by the classifier andW is

the number of words classified by the classifier.

The tests are performed using SBSMs and the Wu and Palmer similarity measure with

the following parameters:

• shape×

• Non-flattened Layman Taxonomies
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• Normalised Measures

• Meronyms are not considered

Tables 4.7, 4.8, 4.9, 4.10 and 4.11 present the results of theevaluation statistics

grouped by WSD algorithm. Table 4.7 and results using the Wu and Palmer similarity

measure are used as baselines.

Accuracy Precision Recall No Sense Ave No Senses
57.87% 57.87% 64.91% 0% 1

Table 4.7: Results for Wordsmyth Thesaurus Labelling Evaluation for Selecting the
First Sense for each Word

Measure Accuracy Precision Recall No Sense Ave No Senses
Wu

& Palmer
83.41% 82.88% 90.11% 28.31% 2.32

SBSM×1 83.21% 82.68% 89.89% 28.31% 3.37
SBSM×2 83.47% 82.95% 90.18% 28.31% 2.55
SBSM×3 81.97% 81.40% 88.50% 28.31% 2.38
SBSM×4 82.95% 82.41% 89.6% 28.31% 2.52
SBSM×5 84.32% 83.83% 91.14% 28.31% 2.52
SBSM×6 83.41% 82.88% 90.11% 28.31% 2.47
SBSM×7 83.47% 82.95% 90.18% 28.31% 2.50
SBSM×8 84.85% 84.37% 91.72% 28.31% 2.55
SBSM×9 80.60% 79.99% 86.96% 28.31% 2.93

Table 4.8: Results for Wordsmyth Thesaurus Labelling Evaluation using the Resnik
WSD Algorithm
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Measure Accuracy Precision Recall No Sense Ave No Senses
Wu

& Palmer
81.06% 80.76% 87.03% 31.93% 3.36

SBSM×1 75.18% 74.39% 80.88% 28.31% 3.70
SBSM×2 84.00% 83.82% 90.33% 31.93% 3.36
SBSM×3 82.30% 82.05% 88.42% 31.93% 3.36
SBSM×4 81.97% 81.71% 88.06% 31.93% 3.36
SBSM×5 84.39% 84.23% 90.77% 31.93% 3.36
SBSM×6 82.50% 82.26% 88.64% 31.93% 3.36
SBSM×7 82.04% 81.78% 88.13% 31.93% 3.36
SBSM×8 84.65% 84.5% 91.06% 31.93% 3.36
SBSM×9 80.60% 79.99% 86.96% 28.31% 3.70

Table 4.9: Results for Wordsmyth Thesaurus Labelling Evaluation using the Greedy
WSD Algorithm

Measure Accuracy Precision Recall No Sense Ave No Senses
Wu

& Palmer
84.91% 84.93% 90.40% 39.76% 1.76

SBSM×1 78.58% 77.84% 84.40% 30.72% 2.87
SBSM×2 80.08% 80.11% 84.98% 39.76% 1.35
SBSM×3 82.69% 82.56% 87.77% 40.96% 1.43
SBSM×4 81.91% 81.98% 86.96% 40.36% 1.55
SBSM×5 85.76% 85.86% 91.21% 40.96% 1.62
SBSM×6 84.39% 84.60% 89.74% 40.36% 1.92
SBSM×7 83.41% 83.49% 88.57% 40.96% 1.87
SBSM×8 85.11% 85.17% 90.48% 40.96% 1.57
SBSM×9 78.58% 77.95% 84.69% 28.31% 1.30

Table 4.10: Results for Wordsmyth Thesaurus Labelling Evaluation using the Exclu-
sive Greedy WSD Algorithm
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Measure Accuracy Precision Recall No Sense Ave No Senses
Wu

& Palmer
83.08% 86.76% 85.42% 63.86% 1.70

SBSM×1 82.36% 87.18% 83.66% 71.69% 1.58
SBSM×2 84.65% 87.31% 87.69% 59.64% 1.90
SBSM×3 11.69% 72.22% 0.95% 100.00% 0.01
SBSM×4 79.75% 85.00% 81.39% 66.27% 1.56
SBSM×5 85.76% 87.63% 89.30% 56.63% 2.01
SBSM×6 82.95% 86.39% 86.01% 57.83% 1.81
SBSM×7 81.65% 85.90% 83.88% 63.25% 1.70
SBSM×8 84.78% 85.30% 90.11% 40.96% 2.71
SBSM×9 80.86% 81.68% 84.91% 47.59% 2.16

Table 4.11: Results for Wordsmyth Thesaurus Labelling Evaluation using the Related
Senses Only WSD Algorithm

Interpretation of Results

The results for the tests show much less variation in qualitythan the human judgement

tests presented previously, indicating that in general results are not greatly affected

by the similarity measure used. The only exception to this rule is for SBSM×3 with

the WSD algorithm that only considers related senses.SBSM×8, a hybrid measure

making use ofSBSM×1, marginally produces the best results using the Resnik and

Greedy WSD algorithms. Overall,SBSM×5 consistently produces the best results

with the two selective WSD algorithms.

Selecting the best WSD algorithm from the tests is not as straightforward as select-

ing the best similarity measure as a tie exists between the Exclusive Greedy algorithm

and the Related Senses algorithm when usingSBSM×5. Sorting the results of all al-

gorithms and measures by precision shows that the Related Senses algorithm regularly

produces more precise results, and as such more confidence can be placed on the results

of this algorithm. The Related Senses WSD algorithm also considers less senses per

word on average, therefore the Related Senses WSD algorithmwill be used to compare

results against other systems.
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Comparison with Wordsmyth Test WordNet Links

The results from the previous evaluation are compared to theaccuracy of Wordsmyth’s

experimental links to WordNet (provided by Dr. Robert Parksvia personal communi-

cation). These experimental links were created using results from Resnik’s Informa-

tion Content based similarity measure and WSD algorithm fornoun groups (Resnik,

1995a,b, 1999). In order to compare the results, the experimental links in the same

Wordsmyth thesaurus entries used in the previous evaluation were extracted and com-

pared against the human classifications. Typically, only the links calculated for nouns

in the ‘SYN’ section of a thesaurus entry are given in the dataprovided, although it

is assumed that the inputs to the WSD algorithm follow a similar approach to that

used during the evaluation presented in the previous section. As only a small number

of links are given per thesaurus entry, precision and recallresults are recalculated for

the results obtained from the related senses algorithm withSBSM×5 considering the

same nouns. The results of both WSD algorithms are given in table 4.12. The poor

Precision Recall
Wordsmyth
Test Links

80.44% 71.26%

Related Senses
with SBSM×5

88.28% 90.94%

Table 4.12: WSD Comparison with Wordsmyth Experimental Links to WordNet

recall values for the Wordsmyth experimental links can be possibly explained by a lack

of training data for the information based similarity measure, although no evidence is

available for this. Comparing the two approaches shows thatusing WordNet’s taxon-

omy withSBSM×5 and the Related Sense WSD algorithm significantly improves over

the current Wordsmyth test links.

4.6 Further Work

A number of areas are considered for extending the work presented in this chapter.

These can be grouped into four categories:

1. Improvement of evaluation techniques.
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2. Work to improve the similarity values assigned by the SBSMs.

3. Evaluation of the effect of considering additional information from WordNet,

for instance evaluating to what extend considering meronyms may assist in the

calculation of semantic similarity.

4. Complete Wordsmyth links to WordNet using the techniquespresented in this

chapter.

4.6.1 Improving Evaluation Techniques

Currently the data available to compare algorithm results with human judgements only

has a maximum of 65 human judgements. Whilst it can be shown that correlations

using the existing data sets are statistically significant,the current number of examples

may give biased results. Using a larger set of human judgements has a number of

features that are beneficial to making a more objective test:

• An increased number of word-pairs will make distinctions between the similar-

ity of word-pairs harder to judge by humans, especially if more word-pairs are

deemed similar rather than dissimilar.

• More word-pairs will reduce bias potentially introduced incurrent tests.

• A larger number of human judgements to compare with will produce a better

correlation estimate giving a more objective result.

4.6.2 Improving the Similarity Values Assigned by SBSMs

The current SBSMs have been created by considering how to make use of a lexical

taxonomy for evaluating semantic similarity between nouns. However, further consid-

eration can be given to the way in which similarity values will be distributed across

noun pairs of varying similarity (for instance, low, mediumand high similarity accord-

ing to the human judgement data sets). Section 4.5.1 gives a rather crude example of

how to improve the distribution of values produced bySBSM+7. However, in order

to fine tune the values produced by the SBSMs further investigation is required. The

example in section 4.5.1 improves results by adjusting values fromSBSM+7 such that

the lines of best fit produced by linear regression techniques on the values produced
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closer match the line of best fit for the human value judgements against word-pair rank.

This assumes that the line of best fit is linear between similarity value and similarity

rank.

For further fine-tuning of the SBSMs, a non-linear line of best fit should be calcu-

lated for the human similarity values with the Resnik (1999)data set against word-pair

rank. The Resnik data set is chosen for this task as it is the smallest data set and there-

fore results with the Rubenstein and Goodenough (1965) and the Miller and Charles

(1991) data sets should still be objective. This ensures that the technique does not fit

results to a particular test, thus artificially improving results. The values for all SBSMs

should then be adjusted such that the similarity values calculated for the Resnik data

set produce a line of best fit closely matching the human line of best fit. This will mean

that the values produced by the SBMSs across different ranking word-pairs will more

closely match the distribution of the values assigned by humans. The effect of this

adjustment should then be measured using the Rubenstein andGoodenough (1965)

and Miller and Charles (1991) data sets, and also using application-oriented evalua-

tion techniques. It is assumed that the resulting Pearson’scoefficients will be more

comparable across the different SBSMs after such a change. This would make the

Spearman’s rank coefficient a more objective test as it is notaffected by the adjustment

of the values. If this holds true, and if the adjustments madewhilst considering human

judgements improve results for other applications, such a technique will be applicable

for similarity measures as a way of fine-tuning their results.

4.6.3 Considering and Evaluating Further WordNet Relations for

Semantic Similarity Measures

Currently, the SBSMs can use the WordNet meronymy relationships to assist in the

calculation of similarity between two noun senses. However, due to the execution

times for WordNet to collect meronymy information for a nounand the experiments

used, this feature of the SBSMs remains to be evaluated. Suitable techniques are firstly

required to increase the speed of searching for meronyms.

Other WordNet relationships should also be considered further to evaluate their

usefulness in calculating semantic similarity. However, care must be taken in how such

relationships are applied as work has shown that using all relationships in an unguided

way can produce worse results (St-Onge, 1995; Hirst and St-Onge, 1998). An example
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of a further relationship being considered is to use hypernyms of a noun’s meronyms

as a source of information from which to calculate semantic similarity.

4.6.4 Complete Wordsmyth Evaluation

Automatically disambiguating all noun entries in Wordsmyth does not pose a large

amount of extra work. However, the human disambiguation of the words necessary

to produce precision, recall and accuracy results for the verification of the automatic

process requires additional time.

4.7 Summary

This chapter has introduced a number of ideas fundamental tosimilarity measures

based on the general shape of lexical taxonomies (SBSMs), using WordNet as the

source for the required taxonomies.

Initial tests comparing the new SBSMs to human judgements give results which

compare well with other existing similarity measures. However, larger number of hu-

man judgements should be obtained in order to further substantiate this evaluation. It

is also shown that using Pearson’s Product Moment Coefficient may not be the best

correlation coefficient to compare different similarity measures as the technique is too

sensitive to the values of similarity assigned. It is arguedthat the relative ranking of

word-pairs according to similarity is of more interest as values from similarity mea-

sures can be adjusted after they are calculated, and becausethe human assignment of

values is subjective in its nature. Therefore correlation using Spearman’s Rank Co-

efficient may be more suitable for comparing different measures. This is especially

true when values from measures are not normalised between a range of values. The

evaluations show that SBSMs come close to matching human performance and as such

they show an improvement over current state-of-the-art measures at simulating human

decisions about similarity between words.

A final more application-orientated approach to evaluatingthese SBSMs is used to

evaluate the similarity measures with a number of simple WSDalgorithms for use with

noun groups. The evaluation uses nouns contained within Wordsmyth thesaurus entries

to test the disambiguation performance of the different WSDalgorithms and SBSMs.

The best results are also compared with a collection of experimental links created using
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Resnik’s Information Based similarity measure and WSD algorithm (Resnik, 1995a,b,

1999), summarised in table 4.13. The results of the final comparison show a marked

Precision Recall
Wordsmyth
Test Links

80.44% 71.26%

Related Senses
with SBSM×5

88.28% 90.94%

Table 4.13: WSD Comparison with Wordsmyth Experimental Links to WordNet

improvement over the information based approach by using a SBSM with a WSD

algorithm considering only related senses of words for classifying the senses of nouns

in Wordsmyth thesaurus entries.
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Chapter 5

Introduction to Word Sense

Disambiguation

The field of Word Sense Disambiguation (WSD) has been of considerable interest since

the early stages of natural language processing (NLP) (Ide and Véronis, 1998). WSD

aims to provide a sub-component, in general for other NLP applications, to automati-

cally relate words in text with definitions according to one or more lexical resources.

Once a WSD system determines a single word sense for a word, that word is said to be

sense tagged, or sense labelled. Thus, most research treatsWSD as an “intermediate

task” (Wilks and Stevenson, 1996; Gonzalo et al., 2003) in some larger NLP process.

Research on WSD, given the length of time it has been undertaken, has had lim-

ited success. WSD has been considered an AI-complete problem (Gale et al., 1993),

meaning that it presupposes a solution to the “strong AI problem”, i.e. the simula-

tion of human intelligence, and therefore can only be solvedonce all other difficult

problems in AI have been tackled. Improvement in the representation of knowledge,

especially with the emergence of recent semantic networks and corpora of sense la-

belled text, such as WordNet and its associated corpora, resulted in WSD becoming a

more tractable problem. This is illustrated by the increasein the number of techniques

since the 1990s when public resources such as WordNet becamemore available. In-

deed, the field of WSD has also grown in prominence, and “is frequently cited as one

of the most important problems in NLP research today” (Ide and Véronis, 1998).

This chapter initially describes how WSD helps other NLP tasks. Section 5.2

presents a brief history of work particularly important to WSD, giving particular promi-

nence to some of the most influential techniques. A number of techniques of interest in
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relation to the work described in chapter 6 are introduced insection 5.3. Finally, given

the increased activity during the 1990s in the field of WSD, a gold standard evaluation

framework called SENSEVAL was introduced in order to help researchers objectively

compare results from different systems in a standard accepted way. Section 5.4 gives

details of the various SENSEVAL conferences, showing how evaluation of WSD is

performed.

5.1 How WSD can Help other WSD Problems?

The disambiguation of word meanings in texts is believed to be fundamental to improve

results within the following applications of NLP:

• Machine Translation (MT)

• Information Retrieval (IR)

• Content and Thematic analysis

• Parsing

• Speech Processing

Early research within these fields, particularly with MT, resulted in the emergence of

WSD, although for a long period the majority of the WSD research was performed

as part of larger projects. Within each field, the polysemy ofwords is seen as one of

the major factors influencing the results from the techniques implemented. This early

work was able to place restrictions on domains and granularity of the resources used,

and in some cases quite accurate results were produced.

5.1.1 Machine Translation (MT)

A central issue in translation is selecting the correct wordin a target language to reflect

the intended meaning in the source language. This is a consequence of different sense

distributions of words in the source language to those of thetarget language, and gives

rise to various definitions of a word being realised by different words in the target lan-

guage, for instance the Portuguese word “sentido” can be realised by any of “meaning”,
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“sense”, “side”, “direction” or “feeling” in English. The accuracy from current state-

of-the-art WSD systems means that they are not widely used bycurrent MT systems

given alternative approaches. Whilst most modern translation systems make use of sta-

tistical information from bilingual resources in order to side-step the need to explicitly

use WSD, such resources are limited and unavailable for a number of languages, such

as sign languages which currently have no widespread written form. It is “abundantly

clear to all in MT that word sense ambiguity is a huge problem”(Kilgarriff, 1997).

5.1.2 Information Retrieval (IR)

Most classic IR techniques find information by matching words in documents, however

this produces two significant problems:

1. Synonymy has the consequence that more than one word may reflect a particular

concept of interest. Without considering synonyms of a word, appropriate doc-

uments may be missed during a search. These situations mean that recall drops

for word-form based techniques.

2. Given the polysemy of words, if a match is based on word-form there is no

guarantee that all matches found reflect the intended meaning of the word. Such

situations reduce the overall precision of these techniques.

A number of researchers have evaluated the impact the use of WSD has on IR tasks

(Weiss, 1973; Salton and McGill, 1983; Salton and Buckley, 1989; Voorhees, 1993;

Schütze and Pedersen, 1995; Towell and Voorhees, 1998). Results have been mixed,

showing that WSD could improve results for IR by at least 1%, and in some cases by

up to 14%. Given the current performance of state-of-the-art WSD techniques, actual

findings so far have been fairly discouraging (Kilgarriff, 1997), and in many cases

results actually declined. Thus, some have concluded that whilst WSD has the potential

to improve accuracy, “the performance of IR systems is insensitive to ambiguity but

very sensitive to erroneous disambiguation” (Sanderson, 1994).

5.1.3 Content and Thematic analysis

A number of content and theme tagging approaches make use of aset of words whose

distribution is analysed in order to classify them against pre-defined categories. It has
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long been believed that WSD can improve results (Quillian, 1967; Litkowski, 1997) so

that words are only considered when used in a pre-determinedsense. The problems

faced here are related to problems faced by the IR community.

5.1.4 Parsing

Of interest for parsing techniques is the use of WSD to tacklea number of problems,

such as determining the gender of a noun in Latin-based languages where the word

can be either male of female depending on its sense. WSD is particularly important

for agreement phenomena and prepositional phrase attachment for verbs (Jensen and

Binot, 1987; Whittemore et al., 1990; Hindle and Rooth, 1993; Alshawi and Carter,

1994).

5.1.5 Speech Processing

A characteristic of words that creates a large problem for speech recognition systems

is homonymy, when words are pronounced in the same way but arespelt differently. A

classic example of this is seen in the sentence:

“Write to Mr. Wright right away.”

WSD assists speech recognition systems by only presenting for consideration the defi-

nitions of the different words and selecting the word with the most likely sense within

the context it is found.

5.2 Historically Important Events in WSD

WSD research emerged from various fields of NLP, and for a longperiod of time the

majority of WSD research was performed as part of larger projects, often placing re-

strictions on domains and granularity of the resources used, but able in some cases to

give very accurate results. In the 1960s, work appeared where WSD was studied in iso-

lation, although due to a lack of resources, many examples ofsuch early work produced

very limited hand-tailored systems (Weiss, 1973). Hirst (1987) gives a comprehensive

review of these early systems. Once more suitable resourcesbecame available for

large-scale WSD to be possible, many of these early systems did not scale-up well to
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larger systems and there was a significant shift from producing hand-tailored systems

to systems making use of automatically collected information. Ide and Véronis (1998)

give a comprehensive review of the history of WSD and the openproblems that face the

field of WSD. The most recognised problems facing WSD are involved with the col-

lection and representation of information. These range from the “lexical-bottleneck”

problem, where researches are unable to collect large enough quantities of hand la-

belled examples, to issues about handling different domains or limiting the domains

considered and the granularity to which sense distinctionsare made in lexicons.

The remainder of this section introduces some historic events and techniques in

the field of NLP, from early work in MT, to the development of recent systems using

information collected from corpora to assist WSD.

5.2.1 Early Machine Translation (1950s)

The earliest examples of word polysemy becoming a real issuein NLP began in early

work of MT field. Hutchins (1997a,b) discusses the pioneering work in MT, much of

which was limited to technical texts from restricted domains. During this period, a

number of key ideas were established which persist today. Probably one of the most

influential ideas was that of context windows, first discussed in a memorandum by

Weaver (1949). In this memorandum, Weaver made the following statement relating

context to meaning, and giving a suggestion for a definition of context:

“If one examines the words in a book, one at a time as through an

opaque mask with a hole in it one word wide, then it is obviously impos-

sible to determine, one at a time, the meaning of the words. . .. But if one

lengthens the slit in the opaque mask, until one can see not only the central

word in question but also say N words on either side, then if N is large

enough one can unambiguously decide the meaning of the central word.

. . . The practical question is: ‘What minimum value of N will,at least in

a tolerable fraction of cases, lead to the correct choice of meaning for the

central word? ’”(Weaver, 1949)

This idea was exploited by various researchers over the subsequent years (Kaplan,

1955; Koutsoudas and Korfhage, 1955; Choueka and Lusignan,1985; Preiss, 2001).

Tests were performed with human subjects to find the smallestreasonable size for
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a context window. The results found that humans interpretedmeaning with context

windows of size N = 2 to an equal accuracy to when they had the entire sentence,

therefore concluding that N = 2 is an adequate size for a context window.

In addition to the idea of context window, Weaver’s memorandum also calls for

significant WSD work to be performed, making particular reference to his views of the

statistical nature of the problem of WSD, an idea that is still prevalent today in much

of WSD research.

Reifler (1955) is one of the first researchers to write about the link between syn-

tax and semantics, and the ideas of “semantic coincidences”between a word and its

context. He illustrates how the same words in German can express distinctly different

meanings according to the syntactic configurations in whichthey are used, such as in

gerund phrases, adjectival phrases or noun phrases. Later,Gougenheim and Michéa

(1961) presented similar ideas for French, in which the sense of the verb “grossir” is

determined whilst considering its syntactic complements.

Initial MT work recognised the difficulty in handling open-texts, therefore creating

resources to simplify the overall translation problem. By splitting texts into fields

of knowledge, or domains, such as physics, biology and economics for instance, the

problems posed by synonym and polysemy could be constrainedto some extent. Given

the recognised importance of domain in WSD for MT, efforts were made to create a

number of specialised lexicons for use in specific and limited domains (Oswald-Jr.,

1952). The entries in these lexicons only contained definitions relevant to the domain

of interest, and definitions for distinctions made during the translation between the two

languages for which they were constructed to be used. The resulting lexicons contained

no more than two-to-one correspondences between senses of the source and target

languages. Further to these specialised lexicons, techniques were investigated to create

richer knowledge representations for WSD. Most of the earliest work on knowledge

representations used inter-lingua approaches (Richens, 1958); for instance the earliest

implemented technique by Masterman (1957) for automatically creating a resource

using a Latin-English dictionary together with Roget’s Thesaurus that later developed

into the idea of semantic networks.

Some of the earliest studies on the phenomenon of polysemy were performed by

Harper (1957a,b), limited to texts within Physics and Science domains. He analysed

the polysemy of words in a Russian dictionary, reporting 8.6average polysemy and

that English and Russian words are 5.6 quasi-synonymous.
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Most early MT work stopped in the mid-1960s due to the withdrawal of funds in

the United States following the conclusion in a report by theAutomatic Language Pro-

cessing Advisory Committee (ALPAC, 1966) that MT had not improved since the early

1950’s (Hutchins, 1996). At this time there was a change of ideas in computational lin-

guistics away from statistics, most notably with the shift towards rule-based systems

as opposed to probabilistically based systems such as Chomsky’s ideas on universal

grammar and transformational rules of describing syntax promoted (Chomsky, 1957,

1965).

5.2.2 Artificial Intelligence Methods (1960-70s)

Some of the most important work to result from the considerable shift in paradigm

which the ALPAC report produced was the investigation into semantic networks and

symbolic approaches to organising lexical information. Masterman (1961) selected

100 primitive concepts from which to organise 15,000 entries in a dictionary. This ap-

proach was the first to represent words as nodes in a network, where the links between

words represent semantic relationships. These ideas were the precursors to modern lex-

icons such as WordNet. Using such semantic networks, Quillian (1961, 1962a,b, 1967,

1968, 1969) introduced ideas for WSD which were later developed to connectionist

models using spreading activation models (Meyer and Schvaneveldt, 1971; Collins and

Loftus, 1975; McCelland and Rumelhart, 1981) where ideas can still be found in some

more modern techniques such as Neural Network approaches (Cottrell, 1985; Hearst,

1991; Towell and Voorhees, 1998).

Wilks (1968, 1969, 1973, 1975a,b,c,d) introduced the highly influential “preference

semantics” approach for WSD, described as “essentially a case-based approach” (Ide

and Véronis, 1998). The preferences for combinations of lexical items are based on se-

mantic features and were defined using 60-80 semantic primitives, or ‘elements’. The

semantic primitives selected were influenced by work earlier performed by Master-

man. Although this technique was shown to successfully handle metaphor in language

amongst other examples, Boguraev (1979) later demonstrates that such an approach is

inadequate to handle highly polysemous verbs and attempts to improve Wilks’ method

using further linguistic information. Boguraev (1979) also links his approach to WSD

with syntactic disambiguation. Wilks’ approach still has alarge influence in recent

work on WSD, and has been recently revisited by Wilks and Fass(1990), McRoy
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(1992) and Resnik (1993, 1996, 1997).

A number of template-based approaches arose during the early 1970s. Weiss (1973)

approached the problem of WSD by testing a number of general context rules and

template rules. After limited testing, Weiss concluded that template rules produce

better results than general context rules for WSD. Templaterules were created based

on 20 instances of 5 words, and the accuracy of the WSD system was evaluated by

disambiguating a further 30 examples for each word. Resultsgiven are approximately

90% precision and recall for the examples tested. In a largerexperiment with 6,000

words, Kelly and Stone (1975) used a similar approach to Weiss, but also including

rules checking certain grammatical aspects of context. They concluded after using

various different approaches that “such a strategy cannot succeed on a broad scale”.

Hayes (1976) and Hirst (1987, 1988) introduced techniques using case frames in

combination with a semantic network to disambiguate sensesof words. The disam-

biguation process itself is similar to Quillian’s approach, where the context of a word

activates nodes in the network to find semantic paths betweenthem. This approach

worked well to disambiguate words at the homograph level. However, it was less suc-

cessful at finer grained levels of polysemy. Hirst’s approach progressively removes

inappropriate senses using “polaroid words”. One of the main aspects of his technique

was the inability to disambiguate any metaphorical interpretations of words as the po-

laroid words would eventually eliminate all available senses.

The main criticism of work from this era is that the systems worked on toy examples

that were often unnatural (Sanderson, 1996; Ide and Véronis, 1998). In the main,

this was due to the difficulty in finding varied and sufficiently numerous examples to

work with, otherwise known as the lexical-bottleneck problem, or more generally the

knowledge acquisition bottleneck problem (Gale et al., 1993). Given the level of effort

required to build practical systems using the ideas introduced, these techniques remain

theoretically interesting. However, they are of little practical use except in the most

limited domains.

5.2.3 Knowledge-Based Methods (1980s)

The 1980s marked a re-birth in statistical techniques following the introduction of

a number of significant machine-readable resources, such asLongman’s Dictionary

of Contemporary English (LDOCE) (Procter, 1978) and Collins English Dictionary
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(CED), Roget’s Thesaurus (Chapman, 1977) and WordNet (Fellbaum, 1998). This

stimulated the production of disambiguated corpora from which to collect statistical

information. Much debate exists about the exact number of senses necessary to de-

scribe all uses of a word, and the exact nature of how conceptscan be organised hier-

archically. Some problems are highlighted in the work presented in chapters 3 and 4,

namely to do with the actual organisation of data within WordNet. Regardless of these

debates, a large amount of work has been performed trying to harness the necessary

semantic information from the available resources. This work shows a marked change

from work in limited domains, or hand-crafted systems working with a small number

of examples, to a more ambitious approach of creating techniques attempting to disam-

biguate words in open-texts. Krovetz and Croft (1989) gave an account of some of the

most prominent machine-readable dictionaries (MRD) introduced during the 1980s.

Of the most influential methods introduced during this era for WSD is Lesk’s dic-

tionary overlap technique (Lesk, 1986). This technique calculates the overlap of words

in the dictionary definitions (or glosses) of the target word’s senses against the words

contained in the definitions of the context words. A scoring function based on the

co-occurrence of words in the definitions is used to determine the appropriate sense

of the target word by selecting the top ranking definition of the word. Lesk showed

results of 50%-70% accuracy using the Oxford Advanced Learner’s Dictionary of Cur-

rent English. The accuracy of his approach is highly sensitive to the exact wording of

the definitions in the lexical resource used. Many examples can also be found where

combinations of words cannot be classified, as they share no common words in their

definitions. Wilks et al. (1990) relaxed these problems by creating a network using

definitions from LDOCE and words commonly co-occurring withwords found in the

LDOCE definitions. This way, more semantically related words are available for an

approach similar to Lesk’s. The technique was evaluated using 197 sentences contain-

ing the word “bank”. Results of 45% accuracy for disambiguation at LDOCE’s fine-

grained sense distinctions (13 senses) of “bank” and 79% forthe more coarse-grained

sense distinctions (5 senses) of LDOCE are reported.

Véronis and Ide (1990, 1991, 1995) used a large neural network to disambiguate

text, creating the network using CED. The network links words with senses, and senses

are in turn linked with the words in their definitions, and from those words to their

senses, etc. . . . Ide gave results of 70%-85% accuracy on small experiments with vary-

ing parameters applied to the method. Sutcliffe and Slater (1995) tested the technique
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on a full text, and gave results of 72% accuracy in contrast to40% accuracy using

Lesk’s technique and CED with the same text.

LDOCE was widely used with later techniques (Guthrie et al.,1991; Cowie et al.,

1992; Demetriou, 1993) applying its additional information such as box and subject

codes, presented in the form of general primitives for each word. Later work has shown

that matching LDOCE box codes alone is insufficient for WSD (Braden-Harder, 1993).

In general, success for the LDOCE has been relatively modestcompared to the work

using CED. This may be due to differences in the average polysemy of words between

the two resources.

Whilst MRDs provide a rich lexical source of information from which to perform

WSD, it is recognised that further pragmatic information not included in MRD is re-

quired to further improve results. Thesauri organise information into groups of related

words and therefore provide a source of more general relationships between words.

Masterman (1957), as mentioned earlier, was the first to use Roget’s thesaurus for

WSD. Further examples of WSD with Roget’s thesaurus can be found (Patrick, 1985;

Yarowsky, 1992), the latter using 100 word contexts from a corpus of texts to create

word classes for words with common categories using information about the collected

contexts. Using Bayes’ Rule on probabilities calculated from Grolier’s Encyclopaedia

(10,000,000 words), the classes of new examples of polysemous words are calculated,

where the class is assumed to represent the sense of a word. Anaccuracy of 92% was

given for 12 words with an average polysemy of 3 categories according to Roget’s.

5.2.4 Corpus-Based Methods (1990-2000s)

The most recent work in WSD has involved empirically based techniques often at-

tempting to reduce problems posed by the lexical-bottleneck problem. The most suc-

cessful knowledge source to date, WordNet (Fellbaum, 1998), was created manually,

although a number of attempts have been made to automatically generate such re-

sources from available lexical resources (Michiels et al.,1980; Calzolari, 1984; Chodorow

et al., 1985; Markowitz et al., 1986; Byrd et al., 1987; Nakamura and Nagao, 1988; Kla-

vans et al., 1990; Wilks et al., 1990). Rather than creating large knowledge sources for

WSD, work turned to create WSD systems using information automatically “learned”

from corpora. A number of sense disambiguated corpora were created to aid this

research. Some examples are given in table 5.1. It is important to note that these
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resources are far smaller than corpora used for other statistical tasks due to the ef-

fort required in manually sense labelling them. The relatively small size of the avail-

Resource What was tagged?
Semcor (Landes et al., 1998) A varied subset of texts from the Brown corpus and the novel

“The Red Badge of Courage” containing 234,113 instances of
23,346 lemmas in passages were 103 manually tagged with
WordNet senses.

Semcor (Miller et al., 1993) 200,000 instances of 1,000 selected words were hand tagged
from subset of Brown corpus.

HECTOR (Atkins, 1993) The first example of creating a lexicon and sense tagged corpus
in combination. 300 “word types” (dictionary headwords) with
300 to 1,000 instances in a pilot version of the British National
Corpus (20,000,000 words) were tagged with senses from a lex-
icon created in tandem.

(Smeaton and Quigley, 1996) 8,816 instances of 2,304 lemmas from image captions were
tagged with WordNet senses.

DSO Corpus (Ng and Lee, 1996)192,800 sentences containing 120 selected nouns and 71 selected
verbs from a subset of Brown and Wall Street Journal corpora
were hand tagged with WordNet senses.

Cambridge University Press
(Harley and Glennon, 1997)

4,000 words were hand tagged against the senses of the Cam-
bridge International Dictionary of English (CIDE).

(Wiebe et al., 1997) 25 highly frequent verbs in 12,925 sentences from Wall Street
Journal Treebank corpus were hand tagged (Marcus et al., 1993).

(Towell and Voorhees, 1998) Over 12,000 instances of the noun “line”, the verb “serve” and
the adjective “hard” from the Wall Street Journal corpus were
hand tagged with WordNet senses.

(1998) Senseval 1 evaluation resources.
(2001) Senseval 2 evaluation resources.
Open Mind Word Expert
(Chklovski and Mihalcea, 2002)

An on-line resource provides an interface for users to add toa
sense tagged corpus with WordNet senses

Table 5.1: Examples of Sense Tagged Corpora

able corpora undermines the use of established statisticalapproaches in NLP for WSD

(Towell and Voorhees, 1998). Currently, the most accurate statistical systems in NLP

have been developed for speech recognition and part-of-speech (POS) tagging. Table

5.2 summarises the size and complexity of the resources usedfor some state-of-the-art

NLP systems. The task for WSD with WordNet would require statistical classifiers

to disambiguate a total of 121,962 words and 173,941 senses,therefore the size of an

adequate corpus would require a much greater number of examples than are currently

available for established statistical techniques to be adequately applied to WSD. With

the current level of storage capacity available, it is possible to collect such quantities
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Problem System Accuracy Ambiguity No of Examples
Speech (Rabiner and In the order of
Recognition Juang, 1993)

95% 625 triphones
1,000s of sentences

Corpora ofPOS tagging (Brill, 1991) 97% 64 POS tags
1,500,000 words

Table 5.2: Summary of Resources Used for Two State-of-the-Art NLP System

of information, however the effort required for the manual tagging of texts remains the

main bottleneck and it is unlikely that a suitably large corpus will be available in the

near future.

Systems developed during this period fall into one of the following categories of

techniques:

• Knowledge-based Techniques – These techniques make use of information solely

from lexical resources, such as the approach developed by Lesk and other tech-

niques created during the 1980s. Further techniques use lexical information to

measure similarity between words as a basis for WSD (Sussna,1993; Agirre and

Rigau, 1995, 1996; Li et al., 1995; Preiss, 2001). Levow (1997) gives further

discussion about knowledge-based techniques.

• Supervised Training Techniques – These techniques requirea tagged corpus of

examples from which to train the system to disambiguate words, such as (Bruce

and Wiebe, 1994; Ng and Lee, 1996; Lin, 1997; Wilks and Stevenson, 1997a,b,c,

1998b,c; Stevenson and Wilks, 1999, 2000; Ng, 1997; Stetinaet al., 1998). While

much work has been performed in producing such resources, itis believed that

the number of examples available is still too few to produce high quality results

using traditional statistical approaches for open-text WSD. However, the current

state-of-the-art WSD use supervised techniques.

• Unsupervised Training Techniques – Rather than requiring large quantities of

manually-tagged data, some research has attempted to trainsystems either to-

tally without tagged examples, such as (Yarowsky, 1995; Pedersen and Bruce,

1997), or only using a small tagged sample from which to gather further non-

tagged data for training (Hearst, 1991). These techniques have, in cases, made

use of information directly from the World Wide Web given thelarge corpus
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of information potentially available. However, techniques have so far produced

fairly modest results.

• Hybrid Techniques – Some techniques have approached the WSDproblem using

a combination of knowledge-based and statistical techniques in an endeavour

to improve performance by combining the strengths of these two approaches

(Karov and Edelman, 1996; Mihalcea and Moldovan, 1998, 1999, 2000).

Rather than seeing research becoming more standardised or approaches becoming

limited to a smaller set of techniques, the work undertaken during recent years ap-

pears to be more divergent, with researchers using an increasingly different number of

knowledge sources and evaluation techniques.

Gale et al. (1992a) are some of the first authors to discuss theproblem of evaluation

for WSD in depth. Toward the end of the 1990s, a number of otherresearchers turned

their attention to producing standard platforms for the evaluation and comparison of

WSD systems (Resnik and Yarowsky, 1997; Kilgarriff, 1998a,b; Véronis et al., 1998),

leading to the SENSEVAL conferences. These conferences produced a number of

resources on which to train systems and a standard platform for WSD systems to be

evaluated in various languages. These resources are known as the current gold standard

for WSD evaluation. This has allowed for techniques to be compared in an objective

way.

5.3 Recent WSD Techniques of Particular Interest

A number of WSD techniques are of particular interest to the research reported in chap-

ter 6 and have had an influence in the design of the WSD approachdescribed there.

Wilks and Stevenson (1997a,b,c, 1998b,c) and Stevenson andWilks (1999, 2000) ap-

proach the problem of WSD using a combination of results frompartial-taggers. Lin

(1997) uses a different definition of context to that typically found in the current litera-

ture, according to the thematic and syntactic information of a word, in order to improve

WSD performance. Lastly, Suárez and Palomar (2002) evaluate a number of common

statistical features using a Maximum Entropy (ME) model forWSD.
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Figure 5.1: Wilks and Stevenson (1997a,b,c, 1998b,c); Stevenson and Wilks (1999,
2000) Partial Tagger WSD System

5.3.1 Partial WSD Tagger Approach

In an approach first proposed for WSD by McRoy (1992), and later adopted by Ng and

Lee (1996) and Wilks and Stevenson (1997a,b,c, 1998b,c); Stevenson and Wilks (1999,

2000), a WSD system is developed using a combination of simple partial-taggers to tag

all words in a text using LDOCE word senses. In Wilks’ approach, a Brill POS tag-

ger (Brill, 1991, 1992) is initially used to restrict the senses considered for each word

to those comparable with the tagged word class, a technique now widely utilised in

WSD (Wilks and Stevenson, 1998a). In experiments, this initial step reduced around

87% of possible word senses. The system then uses three “weak” tagging methods

to either remove unlikely senses (filters) or to consider highly likely senses of a word

(partial-taggers). The remainder of this thesis shall refer to both types of taggers as

partial-taggers. The results of each partial-tagger are used as input to a learning algo-

rithm to find an optimum combination of the results from the partial-taggers in order

to produce a final solution. Figure 5.1 illustrates the complete system (Stevenson and

Wilks, 1999).

Pre-processing & POS Filter

Before any of the tagging modules are able to process text, the text is pre-processed

to mark ‘content words’, words with entries in the lexical resource being used. This
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module is composed of four components from the Sheffield University Information

Extraction system LaSIE (Gaizauskas et al., 1995); a POS tagger (Brill, 1991, 1992), a

named entity recogniser, a shallow syntax parser and a lexical lookup component using

the LDOCE.

The output from the pre-processing module is used by the POS filter to map each

of the content words to senses from their equivalent entry inLDOCE. Only the senses

of entries for the grammatical categories assigned by the POS tagger are retained.

Collocation Extractor

Wilks and Stevenson (1997a,c) give a limited discussion about using verb preposition

information as found in sub-categorisation frames and in LODCE example sentences to

disambiguate words. Using these frames and examples, a partial tagger is constructed

to restrict interpretations using Yarowsky’s one sense percollocation technique (Gale

et al., 1993; Yarowsky, 1993, 1995).

Dictionary Overlap

Cowie et al. (1992) introduce a similar approach to Lesk’s dictionary overlap technique

by applying a simulated annealing algorithm to the problem in order to make the tech-

nique more practical for full sentences. Their approach wasable to select senses from

up to1010 different combinations. The original algorithm was applied to WSD, giving

results of 47% accuracy to the sense level with LDOCE, and 72%to the homograph

level.

Wilks and Stevenson use an adapted version of the Cowie et al.algorithm, nor-

malising the influence each common word makes to the overall score of senses using

the length of descriptions. This avoids incorrectly preferring senses with longer defi-

nitions. They report an improvement in efficiency to 65% accuracy to LDOCE’s sense

level (Stevenson and Wilks, 1999), however these results are deemed not to be statis-

tically significant (Wilks and Stevenson, 1997c). A furtheradaptation to the original

algorithm was made in order to return a set of suggested senses.

Pragmatic Codes

The pragmatic codes from LDOCE can be used to restrict sensesby only selecting

senses associated with the most likely pragmatic code for the context in which it is
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found. A technique similar to Yarowsky (1992) is used to calculate the most likely

pragmatic code using a wide context window of 50 words to the left and right of the

word being tested, and is trained using a portion of the British National Corpus (BNC)

containing 14,000,000 words (Burnard, 1995). Using a voting system, results of 79%

of the available senses can be disambiguated.

Selection Restrictions

In a similar approach to Wilks (1972), LDOCE’s subject codesfor nouns, related to

each other via the hierarchical relations used by Bruce and Guthrie (1992), and gram-

matical links from the shallow parser are used with selection restrictions to constrain

word senses. All senses that do not break any of the selectionconstraints are consid-

ered further. In tests, 44% of words were correctly disambiguated using this approach

(Stevenson and Wilks, 1999, 2000).

Combining Results

The final module for WSD collects the results from the partial-taggers and selects a

final sense for each word. The TiMBL memory based learning algorithm (Daelemans

et al., 1998) is trained using a number of annotated examplesand the results from the

partial-taggers. The implemented module disambiguates new unclassified instances by

determining which training example is most similar to it. Incases where more than one

sense remains appropriate the first sense according to LDOCEis selected as the final

choice.

Evaluation Results

The system was evaluated using Semcor as a tagged corpus. As Semcor tags refer to

WordNet senses, SENSUS (Knight and Luk, 1994) was used to mapthe WordNet tags

in Semcor to LDOCE tags. Given significant gaps in the mapping, the final LDOCE

tagged corpus contained 36,869 words. The system was trained using 10-fold cross

validation over the entire corpus, producing results of 90%accuracy at the LDOCE

sense level and greater than 94% accuracy for its homograph level.
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5.3.2 Syntactic Local Context Based Approaches

The most explored definition for context in NLP for statistical classification is the idea

of context windows first discussed by Weaver (1949). He proposes that humans can

accurately make judgements for the meaning of a word using a window of words to

the left and right of the word of interest. A number of recent approaches make use of

syntactic relations and thematic grids as a basis for a definition of context, such as (Lin,

1997; Resnik and Diab, 2000; Green et al., 2001a,b). The question about syntactic

context can be seen in earlier work, such as in closing remarks of Lesk (1986). Lin

(1997) defines context using dependency relationships gathered from a dependency

grammar (Hudson, 1984; Mel’cuk, 1988). Such grammars relate words syntactically

using asymmetric binary links where one word is the head in the relation, the other

word is the modifier in the relation and the link represents a dependency relationship.

The local context for a word can be represented by any of the relationships using the

triple in 5.1.

{dependency relationship, word, position} (5.1)

This definition of local context is used by Lin for WSD by collecting local context

examples from a corpus to create a Local Context Database (LCD). For each local

context, the triple in the form such as 5.2 is stored containing information about words

related via a dependency relationship in a corpus of examples with the main word of

the local context (Dunning, 1993).

{word, frequency, likelihood} (5.2)

To disambiguate a new unclassified example,w, from a parsed sentence or text, all

local contexts ofw are collected and stored inLCw. The set of most likely selectors is

selected from the examples in the LCD using equation 5.3.

Selectorsw =

(

⋃

lc∈LCw

C(lc)

)

− {w} (5.3)

The wordw is tagged with the senses that is most similar toSelectorsw. All other

instances ofw are also tagged with senses implementing the “one sense per discourse”

theory (Gale et al., 1992b, 1993). Lin uses his own similarity based disambiguation

technique for measuring the similarity of the selectors andpossible senses of words.
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For evaluation, Lin constructed a system using the 25,000,000 word Wall Street

Journal corpus. A LCD was constructed consisting of a total of 354,670 local contexts,

all with likelihood ratio greater than a value selected arbitrarily, in this case 5. The local

contexts consisted of 1,067,451 words. The system was evaluated using the “press

reportage” section of Semcor consisting of around 2,000 words, and the algorithm was

only applied to nouns. Furthermore, three test conditions where evaluated:

1. The selection is correct ifsimilarity(sanswer, skey) = 1 (Strictest criteria)

2. The selection is correct ifsimilarity(sanswer, skey) ≥ 0.27 (Relaxed criteria)

3. The selection is correct ifsimilarity(sanswer, skey) > 0 (Weakest criteria)

The threshold for 2 was calculated empirically. Table 5.3 presents Lin’s the results.

Criteria System Accuracy
1 56.1%
2 68.5%
3 73.6%

Table 5.3: Accuracy of Lin (1997) WSD system

5.3.3 Maximum Entropy (ME) Approaches

There has recently been a marked increase in the use of ME statistical models for

WSD systems. A description of the ME framework is given in chapter 6. However, the

critical and most interesting aspects of ME for WSD involve the selection of features

used by the ME model. A feature is implemented using a binary feature function

returning 1 if the conditions specified by the function are true, 0 otherwise. Each

feature is allocated a coefficient, or weight, which the ME framework trains in order to

closely model a collection of prior probabilities collected from a corpus of examples.

Suárez and Palomar (1993, 2002), Dang and Palmer (2002) andKlein et al. (2002)

test a collection of different feature types designed to work using context defined as

a context window around the ambiguous target word. The features selected for the

analysis come from work produced by Ng and Lee (1996) and Escudero et al. (2000).
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Traditionally, features model every combination of the information shown in triple

5.4.

{word sense, example feature of interest, position} (5.4)

Suárez and Palomar propose an alternative approach designed to greatly reduce the

number of features present in the final model. Rather than create a feature for each

example of 5.4, all examples of interest for a word sense at particular locations are

gathered to form a set of examples of interest. This enables the creation of features

modelling combinations of tuple 5.5 as all information of interest is recorded in a single

set.

{word sense, position} (5.5)

The feature templates used to create features from corpus examples for the two types of

features are referred to as template-word and template-setrespectively. The templates

are then used to extract features of the following types:

• Template-Word

0-features

S-features

Q-features

Km-features

• Template-Set

L-features

W -features

B-features

C-features

P -features

0-features

0-features model information about the target word itself. For nouns and adjectives,

aspects of word morphology are modelled, such as capitalisation and quantification.

For verbs, additional aspects are modelled such as tense.
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S-features

S-features model words appearing at specific positions relative to the target word, for

instance if “red” appears to the left of “shirt” in an exampleand “shirt” is the target

word, anS-feature models the fact that “red” appears in location -1 relative to “shirt”.

Q-features

Q-features model the POS of words appearing in a 3-word windowaround the target

word. These features look similar toS-features where co-occurring words are substi-

tuted by their grammatical category.

Km-features

Words found appearing for at least1/m examples for a word sense are used to create

Km-features. The feature simply models the fact that such words frequently co-occur

with the target word.

L-features andW -features

L-features model the set of lemmas found at positions close tothe target word. Sets for

positions -3 words, -2 words, -1 word, 1 word, 2 words and 3 words around the target

word are collected.W -features model the equivalent information for content words.

These features return 1 if a lemma or a content word in a particular location belongs

to the set of lemmas or content words in the equivalent position.

B-features andC-features

B-features model the set of lemma collocations found at positions close to the target

words. Only sets for collocations found at positions (-2, -1), (-1, 1) and (1, 2) words

relative to the target word are collected.C-features are, again, the equivalent ofB-

features for content words.

These features return 1 in similar conditions toL-features andW -features, when a

collocation at a particular location belongs to the set of collocations found at equivalent

positions around the target word.
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P -features

Lastly,P -features model the set of POS tags found near the target word, at positions

-3 words, -2 words, -1 word, 1 word, 2 words and 3 words around the target word.

P -features return 1 when the POS tag found at a particular position around the

target word belongs to the set of tags for the equivalent position.

Analysis of Feature Types

Evaluation of the feature types was performed with a selection of 10 nouns and 5 verbs

using examples from the DSO corpus (Suárez and Palomar, 2002). Each classifier

was trained using 10-fold cross validation and the results for the best combination of

feature types was given for each word tested, shown in table 5.4. Work also showed

Word Senses Feature types Accuracy
Age (Noun) 3 SQ 74.3%
Art (Noun) 4 OLWBCP 64.1%
Car (Noun) 2 WSB 96.9%
Child (Noun) 2 LWBCQ 94.5%
Church (Noun) 4 OLWSBCQ 65.4%
Cost (Noun) 3 SCQ 89.7%
Fall (Verb) 6 OLWBCK3 85.9%
Head (Noun) 7 SQ 81.4%
Interest (Noun) 6 OLWSBCQ 68.3%
Know (Verb) 6 OLWSBCQ 48.8%
Line (Noun) 22 OLWBCK3 56.9%
Set (Verb) 11 OLWBCPK3 58.0%
Speak (Verb) 5 SQ 76.2%
Take (Verb) 19 LWSBC 40.8%
Work (Noun) 6 LWBCPK5 51.8%

Table 5.4: Results from (Suárez and Palomar, 2002) for BestCombinations of ME
Features

that using combinations of template-set feature functionsonly produces an average

drop in accuracy of 1.75% (0.99% for all words apart from “child” for which the most

drastic drop in accuracy occurred). The advantage of these template-set functions is

the large reduction in model complexity as fewer feature functions are generated. This
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results in a large reduction in computational time necessary for training the ME models.

Although results are not given,L-features andW -features are reported to produce

highly precise results with low recall, and O-features are deemed to be particularly

useful for verbs.Q-features andP -features are reported to favour the most frequent

sense of words, at the expense of less frequent senses.

One conclusion made by Suárez and Palomar (2002) is that more examples and

deeper syntactic data about sentences are required in orderto improve current WSD

techniques.

5.4 Gold Standards for WSD Evaluation

Towards the late 1990s efforts were made to create standard evaluation techniques

for WSD. Some previous cases can be found where researchers shared corpora and

resources, thus allowing results to be compared. However, most approaches to eval-

uation created ad hoc evaluation platforms using custom corpora with different sense

distinctions and in some cases evaluating different aspects of a technique. This was the

case even between closely related techniques, such as thosetechniques stemming from

Lesk’s “dictionary-overlap” approach (Lesk, 1986), wheremany researchers decided

to use different test sets (Wilks et al., 1990; Véronis and Ide, 1990, 1991, 1995). By far

the preferred evaluation technique is to measure the proportion of correct distinctions

made, otherwise known as the accuracy of the technique as shown in equation 5.6.

Accuracy = 100×
C

N
(5.6)

whereC is the number of correctly disambiguated words, andN is the total number of

words classified.

One problem with evaluating techniques with basic accuracycomes from situations

where a system returns probabilities for senses, and the correct sense may be assigned

a marginally lower probability to the sense selected via thealgorithm. Accuracy does

not give credit for near misses. Accuracy also does not account for situations where

more than one sense of a word could apply in the same context, for instance consider

“give” in “He gave his report to his superior”. Given the rather strict interpretation of

accuracy above, a number of alternative evaluation metricshave been proposed trying

to relax this strict interpretation (Resnik and Yarowsky, 1997). Most contemporary
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research still does not make use of these proposals, and the current gold standard for

WSD evaluation comes from the SENSEVAL conferences.

Work for SENSEVAL started in 1997, following the workshop “Tagging with Lex-

ical Semantics: Why, What and How?” held at the conference onApplied Natural

Language Processing. The goal was to produce and run a test toanalyse the strengths

and weaknesses of WSD techniques across a number of varying texts in a number of

different languages.

Two subsequent SENSEVAL exercises have been run, the first in1998 and the

second held at the Second International Workshop on Evaluating Word Sense Disam-

biguation Systems in 2001. A third exercise is planned for 2004.

5.4.1 SENSEVAL

The first pilot SENSEVAL experiment produced the essential elements necessary for a

gold standard evaluation technique:

• A task definition.

• A ‘Gold Standard’ dataset. This is defined to be a reproducible corpus with

manually labelled senses for each word. For such a corpus to be reproducible,

agreement between human annotators must be suitably high, therefore it is nec-

essary that all examples are tagged by at least 2 people. In practice, agreement

above 90% between human taggers was deemed as acceptable. Kilgarriff (1998a)

discusses this issue in greater detail.

• A framework for administering the evaluation to the highestlevel of objective-

ness. It was proposed that a sample of roughly 200 ambiguous words with man-

ually tagged examples in the corpus should be used as a test set for evaluation.

This would be a manageable quantity for human taggers to produce tagged cor-

pora each year (Kilgarriff, 1998b). The words are only released to test systems

once they are “frozen” in order to avoid fine-tuning the systems to the test set.

Furthermore, in order to compare systems tagging differenttypes of words, for

instance only nouns compared to all-words, or systems builtusing radically dif-

ferent approaches, such as supervised versus unsupervisedtechniques, consider-

ations must be made to ensure a “level playing field”.
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The corpus and dictionary used for SENSEVAL were both from the HECTOR project

(Atkins, 1993). The first Senseval chose only to test a selection of words, and not to

perform an all word evaluation of techniques. In total, 35 words were selected for the

evaluation, with 26 to 2,008 instances for 30 of the selectedwords available in the

corpus. The test corpus included 8,448 examples from which 41 tasks (15 nouns, 13

verbs, 8 adjectives and 5 indeterminate examples) were created for the 35 words. A

subset of 1,057 corpus entries for 4 words was re-tagged to ensure a gold standard for

the corpus. Final agreement of 95% precision between annotators is reported (Kilgar-

riff and Rosenzweig, 2000a). Mappings from the HECTOR senses to WordNet senses

were provided, although the mappings were typically many tomany and gaps existed,

therefore some information loss between the two resources is inevitable. Given this

mapping, an upper bound of 79% was calculated for WordNet based systems by map-

ping evaluation answers from HECTOR senses to WordNet senses, and back to HEC-

TOR senses and then calculating the agreement of the resulting senses. Kilgarriff and

Rosenzweig (2000b) note that given the high frequency of one-to-many relationships

between HECTOR and WordNet senses, WordNet based techniques “operate under a

severe handicap”, and thus comparison of their performancewill yield little objective

information.

In all, the first SENSEVAL test evaluated 16 English systems,2 French systems

and 1 Italian system. Systems were broadly split into two groups; supervised and

unsupervised taggers, and each were tested at 3 different granularity levels:

• Fine-grained – Only tags identically to those assigned by human annotations are

classed as correct.

• Mixed-grained – Mixed grained scoring gives full credit if atagged sense is

subsumed by the human judgement, and partial credit is givenif it subsumes the

human judgement.

• Coarse-grained – Sub-sense tags were ignored, therefore matches with human

judgements are taken at a much coarser homograph level.

In the event of systems returning multiple answers the (normalised) probability of the

correct answers returned are used as the score value added tothe result of evaluation.

Two main baseline techniques were also employed (although Kilgarriff and Rosen-

zweig (2000b) discuss a number of other baselines also considered); Lesk’s dictionary
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overlap (Lesk, 1986) to compare against unsupervised techniques and a Lesk-Plus-

Corpus method employing training examples together with dictionary definitions to

compare against supervised techniques. Results for the test are given in terms of pre-

cision (5.7) and recall (5.8).

Precision = (s/n) (5.7)

Recall = (s/m) (5.8)

wheres is the score of the system,n is the number of items classified by the system

andm is the number of items with classifications.

The results produced a number of conclusions for the systemstested:

• All systems tested gave improved results for the coarse-grained level compared

to the fine-grained sense distinctions and the relative performance of systems

tagging at fine-grained levels was equivalent for more coarse-grained sense dis-

tinctions.

• Supervised training techniques perform substantially better than unsupervised

techniques.

• Few systems outperform their Lesk baseline equivalent.

• The state-of-the-art for automatically disambiguating fine-grained sense distinc-

tions performs at around 77% precision and 82% precision at the coarse-grained

level.

The best performing systems from the evaluation were the supervised Durham WSD

system (Hawkins) and John Hopkins WSD system (Yarowsky) systems (Kilgarriff and

Rosenzweig, 2000a,b).

5.4.2 SENSEVAL-2

Whilst the scoring guidelines remained the same, SENSEVAL-2 introduced some changes

for the evaluation approaches of the first SENSEVAL test. Firstly, WordNet was se-

lected as the lexicon to provide the inventory of senses for evaluation, and a corpus was

created from a sample of the BNC, the Penn Treebank (Marcus etal., 1994) and from
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live web-pages for a web subtask. A newer version of WordNet (1.7) became avail-

able, where some changes were made given information resulting from the annotation

process of the SENSEVAL-2 resources. The use of WordNet was said to make the task

more difficult, highlighted by a 10% lower manual inter-annotator agreement than for

the original SENSEVAL.

The original SENSEVAL only evaluated systems using a 45 wordlexical selection

evaluation. However, SENSEVAL-2 also offered an all-word evaluation where systems

had to tag all words in 3 texts providing a total of 5832 running words, and a Japanese

to English translation task. A further difference was that SENSEVAL-2 did not provide

any manually tagged training data, as systems were expectedto use resources from the

public domain.

A total of 94 systems ranging across 12 languages were evaluated during the 2001

SENSEVAL-2 workshop. The two best performing systems showed a significant drop

to around 64% precision and recall for the fine-grained lexical sample test and around

64%-69% precision and recall for the all-word test, reflecting the difficulty that inter-

annotators had in manually tagging the corpus with WordNet senses. The best perform-

ing systems for English were hybrid systems from Mihalcea and Moldovan (2000) and

Yarowsky (2000), making use of multiple components and a variety of lexical infor-

mation, such as syntax for the latter system. Baselines alsoshowed a significant drop

in accuracy, resulting in many of the systems now being able to surpass their equiv-

alent baseline results. For Lesk-based baselines, this is probably an indication of the

differences in the suitability of dictionary definitions between HECTOR and WordNet.

As HECTOR typically contains longer definitions for senses,it may provide a better

information source for Lesk’s approach.

5.4.3 SENSEVAL-3

A further SENSEVAL evaluation is scheduled for 2004, with yet a greater number

of groups showing an interest. Few detailed descriptions have been released so far.

However, a number of additional tasks are being considered,such as sense labelling

WordNet glosses.
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5.5 Summary

A number of different phenomena of ambiguity in natural language have posed con-

siderable problems to many NLP tasks, such as MT, IR, Contentanalysis, Parsing and

Speech Processing. From the initial WSD work in the 1950s, the field has undergone a

number of changes in approach due to changing trends in NLP research and given the

provision of ever growing resources. Given the maturity of the field, successes have

been modest to date, and the techniques applied by differentresearchers can be seen to

be ever more divergent. Recent standardisation of evaluation approaches by the Sen-

seval conferences has aided development of the WSD field. Central to Senseval is the

provision of Gold Standard evaluation resources, including both material for the cre-

ation or training of WSD systems, and material for their evaluation. These resources

are in the form of a sense labelled corpus of examples, where the manual inter-tagger

agreement is ensured. The aim of the gold standard is to provide corpora with inter-

tagger agreement above 90%, meaning that the resources are reproducible by different

individuals thus making evaluation more meaningful and objective. Looking at the

other available sense tagged corpora, when evidence is available about inter-tagger

agreements, it is found that agreement is much lower than forthe Senseval resources,

for instance the Semcor and DSO corpora have an inter-taggeragreement of 57% (Kil-

garriff, 1998a).

Three WSD techniques particularly influential to the research presented in chapter 6

were introduced in section 5.3. The first of the three techniques created a WSD system

using a number of partial taggers (Wilks and Stevenson, 1997a,b,c, 1998c; Stevenson

and Wilks, 1999, 2000). This approach has the advantage of combining results from

several “weak” taggers to only consider the most confident decisions from each tagger.

This means that different aspects of a word’s context can be used in making a decision

about its meaning. The second technique discussed applies adifferent syntactically-

based definition of context to a WSD system (Lin, 1997). A related approach is intro-

duced in chapter 6, however instead of solely considering syntactic relationships, the

definition of context considers the semantic role of words (see section 6.2). Such a

definition is useful as it targets the words in the surrounding context that are related,

thereby avoiding noise introduced by other words in the surrounding context and con-

sidering fewer but more related words than a context window definition of context. A

third ME-based approach (Suárez and Palomar, 1993, 2002) is introduced to illustrate
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how the ME statistical paradigm is applied to the problem of WSD. Particular attention

is paid to the design of features, as such features form the basis of the statistical model.
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Chapter 6

Word Sense Disambiguation Using

Lexical Taxonomies and Syntactic

Context

A striking trend of current Word Sense Disambiguation (WSD)techniques discussed

in chapter 5 is the variation in the type of information used,in many cases achieving

little or no improvement. This variation is due to the use of multiple sources of infor-

mation publicly available and the variety of linguistic theories which can be exploited

in tackling at least part of the WSD problem. This chapter proposes a WSD system

employing a number of partial-taggers designed to confidently reduce the number of

senses being considered for words in an open-text, before finally making a decision

about remaining ambiguities using a statistical WSD component. During this process,

when only one sense remains under consideration for a word, the word is said to be

sense tagged or sense labelled. The majority of the chapter is dedicated to describing

the development of such a final WSD component within the Maximum Entropy (ME)

framework. This component uses a new definition of context designed to target the

information of interest for disambiguation of a word withinits surrounding sentence.

Section 6.1 introduces a new multi-tagger approach to WSD, making use of existing

theories. This new framework contextualises the research reported later in the chapter.

Given the available time it is not feasible to construct all necessary partial taggers,

therefore later sections are restricted to reporting the construction of a new statistical

WSD component. Whilst the reported test results evaluate performance in isolation of
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further techniques, it is intended that such a WSD system is used as the last stage in a

multi-partial-tagger approach. Section 6.2 details the definition of context considered

by the statistical WSD component, and section 6.3 shows how such a definition of

context with semantic similarity can be used to build a statistical classifier for WSD

using the ME framework. Test results are presented which illustrate how current results

could be used to reduce the cost of manual WSD. Section 6.4 details possible future

work and section 6.5 discusses the significance of this research.

6.1 Using Multiple Partial Taggers for WSD

Given the current accuracy of state-of-the-art WSD techniques, no single technique

can deliver the level of performance necessary for high quality WSD of open-texts.

High quality in this context is understood as being at least comparable to human inter-

tagger agreement. Defining such a baseline has posed a significant problem for WSD

researchers, with a low inter-tagger agreement of 57% (Kilgarriff, 1998a) between two

of the most used resources for WSD, Semcor (Landes et al., 1998) and DSO (Ng and

Lee, 1996). More recently, work for Senseval has produced gold-standard corpora for

WSD evaluation, producing around 90% inter-tagger agreement for a sample of the

Penn Treebank corpus (Marcus et al., 1993). In order to improve results, Wilks and

Stevenson (1997c, 1998c, 1997a) and Stevenson and Wilks (1999, 2000) used multi-

ple partial-taggers to reduce the number of senses under consideration for each word.

The final sense is assigned by considering results from each partial-tagger. We pro-

pose a similar approach using ideas from Gale et al. (1993), Yarowsky (1993, 1995),

and lexical theory to initially reduce the number of senses,coupled with a statistical

component to make informed judgements about the remaining senses. The possibility

is also available to use further partial-taggers, althoughconsideration must be made

about the order in which such taggers are applied. It is desirable to use more precise

techniques with the lowest coverage early in the WSD process, with later lower preci-

sion techniques giving maximum coverage. Thus the system has maximum confidence

about decisions it makes earlier, reducing potential errors by later techniques. By in-

corporating less confident techniques later in the WSD process, the system can evaluate

residual ambiguity once the more confident techniques have been applied and also en-

sure maximum coverage. The general framework for such a system is illustrated in

Figure 6.1. The pre-processing stage tags words with their part-of-speech (POS), and
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Figure 6.1: General Partial-Tagger WSD Framework

performs any further processing required for the partial-taggers. This initial stage is

important not only for preparing documents for processing by subsequent components,

but it is also the first stage in restricting senses for the system to consider by assigning

POS tags to words (Wilks and Stevenson, 1998a; Towell and Voorhees, 1998).

The framework illustrated in Figure 6.2 shows the collection of techniques pro-

posed as the minimum set of partial-taggers to constitute a complete WSD multi-tagger

system. In contrast to the approach taken by Wilks and Stevenson (1997a,b,c, 1998b,c);

Stevenson and Wilks (1999, 2000), where partial taggers areused in parallel to each

other and the final sense selection is made considering results from each of the taggers,

the approach here is more of a pipeline where each tagger incrementally reduces the

number of senses being considered. The techniques within the framework are applied

in the following manner:

1. One Sense per Collocation

Gale et al. (1993) and Yarowsky (1993, 1995) create a decision tree based WSD

system to tag common word collocations with the same senses,based on the

hypothesis that the senses of words in a collocation do not change across different

instances. The decision trees are structures used as classifiers for WSD. Each arc
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Figure 6.2: Proposed Minimal Set of Partial-Taggers for WSD

in the decision tree represents a decision that can be made given some input

stimulus, nodes within the tree represent different stagesin the decision making

process, and the leaf nodes of the tree represent the final decisions made by

the classifier. The work demonstrates 99% precision when tested with words

having two senses. However it has been questioned whether this hypothesis holds

for fine-grained sense distinctions in dictionaries such asWordNet. Martinez

and Agirre (2000) show that the hypothesis does not hold as well across genre

and topic variations, presenting results of 70% precision and low coverage with

similar corpora tests. They propose using topic and genre information as an input

parameter to the decision list in order to tune the results.

This technique (Gale et al., 1993; Yarowsky, 1993, 1995) could be tuned to only

consider decision lists producing highly confident resultswhen tested across cor-

pora with topic and genre variations in order to produce an adequate first partial-

tagger for the multi-tagger WSD technique.

2. One Sense per Discourse
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The one-sense-per-discourse hypothesis (Gale et al., 1992b) assumes that the

sense of a word remains highly consistent within a given document. Such a

hypothesis is useful for assigning senses to untagged instances of words that

have been tagged in other parts of a text, and in correcting errors made by WSD

systems within a document. Yarowsky (1995) gives examples of 10 words for

which this approach was tested with 37,232 instances. The results of the test

gave a total accuracy of 99.8% and showed that the technique was applicable

for 50.1% of each word’s occurrences (The technique is applicable to words

occurring more than once within a document).

Given the accuracy of this approach and the precision of the previous partial

tagger, an approach using this hypothesis can tag unlabelled instances of words

tagged elsewhere during stage 1. However, some care must be taken. A number

of the most frequent and ambiguous words, such as the verb “tobe”, regularly

violate this rule. Prior to such a rule being suitable for usein open-texts, the

set of words that consistently violate the one-sense-per-discourse rule must be

determined. Given that such words are likely to occur frequently, this should be

possible using existing sense tagged corpora. Once this setof exception words

has been found, the one-sense-per-discourse rule can then be confidently applied

to any word outside the exception set.

3. Using Selection Restrictions to Reduce Senses

Section 6.2 illustrates a number of ways in which the configuration of verbs and

their complements can be described, and how the noun complements of a verb

have an important role in the selection of senses for both theverb and nouns.

Such information can form the basis of a selection restriction tool. Data to create

such a system could come from information in a variety of sources, for instance:

• Information contained in dictionaries, or from dictionaryglosses, although

in some cases, such as WordNet, this information can be particularly weak.

• From resources such as the Levin Verb Classes (LVC) (Levin, 1993). There

is currently no link between the LVCs and WordNet synsets. However, a

technique has been proposed (Green et al., 2001a,b) that essentially links

the two resources in a task to tag verbs in a verb database.
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This technique is applied after the one-sense-per-collocation and one-sense-per-

discourse techniques in order to make any possible word sense reductions.

4. Repeat One Sense per Discourse.

Partial-tagger 2 is applied again to make further possible reductions to the docu-

ment’s ambiguity.

5. Final Statistical Sense Discrimination Tool.

At this stage only one further tagger is considered. The purpose of such a tagger

is to make the final decision about the correct sense of a word,given any residual

ambiguity. Given the body of work available, a large number of techniques can

be used as shown in the previous chapter and by the Senseval work. Currently

the best results are attained by supervised learning techniques. The main topic

for the remainder of this chapter is a new statistical technique to be used for the

final selection of the word sense.

6. Repeat one sense per discourse.

Finally partial-tagger 2 is applied once more to make any last possible reductions

to the document’s ambiguity, if any words are left ambiguous. At this stage,

the one-sense-per-discourse theory can also be applied to correct erroneously

assigned sense tags. By examining each word within the text that are not part

of the one-sense-per-discourse exception list, if senses are inconsistent, the most

frequently assigned sense tag can be assigned for each instance of a word.

For partial-taggers 3 and 5, an additional pre-processing stage is required. These

partial-taggers require syntactic information; therefore a parser is needed to determine

the syntactic structure of each sentence in the input text. For the purposes of the re-

search reported in this chapter, the CMU Link Grammar parseris used. This collection

of partial-taggers constitutes a minimum set of componentsfor the system proposed,

as all but the statistical discrimination tool use existingWSD theory, are simple to

implement and have relatively high degrees of confidence in the classifications made.

The first 4 taggers do, however, suffer from low recall, and therefore the penultimate

tagger is required to make judgements about regarding residual ambiguities in order to

maximise recall for the processed documents. The problem currently with the kind of

component to be considered for the statistical discrimination tool is its relatively low
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precision; therefore the initial taggers are used to removeas many senses as possible

in order to reduce errors by the later components. As such, this framework allows for

further modules to be added to the system.

A new technique is proposed in section 6.3 for statistical WSD to use the lexical

taxonomy of WordNet to evaluate word similarity as presented in chapter 4. The tech-

nique also uses a new definition of a word’s context utilisingsemantic relationships

between words determined from their syntactic configuration. The remainder of this

chapter concentrates on details of such a statistical WSD component, as the implemen-

tation of other partial-taggers is outside the scope of thisthesis.

6.2 Using Syntactic Relationships for WSD

Fundamental to the statistical classifier for the new WSD technique presented here is

the idea that words have semantic relations to other words within a tight context that

is central to the human decision making process about the sense of a word (Weaver,

1949; Kaplan, 1955; Koutsoudas and Korfhage, 1955; Masterman, 1961; Choueka and

Lusignan, 1985; Preiss, 2001). The most common definition for context used in the

field of NLP uses the idea of context windows (Weaver, 1949). Using a context window

of sizen, the context of a word is represented as then words to its left and right.

Such a definition of context assumes that all words within thecontext window are

important to evaluating the meaning of a word, and also that the significant information

for establishing the word sense is contained within the window. The statistical classifier

developed in this chapter uses an alternative definition. This alternative definition of

context is similar in principle to that used by Lin (1997), Resnik and Diab (2000) and

Green et al. (2001a,b). However, it differs in some important aspects. Such a context

can be expressed in predicate form. The arguments for such a predicate form for a

context can be used to restrict and rank various possible interpretations of a word.

This section presents this new definition of context, using the syntactic features of a

sentence to detect relationships between the words within the sentence. These relations

are assigned a semantic role according to the syntactic configuration within which they

occur. For verbs, these semantic roles are represented as thematic roles. While pre-

liminary examples will be restricted to verbs, section 6.3.2 discusses how relationships

for words with other parts-of-speech (POS) can also be expressed in similar predicate

forms. The CMU Link Grammar parser is used to determine the syntactic relationships
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between words, although such an approach can be applied to the output from parsers

generating more traditional Chomskian Sentence Structures. The section concludes by

showing a refined version of the information that is used in a WSD classifier.

6.2.1 Sub-categorisation of verbs

Consider the examples of three related CMU linkages in Figures 6.3, 6.4 and 6.5. In

Figure 6.3: CMU Linkage for “Maigret will imitate Poirot with enthusiasm.”

Figure 6.4: CMU Linkage for “Bertie will abandon the race after the first lap.”

Figure 6.5: CMU Linkage for “Miss Marple will reconstruct the crime in the kitchen.”

each case, the verb shares a common structure. Each example shows a transitive verb

with an optional verb modifier. Each of the modifiers provide information about the

manner, time or location of the action.
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In traditional grammar, verbs are placed into three categories, relating to the num-

ber of objects appearing to the right of the verb in an active sentence:

• Intransitive - No object.

• Transitive - One obligatory object.

• Ditransitive - Two obligatory objects expressed either as apair of nouns, or a

noun and the noun of a verb modifier.

Figures 6.6, 6.7 and 6.8 give an example from each sub category. Haegeman (1994)

Figure 6.6: Example of an Intransitive Sentence

Figure 6.7: Example of a Transitive Sentence

Figure 6.8: Example of a Di-transitive Sentence

gives an in-depth introduction to sub-categorisation withjustifications from Chomskian

Government and Binding theory. Aside from glosses, this is the only type of informa-

tion given about the number of arguments for a verb in most common dictionaries, such

as the Oxford Dictionary of Concise English.
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Sub-categorisation gives some information with respect tothe number of required

object arguments for a verb. However, nothing is said about averb’s subject or the

semantic relationship between the verb and its arguments.

6.2.2 Argument structure

Verbs can be considered as predicates, where nouns or specific prepositional phrases

are syntactically related to the verb as arguments. These predicates take a verb’s sub-

ject into account, along with its objects. Therefore, verbscan be represented by the

following type of predicates according to their sub-classification:

• Intransitive verb – One-place predicate

• Transitive verb – Two-place predicate

• Ditransitive verb – Three-place predicate

The previous examples can be expressed in the following predicate forms:

1. Maigret imitates Poirot.

Imitate( Maigret, Poirot )

2. Bertie abandoned the race.

Abandon( Bertie, race )

3. Miss Marple reconstructed the crime.

Reconstruct( Miss Marple, Crime )

4. Hercule is dithering.

Dithering( Hercule )

5. Wooster gave Jeeves the money

Give( Wooster, Jeeves, Money )

Argument structures show which arguments are obligatory for a given verb. Haegeman

(1994) uses the following metaphor in her description of argument structures:
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“Predicates are like the script of a play. In a script a numberof roles

are defined and will have to be assigned to actors. The arguments of a

predicate are like the roles defined by the script of a play. For an ade-

quate performance of the play, each role must be assigned to an actor.”

(Haegeman, 1994)

For instance, consider the verb ‘give’. In its most literal interpretation, it must take

three arguments: The giver, the given and the receiver. Considering the argument

structure of a verb derived from its conceptual meaning can enrich the representation.

In traditional Chomskian grammar we can express the arguments by specifying the

phrasal type to which the arguments belong. However, the following argument struc-

ture examples use CMU link labels to specify how the arguments are syntactically

expressed. “S” links refer to verb subjects, “O” links referto verb objects and MV

links refer to verb modifiers, such as prepositional phrases(“x” denotes a wild card for

sub link information):

1. Imitate: verb; 1 2

Sx Ox

2. Abandon: verb; 1 2

Sx Ox

3. Reconstruct: verb; 1 2

Sx Ox

4. Dither: verb; 1

Sx

5. Give: verb; 1 2 3

Sx Ox Oxn

Sx MVx Ox
No further information, such as timing, manner or place, about verbs is expressed

in their argument structures.

Situations where arguments are optional are expressed by using parentheses around

the optional argument number:

Hercule bought Jane a detective story.

Hercule bought a detective story.
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Buy: verb; 1 (2) 3

Sx Ox Oxn
WordNet gives some information similar to argument structure at a sense level in

its sentence frame relation for verbs. However, rather thanshowing optional argu-

ments explicitly, it enumerates various allowable structures, for instance the following

example of give#5:

give, pay -- (convey, as of a compliment, regards,

attention, etc.; bestow; ‘‘Don’t pay him any mind’’;

‘‘give the orders’’; ‘‘Give him my best regards’’;

‘‘pay attention’’)

*> Somebody ----s something

*> Somebody ----s somebody something

*> Somebody ----s something to somebody

Whilst this basic representation of arguments is available, the level of information pro-

vided by WordNet for verbal sentence frames is limited. Typically, the only argument

types found are “somebody” and “something”, making their usefulness limited to es-

tablishing that a verb’s argument is either human or non-human.

6.2.3 Thematic structure

We have shown that verbs have an associated argument structure relating to syntactic

relations of words in the surrounding context. However, none of the examples shown

so far consider information about the semantic role these related words may have.

Theta theory (Haegeman, 1994) describes such semantic information in terms of the-

matic roles or theta roles (θ-roles), refining the relationships between a verb and each

of its arguments. These assignments can replace argument structures with thematic

structures.

The importance of thematic structures is widely recognised, but as yet a standard

theory has still not been agreed. Different linguists definedifferent sets ofθ-roles. At

one level, a linguist may choose labels which give very specific relationships between

two words, such as in “John gave Mary some flowers”, “John” canbe labelled as the

giver, “Mary” as thereceiver, and “flowers” are thegiven item. For the purpose of

the work presented here, a much more general definition with only a small number of
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θ-roles is considered. Such a definition restricts the possible relationships to one of the

following roles across all verbs:

• Initiator

• Goal

• Essence

For the previous example, “John” is theinitiator of the action, “Mary” is thegoal of

the action, and “flowers” are theessenceof the action.

As shown, the use ofθ-roles considered for this work is rather restricted. The main

reason for considering theθ-roles of verbal arguments will be to generalise information

across different argument structures. Further details aregiven in section 6.3.2.

6.2.4 Context Features

The remainder of the chapter shows how a WSD system can use these ideas as the basis

of a definition of context for a statistical model. The main purpose for the statistical

classifier is to use a weight assigned to the importance of each component of the context

during the disambiguation process for a given word. Such a component of context

is referred to as a feature or statistical feature. Selecting these features is the most

important part of the creation of a statistical classifier. Once features are available,

their weights are trained according to a corpus of training examples.

6.3 A New Statistical Technique for WSD

Many tasks in Natural Language Processing (NLP) have been tackled using stochastic

models which capture information about some phenomenon or behaviour of interest.

Using such statistical models for WSD has provided promising results, but they still

suffer from the lexical bottleneck problem (Ide and Véronis, 1998) as there are limited

numbers of publicly available sense tagged corpora.

The WSD technique presented in this section is used in a Maximum Entropy (ME)

framework that exploits the previously defined notion of context (section 6.2) and se-

mantic similarity (chapters 3 and 4) to alleviate the lexical bottleneck problem.
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6.3.1 Maximum Entropy

ME is a statistical technique that is becoming increasinglypopular in NLP in tasks

such as machine translation (MT) (Berger et al., 1996), part-of-speech (POS) tagging

(Ratnaparkhi, 1996), text segmentation (Beeferman et al.,1999) and more recently

WSD (Suárez and Palomar, 1993, 2002; Dang and Palmer, 2002;Klein et al., 2002).

Such classifiers provide a way to make use of contextual information to estimate the

probability of a classification, such as the linguistic class of interest for a word. The

idea of ME can be dated back to pre-biblical times in the writings of Herodotus (425-

485 BC) (Berger et al., 1996), but only recently has enough computational power been

available for maximum entropy to be used effectively. The goal of ME is to create a

classifier that will select the most likely possibility (given the context some problem

lies in), without assuming anythingabout information that is not available at the time

of training. Furthermore, ME techniques are used when the source of information for

the model is known to be sparse, and thus where only estimatesof the probabilities

of certain classifications are available. Therefore the problem is to find a statistical

distribution,p(d, c) whered is a decision andc is a context, that can be used as a

classifier which maximises entropy, or uncertainty, subject to constraints that represent

evidence used in the decision making process.

This section illustrates the use of ME to translate the English word “in” to its French

alternative. Section 6.3.2 introduces and justifies the setof features and classifier for

use in a WSD framework. Finally, these ideas are preliminarily tested to assess their

potential for WSD.

Basic Probability

The main interest in many NLP tasks is to characterise some linguistic phenomena,

such as the determining meaning or word translation of a word, so that it closely

matches human judgements. A common approach currently involves training a statis-

tical system with judgements that have been manually collected from various sources,

such as annotated text corpora or recordings. Such systems are then tested with new

examples to check that they generalise sufficiently to handle future examples. This is

commonly achieved by reducing the original problem to one ofestimating the proba-

bilities of a finite set of possible classifications in order to find the most likely classifi-

cation.
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The most basic probability to start from is that for a known situation, where the

sum of the probability of all known examples must be 1.

∑

e∈E

p(e) = 1 (6.1)

whereE is the finite set of all examples. Equation 6.1 defines the firstconstraint for

a classifier. Using the example from Berger et al. (1996), we can start to construct a

classifier, p, which given the English word “in” will predictits French translation.

The English word “in” has five alternative translations in French; “dans”, “pandant”,

“en”, “à” and “au cours de”. Given 6.1, 6.2 must hold.

p(dans) + p(pandant) + p(en) + p(à) + p(au cours de) = 1 (6.2)

An infinite number of classifiers can be derived which meet theconstraint imposed by

6.2. The Principle of ME recommends that probabilities be assigned in themost non-

committal fashion. Where no empirical evidence is available, probabilities should be

assigned without making any further assumptions regardingthe distribution of the data,

and therefore probability is assigned as uniformly as possible (Guiasu and Shenitzer,

1985). This reduces bias that could arise in the classifier. Given no further information

about the translation of “in”, and given that French has no further possibilities for

the translation of “in”, the most non-committal distribution is shown in table 6.1. As

Berger et al. (1996) notes, this is not the most uniform modelas that would grant equal

probability to all French words.

Translation, f p(f)
dans 1/5
en 1/5
à 1/5

au cours de 1/5
pendant 1/5

Total 1

Table 6.1: Most uniform distribution for the translation of“in”.

The availability of empirical evidence about human decisions allows a more com-

plex model to be created. For instance, equation 6.3 shows a constraint about the
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frequency of “in” being translated to either “dans” or “en”.

p(dans) + p(en) = 3/10 (6.3)

Given 6.3, the most non-committal distribution is shown in table 6.2. Adding the

Translation, f p(f)
dans 3/20
en 3/20
à 7/30

au cours de 7/30
pendant 7/30

Total 1

Table 6.2: Most uniform distribution for the translation of“in” given constraint 6.3.

further constraint 6.4 will, however, make the selection ofa suitable classifier less

obvious.

p(dans) + p(à) = 1/2 (6.4)

Now the problem is to distribute probability evenly across the classifier,p(f), but this is

no longer trivial. In order to solve this, a way of measuring the uniformity of a classifier

is required, so that a classifier can be found that maximises uniformity subject to any

constraints that apply to the classifier.

ME calculates a statistical classifier that has maximum ignorance about anything

outside the body of evidence with which it is supplied, i.e. the classifier assumes

nothing about what is unknown at the time of training. For thesimple examples, solu-

tions are given in tables 6.1 and 6.2. However, it can be seen that increasing constraints

rapidly increases complexity, and that selecting a suitable classifier soon becomes more

than a trivial task.

Features and Context

Basic probability alone is too simple to produce a useful classifier for most tasks. It

is impossible to predict the best classifications in most problems without considering

information other than the statistical distribution of theclassification’s behaviour. A

common practice in NLP is to consider the context surrounding the behaviour of the
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terms being modelled (Weaver, 1949). This is normally limited to considering the

characteristics of words directly to the left and right of the word of interest, referred to

as a context window. ME models individual components of context that are of interest

as features. Such features help predict the behaviour of interest. Therefore, we now

consider the problem of calculating the probability of somedecisiond, given some

contextc by making use of information calculated for a set of features.

The first task in constructing such a classifier is to select a set of suitable features

from the context surrounding a word. In the example by Bergeret al. (1996), context

is defined as the words directly surrounding “in”. To select features, a large corpus of

phrases containing the word “in”, together with their French translation is used. Given

this corpus, the empirical probability of contexts and classifications (or decisions), can

be calculated using equation 6.5.

p̃(c, d) ≡

∑

1
(c,d)∈Sample

N
(6.5)

whereN is the number of examples in the sample,c is a context andd is a decision.

Selecting a feature set for some classifier involves choosing a set of contexts and de-

cisions that are significant in the decision making process.As an initial estimate, all

contexts and decisions could be used to generate the featureset, although techniques

do exist for automatically generating feature sets from corpus examples, as discussed

in section 6.3.2. Features are considered as binary functions, the feature indicators, of

the form shown in equation 6.6.

f(c, d) =

{

1 : if d is the decision for contextc given some constraint

0 : otherwise
(6.6)

A feature can be interpreted as “d is a valid decision given some contextc”.

In the example of translating the word “in” into French, the training sample shows

that if “April” follows “in”, the translation of “in” is “en” 9/10 times. The feature

indicator for such information is represented by feature 6.7.

f(c, d) =

{

1 : if d = “en” and “April” follows “in” in c

0 : otherwise
(6.7)

So, for each feature that is known to be significant, a binary feature indicator is intro-
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duced to model it.

Given these features, the probability that some featuref was seen in the empirical

data can be calculated with equation 6.8.

p̃(f) ≡
∑

c,d

p̃(c, d)f(c, d) (6.8)

wherep̃(c, d) is the probability that the decision d and context c co-occurin the empir-

ical data. Applying Bayes rule means that 6.8 can be re-written as 6.9.

p̃(f) ≡
∑

c,d

p̃(c)p̃(d|c)f(c, d) (6.9)

Given that the final statistical classifier used must accurately reflect the known facts,

the constraint shown by equation 6.10 must be true.

p(f) = p̃(f) (6.10)

wherep(f) is the probability of a feature being active as calculated using a statistical

classifier. With this constraint, the probability of a feature occurring is now calculated

using equation 6.11.

p(f) ≡
∑

c,d

p̃(c)p(d|c)f(c, d) (6.11)

This allows the possibility of automatically calculating the conditional probability,

p(d|c), to generalise the statistical model given by the empiricaldistribution,p̃(d|c),

but in such a way as to still conform to the distribution in thetraining sample.p(d|c)

forms the basis of the classifier in the final classification system.

The Maximum Entropy Framework

A training sample of data yields information about the decisions made within different

contexts; however this only accounts for a small portion of all possible situations due

to the sparse nature of the data for the task being modelled. The task of ME is to train a

classifier,p(d|c), that conforms to the empirical distributions of the training sample but

in addition remains as uniform as possible for all other possibilities. Given information

about how features affect decisions made in the test data, the task is to find a classifier

that uses these features to calculatep(d|c). That is to say, the principal of maximum
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entropy is:

“To select a model from a setC of allowed probability distributions,

choose the modelp∗ ∈ C with maximum entropyH(p).”

p∗ = arg max
p∈C

H(p) (6.12)

whereH(p) is the measure of uniformity. Berger et al. (1996) give the mathematical

measure of conditional entropy as a measure of the uniformity of p(d|c), as shown in

equation 6.13.

H(p) = −
∑

c,d

p̃(c)p(d|c) log p(d|c) (6.13)

To ensure that the classifier will conform to the informationabout the features, the set

C of allowable classifiers are defined by equation 6.14.

C ≡ {p ∈ P |p(fi) = p̃(fi) ∧ i ∈ {1, 2, . . . , n}} (6.14)

whereP is the set of all possible models andn is the number of features used by the

classifiers.

A classifier,p(d|c), is constructed using the features collected from a training sam-

ple. Berger et al. (1996) and Berger (1997) give a method using Lagrange multipliers

from the theory of constrained optimisation to train a ME classifier. For each feature,

fi, a Lagrange multiplier,λi, is introduced. The Improved Iterative Scaling (IIS) al-

gorithm (Berger et al., 1996; Berger, 1997) trains the Lagrange multipliers for each

feature untilp∗ is found. The resulting classifier can be used to disambiguate new

examples using the formula in equation 6.15.

classification(c) = max
d∈decisions(c)

p(d|c) (6.15)

wheredecisions(c) is the set of possible decisions for the word being evaluatedin

contextc. Appendix E gives further detail about the IIS algorithm andME framework.

6.3.2 WSD with ME

ME has been applied, with some success, to the field of MT (Berger et al., 1996),

amongst many other NLP fields (Ratnaparkhi, 1998). For such atask, ME classifiers
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are trained using information from bilingual corpora. Partof the task of ME classifiers

is to select the correct word in the target language with the same meaning as the word

in the source text. This is similar, in principle, to selecting the correct sense for a

word, given a finite number of senses from which to select. Some of the difficulty in

directly applying such approaches to WSD is due to the lack ofsense tagged examples

from which to train, but also in part to the fine-grained nature of lexical resources used

to select word senses. The following section describes how the ME framework can

be used to produce a classifier for WSD, reflecting the distribution of the information

crucial to the WSD task, using the approach described in the previous section. We also

show how word similarity techniques using WordNet’s taxonomy can generalise the

model further. The WSD system produced differs to other ME based WSD systems in

that a new definition of context is used, based on the syntactic configuration of a word

within a sentence, and because semantic similarity is used to match words.

The main task is to define a ME classifier,p(d|c), to model the human decision

making process in selecting the correct meaning of a polysemous word within a con-

text. The reason for choosing ME as the framework from which to produce a statistical

classifier is that we can regard the Lagrange multipliers assigned to features as weights

indicating their importance during the process of WSD. These features reflect individ-

ual aspects of the context in which a word appears. The resulting classifier estimates

the probability,p(w#s|c), that the senses of a wordw was intended for the local con-

textc. Before we can proceed we must clearly define what is meant by context and with

this in mind define the set of feature templates that will be used to produce features for

the classifier.

Context

The definition of context introduced here is based on the notion that syntax plays an im-

portant role in classifying the meanings of words (Reifler, 1955; Towell and Voorhees,

1998). Therefore, for any given word in a sentence, context is defined as those other

words in the sentence which are deemed to be syntactically related, an approach simi-

lar to that taken by Gougenheim and Michéa (1961). This is contrary to a large body of

previous work using ME WSD classifiers whose definitions of context use windows of

words surrounding the word for which the context belongs. Tests have shown that the

optimum context window size for computation systems is typically of size 3, therefore
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the context of a word typically includes 3 content words to the left and right of the

word in question. This definition assumes that related wordsdirectly surround each

other. However, in practice it is found that some of the most importantly related words

can be separated by large numbers of unrelated words, such aswhen related words are

separated by a relative clause. Considering the syntactic structure of a phrase, context

can be defined that is both compact, and contains only relatedwords. Such a definition

of context may also model better the human behaviour to make judgements about the

meanings of words within a very limited amount of information (Reifler, 1955).

Earlier evidence showed that the subject and objects of a verb play an important

role in understanding its meaning, but now the idea must be extended to consider other

syntactic relationships. Such syntactic relationships are in turn labelled with the par-

ticular functional or semantic role they represent within their context. For instance,

consider the following example:

“John gave Mary flowers.”

The example sentence produces the CMU linkage in Figure 6.9.Using θ-theory to

Figure 6.9: CMU Linkage for “John gave Mary flowers”

label the syntactic links to the verb “give”, we can produce the local context in 6.16.

[ambiguousword(give), initiator(man, 1), goal(woman, 1), essence(flower, 1)]

(6.16)

In the example local context, the numbers represent the corresponding WordNet word

senses, and the labelled relationships are represented by predicates containing word

senses as arguments. For verbal arguments, this labelling is reasonably straightforward

as theθ-roles of the noun complements can be automatically detected from the verb’s

syntactic configuration. Notice also that the local contextincludes the main word of

interest, labelled as the ambiguous word. To produce the full local context of a word we
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collect information about all the words of interest that aresyntactically linked to that

word. Other information may also be of use, such as information about parts-of-speech

of surrounding words, and word co-occurrence as tested by other ME WSD techniques

(Suárez and Palomar, 2002). However, for the purposes of this work, only information

collected from the syntactic relation of words is considered.

For further types of syntactic relationships we must define what the relationship is.

In many cases the relationship we define merely substitutes for the syntactic relation.

However, in other cases different syntactical relationships are treated as equivalent and

therefore are assigned the same type of relationship. In order to define the relation-

ships, all the possible links available that are deemed to beinformative for WSD must

be considered. When looking at such links in detail, it is helpful to concentrate on

information particular to individual parts-of-speech. The following two sections detail

the relationships currently defined for verbs and nouns. As an initial step to defining

the contexts of adverbs and adjectives, the inverse of the relationships where they ap-

pear below could be used. This is currently untested and would typically only yield one

relationship in the context for either adjectives or adverbs, most frequently the noun or

verb they are syntactically associated with. Local contexts only consider the canonical

form of words according to WordNet.

Verb Context Constituents: We have already shown an example of creating a verb

context using subject and object links. Given the syntacticconfiguration of the verb’s

arguments, the theta role of the verb are detected automatically. Table 6.3 shows for

some CMU link configurations the interpretation which determines the constituent of

Syntactic Link Context Relationship

Noun -S*- Verb <thetarole>(Noun, NounSense)
Verb -O*- Noun <thetarole>(Noun, NounSense)
Adverb -E- Verb verb attribute(Adverb, AdverbSense)
Verb -MV- Preposition -J*- Noun
Verb -P- Preposition -J*- Noun

action is <Preposition>(Noun, NounSense)

Noun1 -S*- aux -P*- Verb -MVp- essence(Noun1, Noun1 Sense) and
“by” -J*- Noun2 initiator(Noun2, Noun2 Sense)

Table 6.3: Verb Context Constituents
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a local context. A complete local context is created by considering all possible con-

stituents in a sentence syntactically related to a word.

Also, CMU uses “B*” links to link back to nouns used outside the scope of the

argument structure for the verb under consideration. Theselinks are evaluated to pro-

duce constituents of the type “<thetarole>(Noun, NounSense)” depending on the

configuration of the noun and verb relative to each other.

Noun Context Constituents: Similarly to the verb context constituents, table 6.4

shows for some CMU link configurations the equivalent interpretation to make a con-

stituent of a local context.

Syntactic Link Context Relationship

Determiner -D*- Noun determiner(Determiner)
Adjective -A- Noun attributeof(Adjective, AdjectiveSense)
Noun -S*- Verb has<thetarole>(Verb, VerbSense)
Verb -O*- Noun has<thetarole>(Verb, VerbSense)
Noun1 -AN- Noun2 or modifier(Noun1, Noun1 Sense) and
Noun2 -Mp- “of” -J*- Noun1 modified(Noun2, Noun2 Sense)

in(Noun1, Noun1 Sense) andNoun1 -Mp- “in” -J*- Noun2 contain(Noun2, Noun2 Sense)
on(Noun1, Noun1 Sense) andNoun1 -Mp- “on” -J*- Noun2 hold(Noun2, Noun2 Sense)
to(Noun1, Noun1 Sense) andNoun1 -Mp- “to” -J*- Noun2 to rev(Noun2, Noun2 Sense)

Noun1 -Mp- “under” -J*- Noun2 or under(Noun1, Noun1 Sense) and
Noun2 -Mp- “over” -J*- Noun1 over(Noun2, Noun2 Sense)
Verb -MV- Preposition -J*- Noun or
Verb -P- Preposition -J*- Noun

done<Preposition>(Verb, VerbSense)

Table 6.4: Noun Context Constituents

Feature Templates

ME classifiers make use of a set of statistical features, collected prior to training the

classifier, in order to predict the statistical distribution of a given data set. The features

typically reflect individual, or combinations of, constituents of local contexts, there-

fore the features for the ME classifiers use information contained in the components
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of context described in the previous section. The simplest form of feature for the con-

text definition would match words given word-form; however the features used here

go further by matching words using semantic similarity. This is achieved by consider-

ing WordNet’s lexical taxonomy using the techniques described in chapter 4. This is

discussed later in this section.

In order to generate features from some source, feature templates are used to collect

specific information of interest. Using the basic layout of afeature, open slots defined

in the feature templates are filled using relevant information extracted from examples.

For instance, the following list of equations gives the features templates for handling

verbs and their nominal arguments.

f(c, d) =



































1 :

if the ambiguous word inc is a verbv∧

β(v, d,< FeatureVerb >,< FeatureVerb Sense>)∧

c contains an initiatori with senseis∧

ν(i, is, < FeatureInitiator >,< FeatureInitiator Sense>)

0 : otherwise

(6.17)

f(c, d) =



































1 :

if the ambiguous word inc is a verbv∧

β(v, d,< FeatureVerb >,< FeatureVerb Sense>)∧

c contains a goalg with sensegs∧

ν(g, gs, < FeatureGoal>,< FeatureGoal Sense>)

0 : otherwise

(6.18)

f(c, d) =



































1 :

if the ambiguous word inc is a verbv∧

β(v, d,< FeatureVerb >,< FeatureVerb Sense>)∧

c contains an essencee with sensees∧

ν(e, es, < FeatureEssence>,< FeatureEssenceSense>)

0 : otherwise

(6.19)

whereν(n1, ns1, n2, ns2) is a boolean function which is true when noun sensen1#ns1

is similar ton2#ns2 andβ(v1, vs1, v2, vs2) is a boolean function which is true when

verb sensev1#vs1 is similar tov2#vs2. Further templates are used to create the features

pertaining to other components of context as defined in the previous section. Additional

to such templates which gather information from local contexts, a further set of features

models the distribution of senses for a word. Such features are introduced to reduce

potential problems when using semantic similarity to matchwords, because multiple

similar words may distribute senses differently. Feature templates for such features are
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of the form illustrated by 6.20.

f(c, d) =











1 :
if the ambiguous word inc is<FeatureWord>∧

d =< FeatureWord Sense>

0 : otherwise

(6.20)

These features are referred to as distribution features.

The example from the previous section is used to illustrate how a set of features is

created for it. It was shown that the sentence “John gave Maryflowers.” produces the

local context 6.21 for “give”.

[ambiguousword(give), initiator(man, 1), goal(woman, 1), essence(flower, 1)]

(6.21)

Now, further local contexts are considered for all other content words in the sentences,

as shown in equations 6.22, 6.23 and 6.24. These additional local contexts model

“give” as having sense 8 (give#8) according to WordNet 1.6.

[ambiguousword(man), hasinitiator(give, 8)] (6.22)

[ambiguousword(woman), hasgoal(give, 8)] (6.23)

[ambiguousword(flower), hasessence(give, 8)] (6.24)

Using feature templates, such as those described above, features 6.25 to 6.34 are ex-

tracted from the local contexts generated from the example.

f(c, d) =











1 :
if the ambiguous word inc is a verbv ∧ β(v, d, give, 8)∧

c contains an initiatori with senseis ∧ ν(i, is, man, 1)

0 : otherwise

(6.25)

f(c, d) =











1 :
if the ambiguous word inc is a verbv ∧ β(v, d, give, 8)∧

c contains a goalg with sensegs ∧ ν(g, gs, woman, 1)

0 : otherwise

(6.26)

f(c, d) =











1 :
if the ambiguous word inc is a verbv ∧ β(v, d, give, 8)∧

c contains an essencee with sensees ∧ ν(e, es, flower, 1)

0 : otherwise

(6.27)
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f(c, d) =























1 :

if the ambiguous word inc is a nounn ∧ ν(n, d, man, 1)∧

c contains a verbv with sensevs with n as its initiator∧

β(e, es, give, 8)

0 : otherwise

(6.28)

f(c, d) =























1 :

if the ambiguous word inc is a nounn ∧ ν(n, d, woman, 1)∧

c contains a verbv with sensevs with n as its goal∧

β(e, es, give, 8)

0 : otherwise

(6.29)

f(c, d) =























1 :

if the ambiguous word inc is a nounn ∧ ν(n, d, flower, 1)∧

c contains a verbv with sensevs with n as its essence∧

β(e, es, give, 8)

0 : otherwise

(6.30)

f(c, d) =

{

1 : if the ambiguous word inc is the verb “give”∧ d = 8

0 : otherwise
(6.31)

f(c, d) =

{

1 : if the ambiguous word inc is the noun “man”∧ d = 1

0 : otherwise
(6.32)

f(c, d) =

{

1 : if the ambiguous word inc is the noun “woman”∧ d = 1

0 : otherwise
(6.33)

f(c, d) =

{

1 : if the ambiguous word inc is the noun “flower”∧ d = 1

0 : otherwise
(6.34)

Sources for Generating Features: A number of possible sources of information to

create features are available. Ideally, the source of such information will give direct ac-

cess to a wide variety of examples without generating excessive quantities of features.

The first two of these sources have already been mentioned in the context of provid-

ing potential information for creating selection restrictions, although their limitations

become more problematic for use in generating statistical features:

• WordNet

WordNet offers both sentence frames for verbs and gloss examples for its synsets

which potentially provide sources for generating features. However, the infor-

mation currently available in WordNet is not adequate to be used for this task.

Firstly, the sentence frames are too general to produce useful information, and
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the glosses are fairly ad-hoc and do not give a rich enough source of informa-

tion to create an adequate set of features. On a positive notethough, if adequate

information were available, then this information would already be related to

word senses and thus would provide a direct source of information for generating

features. Work is in progress to provide improved sentence frame information

(Baker et al., 1998).

Other lexical resources can be considered. However, a link is required to Word-

Net’s senses in order for the resource to be useful.

• Levin Verb Classes (LVC)

The LVCs offer a source of information for different classesof verbs and their

possible complements. It can provide a wide coverage set of features. However,

there are doubts about whether the information is varied enough to be useful

for a ME WSD system. A further problem is that the concepts of LVCs verbs

and WordNet are not yet related, although work by Green et al.(2001a,b) may

provide the necessary information to link the two resources.

• Corpus examples

Using examples from a pre-tagged corpus can retrieve a varied set of examples to

use as a feature set for a ME WSD classifier. In practice, usingall available ex-

amples to produce a feature set is not desirable for two reasons; Firstly, too many

examples introduce additional problems as some examples may contradict each

other, or the sheer number of examples could deteriorate precision. Secondly,

the high number of features introduces unnecessary complexity into a statistical

model, thus increasing the time required to train and to calculate results from the

classifier for new examples.

Similarity Relations: In order to match words and word senses using semantic simi-

larity, the features use four similarity relations, one foreach part-of-speech, that match

concepts via information about WordNet’s lexical taxonomy. The similarity relation

for nouns uses techniques described in chapter 4. However, no relations have been

defined previously for verbs, adjectives and adverbs. In order to handle the remaining

parts-of-speech, a set of simple heuristics is used. When selecting adequate heuristics,
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care was taken to use only the strictest relationships in order to ensure reliable results.

The following section details the heuristics used for each similarity relation.

Noun Relations: Chapter 4 details a number of different parameterised methods

for calculating semantic similarity between two noun senses based upon the hypernym

structure of both senses. For the purposes of this work, and given the results from

chapter 4 for the cross lexicon labelling,SBSM×5 is used with non-flattened layman

structures and normalised results. In order to use this measure to produce a boolean re-

sult for whether or not two senses are similar, a threshold value of 0.19296, taken from

results for labelling Wordsmyth thesaurus entries, is used. Therefore, the similarity

relation for two nouns is given in 6.35.

SimNouns(n1, ns1, n2, ns2) ⇐⇒ SBSM×5(n1, ns1, n2, ns2) ≥ 0.19296 (6.35)

wheren1 andn2 are nouns, andns1 andns2 are sense labels forn1 andn2 respectively.

Verb Relations: For verbs, the heuristic in 6.36 is used to check WordNet’s lexi-

cal taxonomy for the existence of some specific relationships.

SimV erbs(v1, vs1, v2, vs2) ⇐⇒

synonym(v1, vs1, v2, vs2)∨

hypernym(v2, vs2, v1, vs1)∨

antonym(v1, vs1, v2, vs2)

(6.36)

wherev1 andv2 are verbs, andvs1 andvs2 are sense labels forv1 andv2 respectively,

synonym(v1, vs1, v2, vs2) is true only if v1#vs1 andv2#vs2 are synonyms, the direc-

tional relationshiphypernym(v1, vs1, v2, vs2) is true only if v1#vs1 is a hypernym of

v2#vs2, andantonym(v1, vs1, v2, vs2) is true only ifv1#vs1 andv2#vs2 are antonyms.

Adjective Relations: As with verbs, similar adjectives are detected using a heuris-

tic, illustrated in 6.37.

SimAdjectives(a1, as1, a2, as2) ⇐⇒

synonym(a1, as1, a2, as2)∨

antonym(a1, as1, a2, as2)∨

pertainym(a1, as1, a2, as2)

(6.37)
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wherea1 anda2 are adjectives, andas1 andas2 are sense labels fora1 anda2 respec-

tively, andpertainym(v1, vs1, v2, vs2) is true only ifv1#vs1 andv2#vs2 are pertainyms.

Adverb Relations: Finally, similar adverbs are detected by heuristic 6.38.

SimAdverbs(ad1, ads1, ad2, ads2) ⇐⇒

synonym(ad1, ads1, ad2, ads2)∨

antonym(ad1, ads1, ad2, ads2)∨

pertainym(ad1, ads1, ad2, ads2)

(6.38)

wheread1 andad2 are adverbs, andads1 andads2 are sense labels forad1 andad2

respectively.

Feature Reduction

Once an initial set of potential features is available, thisset should be reduced to con-

sist only of those features useful for WSD. Using all these initial features is likely to

produce a model over-trained to the training examples from which the features were

extracted. Four different approaches are proposed for reducing features:

• A manual feature reduction process.

• A mathematical feature induction approach.

• Two linguistically based feature reduction approaches.

Of the least practical solutions proposed is the manual feature selection process.

The manual process involves testing a trained ME classifier and analysing erroneous

results. Analysis of the features used in the calculation oferroneous results may show

that some features are unhelpful to the WSD process, and may also show some con-

tradicting features creating difficulties for the WSD process. For instance, in the tests

presented in section 6.3.3, it can be seen that for the verb “give”, the initiator from

many senses is “person#1”. As such, this evidence is unhelpful to the WSD process as

it does not discriminate between senses of the verb “give”. In fact, as later senses of

“give” only have examples for which “person#1” is the initiator, these senses are gen-

erally preferred when little additional evidence is available in a word’s context. This is

clearly an undesirable situation, therefore such featuresshould be manually removed.

An established mathematical technique for inducing features from a set of potential

features is given by Berger et al. (1996) and Pietra et al. (1995, 1997). The method they
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propose captures the salient properties of the empirical distribution of the training data

by incorporating an increasingly detailed collection of features. This allows better

generalisation to new examples. New features are greedily added, incrementally, to a

ME model by calculating the improvement each candidate feature adds to the model.

The candidate features initially comprise of all the potential features extracted from

the training data and any other feature source. In order to calculate improvement, or

gain, the IIS is required to estimate the Lagrange multipliers of the candidate features.

Once the gain given by the remaining candidate features becomes sufficiently small,

the iterative method stops adding new features.

An initial linguistically-based approach is to group information common to mul-

tiple word senses of a word into a single feature. Suárez andPalomar (1993, 2002)

propose a set of template features that group information from several examples into

one feature, referred to as set-features. Their approach results in a reduced number of

features at a marginal degradation of accuracy, around 1.75% in the tests presented.

This approach can be applied in a selective manner to the new context features. If

more than one word sense of a word shares the same component oftheir contexts, for

instance the initiator of a verb, above a high threshold probability, a single feature can

model the component of the context shared by multiple word senses rather than using

multiple features.

Finally, a new linguistically based approach is proposed that may also be used to

further reduce the number of features used in a WSD ME model aspresented in this

chapter. As the features proposed use semantic similarity to match words, it may be

found that a number of features will be similar to each other thus meaning they may

apply to the same examples. For instance, a particular verb sense may have either

“man#1” or “woman#1” as an initiator, therefore producing two different but similar

features. Two such features may be reduced to one feature by generalising their initia-

tors using their most informative subsumer (as defined in chapter 4), therefore produc-

ing a single feature where “person#1” is the initiator. Sucha technique can be applied

to any group of features where the arguments of the features are sufficiently similar.

However, some care must be taken. If this process is performed in an unsupervised

fashion, some important information and distinctions may be lost.

Detailed discussion of the above techniques is outside the scope of this thesis as

each technique relies on there being a working implementation of a ME training algo-

rithm. As such, the creation of such reduction techniques isleft open to investigation.
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Other Considerations

Due to the use of similarity to match concepts instead of word-form, the standard

framework for ME becomes unsuitable for use with the features described here. The

main problem is that for any given ambiguous word,w, in a local context, its possi-

ble decisions are the senses for the wordw according to WordNet. If two or more

such senses are similar, independence between the different classifications is no longer

possible, and as such features that match with the similar meanings will add to the

normalisation value. In the situation where only examples for one of the similar senses

are available, the empirical distribution of the senses will never be calculated properly

due to the increasing size of the normalisation value. This in turn will very quickly

produce a computational overflow issue during the calculation of the normalisation

value. In order to avoid this, the standard normalisation functionZλ(c) is adapted to

handle dependant decisions. If two different senses match with the exact same exam-

ples they could be treated as applicable as each other in those situations. There are

naturally cases where they do not both match with the same setof examples due to the

non-transitive nature of the similarity measures used here(see chapter 4). In such a

case, the more likely of the two senses should take precedence. However, the shared

examples should also be reflected in the calculation of the likelihood.

Consider the standardZλ(c) function, illustrated in 6.39.

Zλ(c) =
∑

d∈D

exp

(

n
∑

i=1

λifi(c, d)

)

(6.39)

It is currently assumed that each decision is independent, but this is not always the case.

If decisions are now treated as sets of unrelated decisions,Zλ(c) can be represented as:

Zλ(c) =
∑

D∈S(c)

expZ ′

λ(c,D) (6.40)

Z ′

λ(c,D) = max
d∈D

(

n
∑

i=1

λifi(c, d)

)

(6.41)

whereS(c) is a set of similar sets of word senses for the ambiguous word in c. There-

fore, all decisions or word senses inD will be similar to each other. Using this normal-
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isation may result in the situation illustrated by 6.42.

p(d|c) ≥ 1 (6.42)

The situation in 6.42 will occur if two or more senses of the ambiguous word in the

local context are similar, as they may both be applicable as part of the surrounding

context in which they appear.

6.3.3 Experiments

Prior to the more formal experiments documented in this section, tests were performed

to see if such a ME classifier would produce promising results. To do this, the verb

“give” was selected as a test candidate. “Give” was chosen asit is highly polysemous

(45 senses), and thus provides a challenging problem to investigate. It has been shown

that the more ambiguous a word is the more frequently it is used in every day language

(Zipf, 1945; Jastrezembski and Stanners, 1975; Jastrezembski, 1981). By making a

larger number of examples available, a variety of difficulties for WSD and a large

amount of variations in the contexts in which such words are found can be examined.

If a word with few senses is chosen, for which few examples areavailable, little varia-

tion in the word’s uses would be found. Additionally, the accuracy on such a simpler

problem will also do little to help in an open-text situation, as again in practice the more

ambiguous words in a language tend to be found more frequent in day to day examples,

therefore highly ambiguous words cannot be ignored. These initial tests helped in as-

sessing the required feature templates and the influence that using similarity measures

has on training a ME classifier. Ideally, more than one word isdesirable for such an

analysis. However, given the time needed for producing the required tagged corpus

of examples, analysis was initially restricted to “give”. Preliminary results from test-

ing the initial classifier created for “give” with some hand-tailored examples yielded

promising results.

After the preliminary tests, attention was turned to seeinghow well such a ME

classifier would perform with WSD. It is important to note that as no form of feature

reduction or feature induction has been used, results presented here give an indication

of the lower bound to the potential accuracy that would be expected for the classifiers.

The goal of the experiments presented in this section is to test if the ME classifiers

produce interesting and expected results in their current form, not to provide a conclu-
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sive evaluation comparing the WSD classifiers to other techniques. This is because the

classifiers created do not currently represent a complete WSD system, and a number of

elements remain unfinished. The first experiment evaluates asingle ME model trained

to perform WSD for all test words. Experiment 2 assesses whether creating separate

classifiers for each word improves results and the effect of removing distribution fea-

tures. Experiment 3 determines if the current ME classifierscan be used to reduce the

cost of manually labelling word senses. Finally, experiment 4 assesses the performance

of the best classifiers produced on two tasks:

1. Disambiguating words senses for contexts where more thanone word in the con-

text is a test word, and where the context words have unknown senses.

2. Disambiguating examples of the test words where the correct sense was not seen

in any of the training examples.

Experiment 1 Creating a WSD ME Classifier to Disambiguate Different Words

As an initial experiment, it was decided to see if a unified ME classifier could be

created for WSD. A unified classifier uses a single statistical model to handle all in-

put words. To create such a classifier, a corpus of test and training data was created

since there were no publicly available corpora containing both the sense information

required about words and the syntactical structure required to generate local contexts

for sentences. A number of considerations influenced experimental design:

• The time required to create such a corpus;

• The number of words required to show that these ME classifiersproduce reason-

able results;

• If any tools are available to aid in the creation of such a corpus.

Within the framework set out so far, it was decided to only useresources required by

the WSD system and to include the verb “give”, for which data already existed, plus ten

reasonably ambiguous nouns found within the same local context as “give”, presented

in table 6.5. Sentences containing any of the above words were extracted from Sem-

cor to create the sample database. Thus far, sentences containing synonyms or similar

words to those tested were not intentionally extracted due to the amount of time re-

quired to manually process the data subsequently. If any information is available for
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Word Senses
Dog 6
Eye 5
Family 7
give 45
Information 5
Instruction 4
Party 5
Report 7
Suggestion 5
Vote 5
Work 7

Table 6.5: Number of Senses per Test Word According to WordNet 1.6

similar words, then this is available as these similar wordscoincidentally appeared in

the sentences extracted. Table 6.6 summarises the information extracted from Semcor.

The table includes all sentences containing the words of interest, regardless of part-of-

Word Number of Sentences
Dog 37
Eye 177
Family 124
Give 677
Information 132
Instruction 16
Party 53
Report 195
Suggestion 20
Vote 55
Work 429

Table 6.6: Summary of Example Sentences

speech and whether the CMU parser generates a usable linkage. Also, only Semcor

sentences where the nouns are sense labelled were used for the nouns in the test. These

sentences were then parsed and checked manually using the NLP application’s inter-

face to the CMU link parser 2.3. In order to produce adequate and meaningful linkages
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from the CMU parser, it was necessary to split or rearrange some sentences. In total,

1,971 linkages were created from the input sentences. Any possible word collocations

were automatically detected and checked using the information from the original Sem-

cor tags. From the resulting data, the local contexts for allcontent words were extracted

automatically, giving a total of 10,966 local contexts. As some Semcor sentences were

changed to produce adequate parses from the CMU parser, the sense tags for all the

words had to be labelled manually. This gives the basis of thedata to be used for both

training and testing the ME classifier. Table 6.7 shows the average polysemy of the

final dataset.

Average Polysemy
All Test Word Examples 22.1 Senses
Test Noun Examples 6 Senses

Table 6.7: Average Polysemy of Examples in Final Dataset

The local context data was divided so that the contexts for 70% of all sentences was

reserved as training data, and 30% for test data.

Training the ME WSD Classifier: Using only the training data, a total of 14,635

possible features were generated from the local context examples. From these fea-

tures, a complete set of empirical probabilities for the training examples and features

were calculated and cached for use with the training algorithm. By caching this infor-

mation, the performance of the training algorithm is improved by reducing redundant

calculations. It is worth noting that the strictest interpretation of probability was ap-

plied to the training data, i.e. that the data constituted a complete and closed set of

examples. An alternative to such an approach could be to assume at least one unknown

example, therefore removing cases where some examples are assigned probability 1 by

introducing a margin for error. Where many examples are available for a word sense,

this error will be small. However, if only one example is available for a word sense

the error introduces a larger influence. It was decided not toapply the later approach

during these experiments as it assumes information that is not included in the training

data. However, this is deemed to be satisfactory in the case of this WSD problem as it

is known that the dataset is not closed, and that important examples may be missing.
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For a ME classifier to be completely trained it must accurately compute probabili-

ties that match with the empirical distribution of the training sample, and it must also

be as uniform as possible. This would not necessarily be desirable as the ME WSD

classifier would become over-trained to the training examples, and would not neces-

sarily generalise well to new examples, a widely recognisedproblem often referred to

as overtraining. As the classifier is intended for use in WSD,equation 6.43 is used to

measure the accuracy of the classifier.

Accuracy = c/n (6.43)

wherec is the number of correct classification according to Semcor made by a classifier

andn is the number of examples used to test the classifier. In situations where two

senses have the same conditional probability, the sense with the lowest sense ID is

selected. This equation provides the information used to measure the success of the

classifier as in practice the primary and dual problems of ME are purely measures about

the statistical model itself. Figure 6.10 shows the classifier’s accuracy over the training

data. Unfortunately, the classifier could not be trained past iteration 31 as the Lagrange

multipliers for features become too large to compute the conditional probabilities using

standard floating point precision numbers. This is most likely due to contradictions in

the training data requiring large Lagrange multipliers in order to more closely match

the empirical distribution of the examples. It may also be due to some unhandled factor

due to using similarity relations in the features, though this is harder to determine as it

would most likely appear as contradictions in the data.

Analysing the results, however, shows some interesting aspects. It seems likely

that a classifier with such complexity would require many more iterations before all

words would reach their maximum accuracy, but for “dog”, “give” and “report” we

see a negative trend emerging up to iteration 32. For “dog”, senses 2, 3 and 4 re-

late to human type definitions, and given the high percentageof examples of words

similar to “person#1”, we can assume that at iteration 13 theclassifier starts to as-

sign senses 2, 3 or 4 higher probabilities for certain examples. “Report” shows a

more worrying trend. This is easily understood due to the nature of WordNet’s def-

initions for “report”. We see that out of the 7 senses available for “report”, 3 senses

are very closely related via “information”, and one furthersense related also to these

3 senses via “communication”. Given the fine-grained distinction between over half
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All Word Classifier Accuracy During Training
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Figure 6.10: All Word Classifier Accuracy During Training

of the senses of “report” it makes it likely that most of the misclassified examples are

genuinely ambiguous given the contexts being considered, for instance:

“She wanted his report first thing in the morning”

Here, “report” may refer to a verbal report, a written account, a study or a paper. The

correct interpretation here is clearly influenced by information not contained in the

local context. Results for “give” are discussed later in this section.

Overall, using the input sentences as a source of features isadequate for this type of

ME classifier. However, the problems encountered and some ofthe misclassifications

in the training data can be attributed to not reducing the feature set so that only relevant

features are considered.

Testing the ME WSD Classifier: Attention is now turned to the accuracy of the new

classifier in sense tagging the test data. This test is performed to see if the classifier

generalises well to new examples. Figure 6.11 shows the accuracy of the classifier at
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All Word Classifier Accuracy with Test Data
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Figure 6.11: All Word Classifier Accuracy with Test Data

disambiguating the test data at various iterations of training. The test accuracy results

give a mixed picture. Overall the results are fairly modest,but the range of accuracy of

the words is large. We could assume that dog would get good results as only examples

for sense 1 are found in Semcor. Again, at iteration 13 we see adip in accuracy due

to a human related sense of “dog” being selected. The poor results for “give” are also

unsurprising given the training results. Results for “vote” are surprising though, even

given the low number of examples available. Looking at the summary of the results

we can see that the classifier starts to assign a higher probability to “vote#5” than to

any other sense of “vote” for the test examples. Given that there are no examples for

“vote#5” in Semcor, features taken from other words that aresimilar to “vote#5” bias

the results. For the other test words there is evidence of a trend to improve, but we

do not yet see the typical signs of overtraining. This suggests that further training is

possible, but does not give further information about the potential of such a classifier.

The performance across all evaluation words is shown in figures 6.12 and 6.13,
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Overall Summary for All Word Classifier Accuracy During Training
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Figure 6.12: Overall Summary for All Word Classifier Accuracy During Training

Overall Summary for All Word Classifier Accuracy with Test Data
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Figure 6.13: Overall Summary for All Word Classifier Accuracy with Test Data
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firstly using the training examples, and then using the test examples. The red line on

the figures represents results when classifying all words inthe training and test set, and

the blue represent results when only classifying nouns. Theoverall performance with

the training examples is greatly impaired by the results for“give”. However, when

considering only the test nouns the classifier gives promising results. The results for

the test examples imply that the classifier has not yet stabilised as there are no clear

indications of overtraining. There is an initial dip in accuracy explained by the fact that

prior to training, at iteration 0 the classifier always picksthe first, and most frequent,

sense of words. For Semcor this gives high accuracy as the distribution of senses in

WordNet was calculated using frequency counts from Semcor.However, the accuracy

of such an approach for other corpora tends to be lower as demonstrated in the Senseval

2 English lexical sample test where the overall accuracy forselecting the most frequent

sense is 47.6%. As the classifier starts to make more informedpredictions, the number

of errors made initially increases compared to selecting the first sense. By the 16th

iteration the accuracy starts to increase. Currently, the classifier does not generalise

well given the substantial gap between training example andtest example accuracy.

Considering only the performance with the test examples, the classifier currently

reaches its best performance for all evaluation words at iteration 5 with all test words,

and at iteration 31 when only considering nouns. Table 6.8 shows the results at this

iteration. In order to provide a baseline accuracy, the accuracy whilst only considering

the first sense for the test words is included in table 6.8. According to WordNet, the

first sense of a word is the most frequent sense within the Semcor corpus. Whilst

this baseline provides the percentage of instances the firstsense of a word is taken as

correct within the Semcor corpus, it tells us little about the comparative performance

of the classifier against other WSD systems. Also, as the frequency of word senses in

Semcor was used to order senses in WordNet, it is expected that such a baseline will

be biased for Semcor. This is reflected in similar baselines for alternative corpora, for

instance for the Senseval lexical sample test data, only 48%of words are assigned the

first sense in WordNet (Note that the lower baseline of 45% is heavily influenced by the

verb “give”. The most polysemous word in the Senseval lexical sample test has only

16 senses). It is further reflected by the fact that the noun baseline here is higher than

the human inter-tagger agreement rate of 57% between Semcorand the DSO corpus

(Kilgarriff, 1998a). Other work follows the gold standard of Senseval to implement an

alternate WSD system such as an adapted version of Lesk (1986). However, it is not

157



6.3 A New Statistical Technique for WSD

All Word First Sense Noun Best Noun FirstWord
Best Accuracy Accuracy Accuracy Sense Accuracy

Dog 100% 100% 84.62% 100%
Eye 33.33% 95.56% 40% 95.56%
Family 46.67% 42.22% 46.67% 42.22%
Give 3.93% 21.35%
Information 35.71% 62.5% 35.71% 62.5%
Instruction 60% 60% 60% 60%
Party 25% 56.25% 18.75% 56.25%
Report 36.36% 72.73% 36.36% 72.73%
Suggestion 66.67% 66.67% 66.67% 66.67%
Vote 33.33% 50% 0% 50%
Work 22.03% 38.98% 28.81% 38.98%
All Words 23.97% 45.06% 38.63% 61.48%

Table 6.8: Best Test Data Results For All Word ME WSD Classifier

possible within the time available to do the same here. Also,the current system only

represents a prototype of a ME WSD system. As such, a number ofelements which

may improve the classifier, such as feature reduction, are unavailable as a working

ME training system was required prior to the development of such elements. The

experiments presented here do not represent a full scale evaluation of such a ME WSD

system, only preliminary tests.

Problems with give: The results for verb “give” show some discouraging results at

this stage. It is expected that the results would be at best modest given the ambiguity of

the verb. However, the results for the test examples are at best just under twice better

than random (1/45). We can also see from the results that it isdue to “give” that the

classifier cannot be trained further, as some of the statistics of the training examples

for “give” become incomputable at iteration 32. There are encouraging results up

to iteration 4. However, the classifier quickly degeneratesfrom that stage on. To

understand why this is occurring we must look more carefullyat the results.

Accuracy only gives us information about the most likely sense for each example.

However, to have a more complete impression of what is occurring with the classifier,

it is beneficial to consider where the correct sense occurs ina list of senses ordered

by the probability assigned by the classifier. The average rank of the correct sense
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in such a list can be used as a measure to see if the WSD ME classifier is improving

or deteriorating in accuracy. Figure 6.14 shows the averagerank of the correct sense

of the verb “give” when testing with training data (red line)and test data (blue line).

The graph in figure 6.14 gives a clearer idea of how the classifier is performing. Over
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Figure 6.14: Average Rank Assigned to Correct Sense of “Give” Using All Word ME
WSD Classifier

the course of training, the correct sense of “give” according to the Semcor examples

becomes more likely compared to other senses, showing that some progress is made in

improving the ME classifier. By the 5th iteration, on average the correct sense occurs in

the top 9% of senses as ranked by the classifier. In contrast, classifications for the test

set produce the best ordering of senses at iteration 28 wherethe correct sense occurs on

average in the top 14% of senses ranked by the classifier, withlater iterations showing

a slight deterioration in results.

Throughout these experiments, all the potential features found in the training ex-

amples were used for the ME classifier. The likelihood is thatmany of the features

over-complicate the statistical model and consider relationships that are potential con-

tradictions, or do not assist in the task of WSD. Such examples include features that are

highly probable for local contexts that differ in the word sense assigned. For “give”, we

see that in many cases the initiators and goals of the verb formany different senses are
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people. This leads us to assume that in most cases we are not interested in modelling

such facts. Until suitable feature induction techniques are developed for this classi-

fier, it is impossible to tell how significant any improvementwould be with a reduced

feature set.

Experiment 2 Creating Individual Classifiers for Specific Words

The first experiment generated a single WSD classifier for anyword using a ME WSD

classifier. Given the inherent difficulty in the field of WSD toproduce single statistical

models capable of modelling all words in a language to a high level of accuracy given

limited training data, it is common to find that individual models are created per word

in a language for WSD. Words attain their best accuracy at different stages of the

training, and due to the examples and features for “give” theclassifier is only trained

up to iteration 31. By splitting the single classifier into different classifiers, one for each

test word, it is also possible to train the classifiers further. It is assumed that results will

improve as only relevant examples from the corpus are considered by each classifier,

and there is also the benefit of using classifiers at varying iterations of training for each

of the words.

Experimental parameters of the first experiment were retained where possible, specif-

ically:

• The same data is used

• The feature set from the first test remain the same

The training and test examples are split into 11 sets such that in each set only examples

of words similar to the word of interest are kept. This allowsfor 11 different classifiers

to be trained, one for each word of interest. Table 6.9 shows the data available for

evaluating each of the classifiers independently. The “Number of Similar Training

Examples” column shows the number of examples for words usedduring training that

are semantically similar but have a different word form to the test word. For further

detail about the distribution of the examples for each sense, see Appendix F. Two tests

are performed with the different example sets. Firstly, we shall use the same features

from experiment 1. A further experiment is performed to see how the distribution

features affect these classifiers by removing such distribution features. The results of

both tests are then combined to give a final combined result.
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Number of Number of Number
Word Training Similar Training of Test

Split

Examples Examples Examples
Ratio

Dog 25 364 13 65.79%
Eye 113 72 45 71.52%
Family 83 407 45 64.84%
Give 406 32 178 69.52%
Information 81 225 40 66.94%
Instruction 10 270 5 66.67%
Party 46 299 16 74.19%
Report 47 292 22 68.12%
Suggestion 16 279 6 72.73%
Vote 12 110 6 66.67%
Work 142 252 59 70.65%

Table 6.9: Data Available for Each Word of Interest

Results Using Distribution features: Figure 6.15 shows the disambiguation accu-

racy of each new WSD ME classifier with the training examples.The effects of the

additional training can be seen immediately. The chart alsoshows that the individual

word classifiers attain success earlier in training process, and classifiers can be trained

much further than before. The improvement in the initial stages of training for indi-

vidual words is due to the comparative simplicity of the classifiers in comparison with

the large complex classifier used for experiment 1. Figure 6.15 shows training up to

iteration 304. However, most classifiers were trained much further to see if further

improvements were possible.

Results for “report” show surprising characteristics. In the first experiment it could

be seen that toward the later stages of training, the accuracy for disambiguating “report”

showed a slight negative trend. This trend occurs much laterin the new classifier, but

is more dramatic. Again, this is probably due to not reducingthe feature set, and

because four different senses of “report” are very similar.This means that some con-

text examples are insufficient for resolving the ambiguity given the fine-grained sense

distinctions contained within WordNet.

“Give” shows similar difficulties with the new classifier, but again will not train

past iteration 31 without feature reduction. Given that data for other similar verbs was

not specifically collected, this is expected to some extent.
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Different Word Classifiers Accuracy During Training (Using Distributional Features)
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Figure 6.15: Individual Word ME WSD Classifier Accuracy During Training

Figure 6.16 illustrates the accuracy of disambiguating thetest examples with the

new classifiers. The accuracy of the classifiers with the testexamples shows an overall

trend to improve over more training iterations, except for “party” where the best re-

sults are attained during early iterations. This suggests some overtraining for “party”

almost as soon as the classifier starts training. This may be due to tagging errors within

Semcor, for instance consider the sense of “party” in:

“She wrote it down right between the weekly PTA meetings and the Thurs-

day night neighborhood card parties.” (Semcor Source: br-f08 paragraph

16 sentence 1)

Here, a natural interpretation of “party” would be WordNet sense 2, meaning a so-

cial event where people are gathered for entertainment. However, Semcor has “party”

tagged as sense 4, meaning the actual group of people that aregathered for pleasure.

Further similar examples exist within Semcor. Such inaccuracies not only skew results

from the classifier, but may also cause contradictions within the features extracted that

create difficulties for the ME WSD classifier.

162



6.3 A New Statistical Technique for WSD

Different Word Classifiers Accuracy with Test Data (Using Distributional Features)
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Figure 6.16: Individual Word ME WSD Classifier Accuracy withTest Data

Table 6.10 summarises the best test results for each word, giving the best training

accuracy during those iterations, the first sense accuracy as a baseline, and quoting the

best iterations. The best iterations are found by determining the set of iterations for

which the best test results are attained, then by considering the best training results for

those iterations and the lowest average rank for the correctsense. Overall results show

improvement over those of experiment 1. However, results for “give” are not signif-

icantly improved and results for “vote” are worse (partly due to a lack of examples).

Results Without Distribution features: A similar set of classifiers without distribu-

tion features was also tested. This may improve the results of some classifiers as each

classifier is trained only using relevant examples for the word the classifier represent,

and the distribution of senses may be less affected by the distribution of similar senses

for different words. Disambiguating the training examplesover the various iterations

produces the graph in Figure 6.17. Without using the distribution features, more
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Test First Training
Word

Best Test
Sense

Training
First Sense IterationsAccuracy

Accuracy
Accuracy

Accuracy
Dog 100% 100% 100% 100% All Iterations
Eye 62.22% 95.56% 92.92% 92.04% 295→
Family 53.33% 45.22% 90.36% 48.19% 212→
Give 3.93% 21.35% 23.15% 21.67% 4
Information 40% 62.5% 72.84% 61.73% 1
Instruction 60% 60% 100% 50% 112→
Party 31.25% 56.25% 71.74% 54.35% 1
Report 27.27% 72.73% 27.66% 72.34% 1
Suggestion 66.67% 66.67% 100% 56.25% 226-367
Vote 50% 50% 100% 91.67% All Iterations
Work 30.51% 38.98% 74.65% 39.44% 3
All Words 29.19% 45.06% 55.86% 45.57%
Nouns 46.69% 61.48% 78.96% 62.43%

Table 6.10: Best Results for Individual Word ME WSD Classifiers (Using Distribu-
tional Features)

Different Word Classifiers Accuracy During Training (Without Distributional Features)
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Figure 6.17: Individual Word ME WSD Classifier Accuracy During Training
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classifiers have difficulties during training, namely thosefor “family” and “suggestion”.

This suggests that for those words, distribution features aid production of a better clas-

sifier. For “suggestion” this is possibly due to the lack of examples and thus the dis-

tribution features present a more important role in the WSD process. However, the

same cannot be said for “family”. Looking more closely at thesenses of “family” sug-

gests that the classifier could have problems with the similarity of the senses relating to

“group”, and therefore using distribution features helps in reducing errors by favouring

the selection of frequently occurring senses for a given example. The classifiers with

training problems when using sense distribution features still show the same behaviour;

however the overall accuracy attained while training showssignificant improvement.

Figure 6.18 shows the graph of results for disambiguating test examples using the

new classifiers without distributional features. “Dog” performs marginally worse here

Different Word Classifiers Accuracy with Test Data (Without Distributional Features)
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Figure 6.18: Individual Word ME WSD Classifier Accuracy During Training

as the classifier selects a “person” definition in a limited number of cases. “Party”

also shows slightly worse performance, although this wouldbe expected if the corpus

contained incoherent sense tags. “Family” portrays some ofthe problems present for

“report”, due to similarity within a number of the senses of the word, and now it can
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only be trained up to iteration 261. “Instruction” and “suggestion” also perform worse,

although this is likely to be due to the lack of examples to determining suitable features.

Overall, however, the results achieved without using sensedistribution features give

significant improvements over the results with the distribution features as they tend

to perform better with words that have larger numbers of examples. Whilst still not

giving adequate accuracy for “give”, there is a significant improvement. Table 6.11

summarises the best results for the classifiers not using distribution features.

Test First Training
Word

Best Test
Sense

Training
Sense First IterationsAccuracy

Accuracy
Accuracy

Accuracy
Dog 92.31% 100% 100% 100% 2→
Eye 64.44% 95.56% 93.81% 92.04% 67,68
Family 37.78% 42.22% 65.06% 48.19% 10
Give 10.67% 21.35% 26.11% 21.67% 1
Information 70% 62.5% 96.3% 61.73% 354-696
Instruction 40% 60% 90% 50% 6→
Party 18.75% 56.25% 95.65% 54.35% 46→
Report 54.55% 72.73% 70.21% 72.34% 45-48
Suggestion 33.33% 66.67% 100% 56.25% 42-55
Vote 66.67% 50% 100% 91.67% 30-65

104-139,Work 38.98% 38.98% 92.25% 39.44%
141-150

All Words 34.71% 45.06% 62.59% 45.57%
Nouns 51.36% 61.48% 88.35% 62.43%

Table 6.11: Best Results for Individual Word ME WSD Classifiers (Without Distribu-
tional Features)

From the current experiment, 22 different classifiers have been produced to perform

WSD on 11 words. If the best classifiers for each word are selected, the results in table

6.12 are achieved. Whilst the overall accuracy of the systemacross all words is fairly

low, the tests performed here show results for extreme situations, given the average

polysemy of the words used in the tests. The words tested havea higher classifier pol-

ysemy than would be expected for typical words in WordNet or even in standard texts.

Statistics about word polysemy in the tests performed, within WordNet and in open-

texts are summarised in table 6.13. Given the additional senses to consider, and the

lack of feature reduction, these results can be seen as baseline values for the approach
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Test First Training
Word

Best Test
Sense

Training
First SenseAccuracy

Accuracy
Accuracy

Accuracy
Dog 100% 100% 100% 100%
Eye 64.44% 95.56% 93.81% 92.04%
Family 53.33% 42.22% 90.36% 48.19%
Give 10.67% 21.35% 26.11% 21.67%
Information 70% 62.5% 96.3% 61.73%
Instruction 60% 60% 100% 50%
Party 31.25% 56.25% 95.65% 54.35%
Report 54.55% 72.73% 70.21% 72.34%
Suggestion 66.67% 66.67% 100% 56.25%
Vote 66.67% 50% 100% 91.67%
Work 38.98% 38.98% 92.25% 39.44%
All Words 37.7% 45.06% 64.83% 45.57%
Noun 56.42% 61.48% 92.17% 62.43%

Table 6.12: Best Performance for Individual Word ME WSD Classifiers

Test WordNet Natural Text
POS Average Average Average

Polysemy Polysemy Polysemy
Noun 6 1.23 ≈4.7
Verb 45 2.17 ≈8.3

Table 6.13: Statistics about Polysemy

described. The results when only considering nouns are, however, very promising.

Improvements in these results are expected to follow from use of feature reduction

techniques.

Experiment 3 Improving the Cost of Manual WSD

The previous experiments show that the current accuracy of the classifiers is inadequate

to perform automatic WSD to the quality required for applications. In order to use

output from the WSD classifiers, each classification must be checked manually. One

way in which the classifiers can aid manual WSD is to reduce thenumber of senses to
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be considered, therefore simplifying the task for a human tagger. This is a natural way

forward, for when erroneous classifications are made the correct sense classification is

typically ranked highly according to the classifiers.

A cost function is firstly required in order to test the improvement possible by

reducing the number of senses being considered during WSD. Assume that the “cost”

of tagging a word is proportional to the average number of senses for all words in a

text being annotated, hence the cost function for tagging a word when an incorrect

classification is made is given in equation 6.44.

c = Tn (6.44)

whereT is the average time to disambiguate a word, andn is the average number of

senses for a word minus one. Now suppose that only a reduced number of senses,αn

on average, are supplied to the human tagger, then the cost becomes:

c = αTn (6.45)

whereα is a parameter that reduces the senses being considered. In its simplest form,

α is the proportion of senses to be considered, and is bound by equation 6.46.

0 ≤ α ≤ 1 (6.46)

However this does not take into account situations where thecorrect sense is not listed

in the reduced set of senses being considered. On average, the classifier will have a

probability,pe, of the correct sense not being a member of the set of reduced senses.

The total cost function is therefore represented as:

c = αTn+ (1− α) peTn (6.47)

The cost function can be further simplified, asTn is a constant,k, for a given set of

words, so we can write:

c = k (α+ pe − αpe) (6.48)

r =
c

k
= α + pe − αpe (6.49)
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wherer is the relative improvement in the cost of tagging whilst using a WSD classifier

to reduce the senses being considered. With the relative improvement function, if

α = 0, the classifier only picks the most probable sense meaning. The additional

relative cost for checking other senses will be the error forthe classifier. The worst

case scenario is whenα = 1, as the human tagger must consider all word senses (i.e.

the number of senses is not reduced).

Testing the best classifiers produced in experiment 2 with the cost function 6.49 for

considering senses not initially selected by the classifiers produces the graph in Figure

6.19. The red line represents the results when disambiguating the test examples, whilst

the blue line shows the results for disambiguating nouns. The green and magenta

lines represent the manual tagging cost of all words and nouns respectively at sense

reductionα. For both nouns and all word tests, the classifiers minimise the relative cost
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Figure 6.19: Selection Reduction Cost Reductions

of manual tagging by selecting a sense and then leaving a further 25% of the leftover

senses as potentially correct. The additional cost of manually checking senses assigned
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to words at this stage is 0.4 for both all words and for nouns. This is equivalent overall

to a potential 60% reduction in the cost required to manuallydisambiguate words in

open-texts.

A further way of reducing the senses for a word would be to select senses which

meet the condition expressed in 6.50 given the results from the classifier.

p(c|s) ≥ p(c|s1)× t (6.50)

wheres is a sense for the ambiguous word given in contextc, s1 is the most likely sense

selected by the ME classifier andt is a threshold. In order to evaluate the efficiency of

reducing the number of senses to consider, the results show the effect of the threshold

over the proportion of senses being considered and the resulting cost. These results

are illustrated in Figure 6.20 for all words, and Figure 6.21for nouns. The red line

shows the percentage of senses being considered at threshold t, the blue line represents

the error of the classifier at thresholdt, and the green line represents the manual cost

tagging cost at reduction thresholdt.
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Figure 6.20: Selection Reduction 2 Cost Reductions (All Words)
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Selection Reduction 2 Results for Nouns
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Figure 6.21: Selection Reduction 2 Cost Reductions (Nouns)

Both graphs show that by using thresholds few extra senses are considered before

t = 0.1, although this is not totally unexpected. Given the relatively small number

of examples, there may be aspects of the test contexts not modelled by the features.

This, together with the number of training iterations used for the classifiers, means that

some more generic aspects of the test contexts mislead the classifiers into being fairly

confident about incorrect classifications. A confident classifier will assign a relatively

high probability to a small group of senses compared to othersenses of a word. Un-

fortunately the gain made in precision when considering more senses is not significant

enough to warrant using such a technique for reducing the number of senses being con-

sidered. It is unnecessary to test for when the threshold is between 0 and 0.1, as this

represents the weakest results from the classifiers and therefore will select more incor-

rect senses resulting in an increase in the cost of manually disambiguating the words.

The best results are shown in table 6.14.

Given these results using 6.50, the initial sense reductiontechnique of adjusting

α in 6.49 is preferred as a method for reducing the cost of manual WSD. The sense

reduction techniques show that even error-prone techniques can lead to significant cost
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% of Extra
Cost Threshold Senses

Considered
All Words 0.524 0.4 9.2%
Nouns 0.435 0.6 17.7%

Table 6.14: Best Results for Threshold-Based Sense Reduction

benefits over manual sense tagging.

Experiment 4 Tests Using Ambiguous Contexts and for Handling Untrained Word

Senses

Handling Ambiguous Contexts These experiments have determined how well the

classifiers can classify words given unambiguous local contexts. However, the situa-

tion where context words are ambiguous has not been tested. In a complete system,

as described in section 6.1, the senses to be considered for most words have already

been reduced, and some words will have even been disambiguated with Yarowsky’s

one-sense-per-collocation and one-sense-per-discoursehypotheses (Gale et al., 1993;

Yarowsky, 1993, 1995). At this point in time not enough data was available to be able

to create other partial taggers and to extend the current statistical component to work

with more words. With more data, the effect of calculating the product of the prob-

abilities of any combination of senses could be used to select senses from multiple

ambiguous words. Applying such an approach means that consideration must be made

about optimisation due to the combinatorial explosion arising from the number of pos-

sible sense assignments (Wilks et al., 1990). This experiment demonstrates the effects

of simultaneously disambiguating two words, and demonstrates that the classifiers can

generalise to the point of disambiguating word senses for which no training data was

available.

Examples are selected from the Semcor data where “give” contexts contain a noun

for which a classifier has been created, and the equivalent noun contexts were also used.

Rather than exhaustively testing every combination of possible senses, the senses of the

words in the context will be set to 0, as sense 0 considers all senses of a word at once.

Disambiguating the example phrases produces the results intable 6.15, where the rank

of the correct sense is presented when it is not selected as most likely.
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Sentence
ID

Sentence Frame Training/
Test Data

Noun
Result

“give”
Result

br-k18
para-26
sent 2

“. . . she’d give#0 me a look out of narrowed
eyes#0. . . ”

Test Correct Incorrect
4th

br-p12
para-41
sent 5

“. . . softening eyes#0 gave#0 her a look. . . ” Training Correct Incorrect
12th

br-g11
para-1
sent 6

“. . . the family#0. . . gives#0 us both some immu-
nity. . . and a way. . . ” (note the 2 local contexts for
give)

Training Correct Incorrect
2nd

br-a02
para-36
sent 1

“. . . the ballot couldn’t give#0 enough informa-
tion#0. . . for the voters. . . ”

Training
and Test

Correct Correct

br-f03
para-24
sent 1

“. . . priest. . . gave#0 him. . . information#0 . . . ” Training Correct Incorrect
2nd

br-j11
para-14
sent 1

“Detailed information#0 on record lengths. . . is
given#0 in the section . . . ”

Test Correct Incorrect
2nd

br-j01
para-2
sent 2

“. . . give#0 otherwise unobtainable informa-
tion#0. . . ”

Test Correct Correct

br-j03
para-6
sent 3

“They also give#0 information#0 which will
aid. . . ”

Training
and Test

Correct Correct

br-l14
para-29
sent 2

“. . . who gave#0 the information#0. . . ” (“person”
substituted for “who”)

Training Incorrect
3rd

Incorrect
12th

br-j37
para-7
sent 5

“Both parties#0. . . were busily atwork. . . trying. . .
give#0 the elections a. . . degree”

Training Correct Correct

br-c04
para-39
sent 1

“The party#0. . . gave#0 the ”chorines“ a
chance. . . ”

Test Incorrect
5th

Incorrect
3rd

br-k29
para-6
sent 2

“. . . permission to give#0 a camp reunion Hal-
loween party#0. . . ”

Training Correct Correct

br-a02
para-22
sent 2

“. . . give#0. . . a favorable report#0. . . ” Test Correct Correct

br-j34
para-3
sent 6

“They will give#0 suggestions#0. . . ” Test Correct Incorrect
2nd

br-j34
para-12
sent 9

“. . . his suggestions#0 are given#0 the consideration
they deserve. . . ”

Training Correct Incorrect
2nd
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br-h11
para-1
sent 2

“This work#0 gave#0 a heatof formation. . . ” Training
and Test

Correct Correct

Table 6.15: Ambiguous Context WSD Test Results

For the Semcor examples tested here, very promising resultsare seen. In some cases,

the selected senses considered incorrectly classified would also make for valid inter-

pretations. However, the test performed here is to see how well the classifier predicts

Semcor’s sense classification. Table 6.16 summarises the precision of the classifiers

selecting exactly one sense, and selecting a reduced set of senses for further disam-

biguation. The most likely reason for the relatively good results in this smaller test

Precision
Classifier Selecting 1 sense 65.6%
Classifier also considering 25% of
senses other than the most likely

87.5%

Table 6.16: Precision Summary for Ambiguous Context Test

compared to experiments 1 and 2 is that all contexts used herecontain a number of

relationships. In the previous tests a number of contexts are tested containing smaller

numbers of relationships, for instance only a determiner linked to the noun. More

words and relationships make for a richer context, allowingmore information to be

available to the ME WSD classifier. Primarily, results for “give” are dramatically bet-

ter for this smaller test.

Handling Unseen Senses A further aspect of the classifiers to be considered is the

ability of the classifiers to generalise sufficiently to disambiguate senses for which no

examples were available in the corpus. This is possible as the features use semantic

similarity to match words instead of word-form. Given that no word sense disam-

biguated examples for such senses are currently available,the problem in question is

how to evaluate the classifiers’ performance at generalising to such new senses. In

order to show that this generalisation is at least possible,a small number of examples

containing word senses similar to the word senses of interest are selected, as long as
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the context still makes sense when the words are replaced with the word of interest.

Table 6.17 shows the selection, giving with each example itssource and the result of

disambiguation after the word of interest has been substituted into the example. Ex-

amples of classifying contexts with the missing senses of dog, family, instruction and

suggestion are not given here as the best classifiers createdso far make use of sense

distribution features, making them much less likely to generalise to new senses. The

classifiers not making use of sense distribution features do, however, show evidence of

br-p01 paragraph 12 sentence 1
“. . . glued to DrexelStreet. . . ”→ “. . . glued to eye. . . ” or “. . . glued to the eye. . . ”
“Eye” successfully labelled with sense 4, meaning a center of a location.
br-k17 paragraph 34 sentence 3
“. . . get inside Majdanek. . . ”→ “. . . get inside the eye. . . ” or “. . . get inside the eye of the city. . . ”
“Eye” successfully labelled with sense 4, meaning a center of a location.
br-j55 paragraph 16 sentence 1
“. . . defending. . . through loopholes. . . ”→ “defending. . . through eyes. . . ”
“Eye” successfully labelled with sense 5, meaning a hole.
br-g31 paragraph 11 sentence 9
“. . . atmosphere. . . content. . . ”→ “. . . atmosphere. . . information. . . ”
“Information” successfully labelled with sense 2, meaningdata.
br-j32 paragraph 1 sentence 1
“. . . organize the. . . contents. . . ”→ “. . . organize the. . . information. . . ”
“Information” successfully labelled with sense 2, meaningdata.
br-e23 paragraph 18 sentence 2
“. . . illusion of depth. . . ”→ “. . . illusion of information. . . ”
“Information” successfully labelled with sense 4, meaningselective information/entropy.
br-e30 paragraph 67 sentence 1
“. . . eye to minimum inconvenience to the operation. . . ”→ “. . . eye to minimum information to the operation. . . ”
“Information” successfully labelled with sense 4, meaningselective information/entropy.
br-e25 paragraph 23 sentence 1
“. . . a description of the. . . parts. . . ”→ “. . . a report of the. . . parts. . . ”
“Report” sense 5 is as likely as sense 1, where sense 5 is a written evaluation.
br-j31 paragraph 3 sentence 2
“. . . saying in a. . . condemnatory tone. . . ”→ “. . . saying in a. . . condemnatory report. . . ”
“Report” sense 5 is as likely as sense 1, where sense 5 is a written evaluation.
br-j12 paragraph 7 sentence 4
“. . . criticism of. . . views. . . ”→ “. . . reports of. . . views. . . ”
“Report” successfully labelled with sense 6, meaning a composition/paper.
br-f03 paragraph 19 sentence 3
“. . . impulses in. . . associated word symbols. . . ”→ “. . . impulses in. . . associated word reports. . . ”
“Report” successfully labelled with sense 6, meaning a composition/paper.
br-j37 paragraph 8 sentence 1
“. . . deterioration of local party organization.”→ “. . . deterioration of local party vote.”
“Vote” successfully labelled with sense 4, meaning a body ofvoters.
br-h18 paragraph 8 sentence 1
“. . . agenda of. . . dozens of international bodies. . . ”→ “. . . agenda of. . . dozens of international votes. . . ”
“Vote” successfully labelled with sense 4, meaning a body ofvoters.
br-j06 paragraph 2 sentence 2
“. . . determine values. . . of. . . reactions. . . ”→ “. . . determine votes. . . of. . . reactions. . . ” or “. . . determine reaction votes. . . ”
“Vote” successfully labelled with sense 5, meaning a voter turnout.
br-g15 paragraph 1 sentence 1
“. . . number of characteristic elements. . . ”→ “. . . number of characteristic votes. . . ”
“Vote” successfully labelled with sense 5, meaning a voter turnout.
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br-g14 paragraph 6 sentence 1
“. . . record of afew pictures. . . ”→ “. . . record of afew works. . . ”
“Work” sense 5 is as likely as sense 2, where sense 5 is a body ofwork from a writer.
br-j19 paragraph 19 sentence 7
“. . . votes for. . . pair of pictures. . . ”→ “. . . votes for. . . pair of works. . . ”
“Report” sense 5 is as likely as sense 2, where sense 5 is a bodyof work from a writer.

Table 6.17: Examples of Disambiguating Word Senses Where NoTraining Data Was
Available

this kind of generalisation.

Currently, the results in table 6.17 are possible without collecting further examples.

However, results could be improved by including sentences containing words similar

to the test words in the training data, thus producing a broader spread of examples.

We must also assume that results are biased towards senses for which examples have

been collected; this is clearly seen with contexts containing determiners and for clas-

sifiers created with limited numbers of examples. This is because any examples for

words similar to those particular words’ senses without examples in Semcor have been

collected by chance.

6.3.4 Limitations

The current limitations of the technique introduced in thischapter can be categorised

as; test limitations, data limitations, or feature reduction limitations.

Test Limitations

There are two subcategories of limitations in the tests presented here; the type of tests

performed and the objectivity of the tests performed. The classifiers produced thus far

only comprise part of a total WSD system, as described at the start of the chapter. The

intention of the statistical component tested in this chapter is to make a decision, given

the senses remaining from previous components of the WSD system, regarding which

sense is most likely for the ambiguous words. As such, the classifiers make use of very

tight contexts that do not use any cross sentential information, nor information about

other words outside the local contexts. If the tests were performed by human partici-

pants, it would be likely that different conclusions would be made by the participants

to the classification of the sense found in Semcor. Thereforeit may be more sensible
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to compare results from the classifiers with results from humans when given the same

information. This would reflect a more suitable test for the way in which the classifiers

work.

The objectiveness of the tests is also a consideration, as they do not give results

to directly compare with results from other existing techniques. The situation is com-

pounded by using examples for words with an average polysemygreater than the av-

erage polysemy for full texts. A word like “give” cannot giveresults indicative of the

performance of classifiers to disambiguate most other verbs. This can be addressed

either by implementing other techniques and testing them with the same data, although

the data sample is small, or by collecting enough data to be able to repeat the Sense-

val tests for which test results are available for a large number of different techniques.

The latter approach is preferable as Senseval currently represents the gold standard for

evaluating WSD techniques.

Data Limitations

Given the small number of both syntactically and sense labelled examples available it

is not possible to perform more large scale evaluations across entire documents, nor is

it currently possible to disambiguate adjectives or adverbs. This has been due to the

cost associated with manually checking the syntactic structures produced by the CMU

link grammar parser.

A further problem with the data is due to the way in which the sentences were

selected. All sentences containing at least one word of interest were extracted from

Semcor. Local contexts for all words in the selected sentences were kept as the clas-

sifiers could be trained with, and make use of words similar tothe test words. The

classifiers would benefit from being trained with as many examples of words similar

to the words of interest. However, not all sentences containing at least one word sim-

ilar to a test word were extracted. This may have produced biased results by omitting

examples from Semcor that could have been used to train the WSD ME classifiers. By

using the data from similar words, the classifier could be trained with a richer source

of more varied examples.
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Feature Reduction

Currently all features have been collected from training examples. However, their

validity and usefulness remains to be evaluated. This unnecessarily increases the com-

plexity of the classifiers, and causes incorrect conclusions to be made during WSD. For

instance, considering the examples for the verb “give”, it is clearly seen that most of

the time the initiator and goal of the verb is “person#1” for most senses of “give”. In-

deed, for some of the senses for which there are few examples in Semcor, all examples

use “person#1” for the initiator and goal if they are available. This would indicate a

conditional probability of 1 for later senses of “give” whenthe context only comprises

of an initiator similar to “person#1”. It would be more beneficial to consider the ear-

lier senses of “give” given such a weak context. Clearly thisshows that such features

actually hinder the performance of WSD.

6.4 Future Work

The work presented leaves many aspects for further investigation before it can be used

for large scale WSD. Given the automatic method used for collecting features from

example local contexts, the most immediate requirement is the implementation of a

suitable feature reduction technique. A number of techniques are briefly discussed in

section 6.3.2. However, the implementation of such techniques is beyond the scope of

this thesis. Once an adequate reduced set of features is available, work should con-

centrate on creating further example data from Semcor, Senseval, and further available

sources, in order to test the technique using the Senseval experiments. With this data

available, classifiers could be created and evaluated comparatively against other WSD

techniques.

Evaluating the impact of using semantic similarity to matchwords in features, com-

pared with using only word-form, is currently untested. Thecurrent hypothesis is that

by using semantic similarity the coverage of the features will be expanded, and thus

require less training data to give comparable results. There are two tests that should

be performed to measure the effectiveness of using semanticsimilarity in the statistical

features:

1. Firstly, the “similar word” relations for each part-of-speech should be defined to

be true only if both the word-form and sense are the same for the pair of words
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being tested. With this change to the relations, new classifiers would need to be

trained using the same data as the classifiers presented in this chapter, and then

the two different types of classifiers could be compared to see if matching using

similarity improves results.

2. Classifiers using the current feature set could be trainedonly using data for sim-

ilar word senses and not with specific examples for the words of interest them-

selves. The classifiers should then be tested using all localcontexts for the words

of interest to evaluate how well they perform WSD on examplesfor words not

used in the training data. This would give an indication of how successful the

classifiers could be at disambiguating word senses for whichno examples were

available.

Another aspect of the current work which should be tested comparatively is the defini-

tion of local context introduced in this chapter. The difference in the accuracy attained

from using syntactic relations to create local contexts, rather than using a more tradi-

tional context window should be tested, where a context window represents context as

then content words directly surrounding the word being evaluated.

In order to further improve WSD accuracy using only the ME classifiers, a number

of options should be considered:

• Using Discourse Representation Structures (Kamp, 1981) asinput to the system

instead of only the syntactical structure, in order to solveissues with anaphora

and to include cross sentential relationships to provide richer local contexts

• Implement features from other WSD ME classifiers, for instance the features

tested by Suárez and Palomar (2002); Dang and Palmer (2002); Klein et al.

(2002), and test features reflecting the syntactic structure of local contexts and

morphological information

There is also no reason to restrict the statistical component to only the ME paradigm.

During the course of the work it was found that the constant information calculated for

training lends itself almost directly to creating Support Vector Machines (SVM) (Boser

et al., 1992; Cortes and Vapnik, 1995), a technique currently regarded as state-of-the-

art for statistical classification. A simplified description of SVMs is that they can be

used to create binary decision trees (Platt et al., 2000). Such a decision tree contains at

each node a SVM capable of making a binary choice. Training ofSVMs is typically
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much faster than training ME classifiers, as SVMs are purely trained for classification

and not to predict some conditional probability of the decision for some context. This

gives the possibility of improved results using the currenttraining method of splitting

the data into training and test data. However, it can also give the possibility of training

using cross validation techniques (Stone, 1974). This makes it possible to use a larger

percentage of the data for training data, whilst still ensuring the classifier can generalise

well to new examples.

Finally, it is not the intention to use the statistical technique alone to perform WSD

across full texts, but to use such a technique as a partial-tagger in a larger WSD system

as described at the start of the chapter. In order to completethe WSD system, other

partial taggers must be created, potentially using the samedata as used by the statistical

technique. With all four partial-taggers implemented, theeffectiveness of such a multi-

tagger technique can be evaluated.

6.5 Summary

In this chapter, a definition for context based on syntactic and semantic features of

language was introduced. This new definition was used in the creation of a statistical

classifier for the purpose of WSD. The Maximum Entropy framework, as used by other

WSD and classification systems, was followed to create a collection of classifiers. Fi-

nally a number of tests were performed to evaluate the usefulness of such a classifier in

isolation of further processing. In order to perform the tests, a corpus of local contexts

was generated from selected sentences in Semcor for 11 wordswith an average poly-

semy of 22.1 senses. From this corpus, 70% of the selected sentences were reserved

for training the ME WSD classifiers and the remainder for testing.

Table 6.18 summarises the results for the ME WSD classifiers at disambiguating

the training examples taken from Semcor. Iterations producing the best results while

disambiguating the test examples are used to create these results.

Table 6.19 summarises the best results for the ME WSD classifiers at disambiguat-

ing the test examples, again taken from Semcor.

It is difficult to objectively compare these results with those of other techniques, as

the test presented here is too small and no other techniques have been evaluated using

the same data. Also, techniques using similar syntactic approaches for context, such

as the approach taken by Lin (1997), group senses to form coarser sense distinctions
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Classifier All Words Nouns
All word classifier, with
distribution features

56.50% 80.04%

Individual word classifiers,
with distribution features

55.86% 78.96%

Individual word classifiers,
without distribution features

62.59% 88.35%

Best individual word
classifiers

64.83% 92.17%

Table 6.18: ME WSD Classifier Training Summary

Classifier All Words Nouns
All word classifier, with
distribution features

23.97% 38.63%

Individual word classifiers,
with distribution features

29.19% 46.69%

Individual word classifiers,
without distribution features

34.71% 51.36%

Best individual word
classifiers

37.70% 56.42%

Table 6.19: ME WSD Classifier Test Summary

in order to avoid difficulties with handling similar meanings. The average polysemy of

the test words is also higher than would be expected in a normal text, and significantly

higher than the average polysemy of the words in WordNet. Additionally, currently the

features which form the basis of the ME classifiers are automatically extracted from

the training examples and do not undergo feature reduction.This has the effect of

the classifier using an unnecessary number of features, increasing computation time.

Examining the majority of the training results, it can be seen that the features selected

seem reasonable, as most of the training examples are classified correctly; however the

results with the test data are much lower indicating that some of the features selected

may produce erroneous classifications and do not generalisewell. As such, it is argued

that the results presented here estimate the baseline precisions and recalls for the type

of classifier developed in this chapter.
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Given the high accuracy required for the purposes of using a WSD to improve the

results of translation systems on open-texts with domain and topic variations, there

are currently no systems capable of working completely independently from human

involvement. Given this situation, ways of reducing the number of senses to be con-

sidered during WSD were developed, along with a way to measure the relative cost of

manually disambiguating a text. The cost ratio measure usedis illustrated by equation

6.51.

r = α + pe − ape (6.51)

wherer is the cost ratio,α is the proportion of leftover senses to be considered once

the most likely sense according to a classifier has been removed, andpe is probability

that the correct sense is neither the most likely sense according to the classifier nor part

of the set of extra senses being considered. When considering all word senses,α = 1.

Two different ways of restricting senses were considered and evaluated to see if they

significantly reduce the cost of manual WSD

• Selecting the firstx% of the most likely senses, other than the most likely sense.

• Selecting senses where the probability of the sense is greater or equal to the

product of the probability of the most likely senses and somethreshold,t.

The best improvement followed from selecting the 25% most likely senses, after con-

sidering the most likely sense, with a cost in the order of 0.4. This suggests an reduc-

tion of 60% in cost over considering all senses of words beingdisambiguated whilst

performing manual WSD.

Testing was concluded by showing examples from the trainingand test data where

both the verb “give” and one of the test nouns are found in the same local context. This

small test yielded some higher than average results using the ME WSD classifier. The

results are summarised in table 6.20. These above average results were most likely

obtained due to the nature of the data collected, as the data was specifically collected

to handle most of the context words in the examples. For the larger tests, most contexts

tested only consist of one of the test words.

Finally it was shown that the classifiers generalise sufficiently to handle examples

for words senses for which there was no specific training data. This is possible due

to the use of semantic similarity in the statistical features to match words with similar

meanings (rather than word-form).
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Precision
and Recall

Classifier Selecting 1 sense 65.6%
Classifier also considering 25% of
senses other than the most likely

87.5%

Table 6.20: Precision Summary for Ambiguous Context Test

Overall, the current state of the work shows promising results. Senseval 2 scores

range from of 28.7% precision and 3.3% recall for the lowest ranked system to 69%

precision and recall for the best system for the “all word” evaluation on 3 texts totalling

5832 running words. The best results for the Senseval 2 lexical selection evaluation,

a similar evaluation to tests presented here using 45 different words with an average

polysemy of 5.2 senses, perform at a slightly lower precision and recall of 64%. Even

though direct comparison with these results is not possible, the results presented in this

chapter compare favourably with the state-of-the-art systems evaluated in Senseval 2.

As feature reduction techniques are not yet available, the current results represent a

lower bound to the potential accuracy of such a disambiguation technique. Further

work to establish larger training data sets would permit objective comparison with

other research results.
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Chapter 7

Conclusions

This chapter summarises the work and results presented in the thesis. Section 7.1

recaps the techniques presented in chapters 4 and 6, discussing the quality of the results

obtained by the test systems developed. Section 7.2 proposes future work to extend the

work presented. Finally, section 7.3 summarises the contribution made to the fields of

study.

7.1 Summary of Work Presented

The research presented in this thesis build upon two distinct fields of research:

1. Semantic Similarity

2. Word Sense Disambiguation (WSD)

The best resulting system developed from the work with semantic similarity is used in

the work performed for WSD.

7.1.1 Semantic Similarity

Semantic similarity between words is measured using WordNet’s lexical taxonomy for

nouns to produce a number of similarity measures for use as a sub-task of larger natu-

ral language processing (NLP) systems. The work develops anoriginal approach using

WordNet’s hypernym and meronym relations. By considering the shape of hypernym

structures, and reducing such structures to only consider nodes for non-technical lay-

man concepts, the similarity measures produced outperformexisting measures. The
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shape of hypernym structures is calculated using either theproduct or sum of the hy-

ponym branching of nodes within the structures and the totalstructure can be reduced

to a layman structure by removing concepts where the averagepolysemy of the words

for the concept is not greater than one. Using these ideas, a number of different mea-

sures are produced, each capable of considering three different types of structures for

measuring shape:

1. Full hypernym structures

Shape is calculated considering the hyponym branching of every node in a hy-

pernym structure.

2. Layman hypernym structures

Only the branching of the nodes for layman terms is considered for calculating

the shape the structure.

3. Flattened layman hypernym structures

In order to consider the hyponym branching of non-layman terms, their branch-

ing is added to the hyponym branching of the next layman term higher in the

hypernym structure. This is equivalent to flattening hypernym structures to only

consider layman terms, with the branches of non-layman terms associated with

the most relevant layman hypernym.

The similarity measures produced, called SBSMs, exploit the shape of the resulting

taxonomy in a variety of ways. In general the SBSMs use the ratio of generalisation

between two nouns if they have a common subsumer, and incorporate information

common to both nouns given by the structure above the most informative subsumer of

the nouns. In addition, hybrid techniques are also considered using shape together with

ideas from existing path based techniques for measuring similarity. A number of pa-

rameters may also varied to influence the results from the SBSMs, such as considering

meronyms when calculating similarity, the normalisation of values to a standard scale

for all word pairs and to select whether to use product or sum shape measures.

Two evaluations were performed; the first compared SBSM results with human

judgements, and the second used the SBSMs to disambiguate the sense of semantically

related words. The evaluation comparing SBSM results to human judgements was per-

formed using three publicly available data sets with human judgements for 65, 30 and
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28 word pairs. For each set of human judgements, results are available for a number of

existing similarity measure techniques, commonly evaluated using Pearson’s product-

moment correlation. As it is more natural for humans to orderor rank word-pairs

according to their similarities, and as values of similarity measures can be adjusted

post calculation without changing their relative ordering, the use of Pearson’s correla-

tion is believed not to produce the most objective comparison of similarity measures.

The evaluation follows the common approach using Pearson’scorrelation. However,

Spearsman’s rank correlation is also used to compare the relative ordering of word-

pairs according to similarity. Table 7.1 summarises the results from a selection of the

best existing measures and SBSMs tested. For each set of human judgements an upper

Correlation Existing SBSM
Coefficient Techniques Techniques
Pearson 0.75-0.86 0.86-0.91
Spearman 0.71-0.84 0.78-0.86

Table 7.1: Summary of the Best Similarity Human Judgement Correlation Results for
Existing Measure and SBSMs

target is available for Pearson’s correlation given the average agreement between the

human candidates for the test. For this work, we consider this upper target for Pear-

son’s and Spearman’s correlation to be 0.9, given the worst correlation between the 3

different sets of human judgements. The results show that new SBSMs improve re-

sults when comparing against human judgements, and that their best accuracies nearly

match human performance.

WSD of semantically related words is performed using the Wordsmyth thesaurus

for which experimental links to WordNet are available. The links are calculated using

the Resnik information-content similarity measure. The evaluation is performed using

the SBSMs together with a number of simple WSD algorithms. Selecting the first sense

and using the Wu and Palmer measure are used as baselines in the evaluation. Given

a selection of randomly selected hand-tagged noun entries in Wordsmyth, accuracy,

precision and recall are calculated from the results. The precision and recall results

from the best performing SBSM and WSD algorithm are comparedto the results for

the experimental links to WordNet contained in Wordsmyth. The summary of these

results is given in table 7.2. As multiple tags are assigned to words where necessary,
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Wordsmyth SBSM WSD
Links Algorithm

Precision 80% 88%
Recall 71% 91%

Table 7.2: Summary of the Best Similarity Human Judgement Correlation Results for
Existing Measure and SBSMs

it is assumed that given enough human candidates for the annotation stage, the upper

target for such an evaluation should be close to 100% accuracy, although only one

candidate annotated the entries used in the evaluation performed. The results show

a significant improvement in both recall and precision over the links calculated using

Resnik’s similarity based WSD technique.

Results were also calculated to show how frequently the WSD systems correctly

detect words with no adequate WordNet senses for an entry from Wordsmyth. The best

WSD algorithm and SBSM combination accurately detects 57% instances of words

with no adequate senses.

From the work performed with SBSMs, the measure 7.1 with shape×, referred to

asSBSM×5, performs most robustly across both evaluations.

SimSBSM5(c1, c2) = SimSBSM1(c1, c2)× normaliseCIM (d(c3)) (7.1)

SimSBSM1(c1, c2) =































shape(c1)
shape(c2)

:
if shape(c1) < shape(c2)∧

c1 6= c3 ∧ c2 6= c3

shape(c2)
shape(c1)

:
if shape(c1) > shape(c2)∧

c1 6= c3 ∧ c2 6= c3

1 : otherwise

(7.2)

shape(c) =

{

1 : if c = root(c)

#(ψ(λ(c)))× shape(ω(c)) : otherwise
(7.3)

wherec, c1 andc2 are word senses,c3 is the most informative subsumer for bothc1 and

c2, d(c) is the depth of conceptc according to WordNet’s hypernym taxonomy,ψ(x)

is the set of hyponyms for a word sensex, λ(x) is a hypernym of a word sensex, and

root(w) is the root of the hypernym structure forw.
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7.1.2 Word Sense Disambiguation

The work on WSD introduces ideas for a WSD system using a combination of partial-

taggers, as illustrated in Figure 7.1. Each of the initial partial-taggers use existing ideas,

and are intended only to restrict senses before a penultimate statistical component is

used to disambiguate as many of the remaining ambiguous words as possible. Work

was restricted to developing a statistical WSD system suitable for such a task. An

initial maximum entropy (ME) based system was developed using a number of new

ideas:

• A new definition of local context for words based on linguistic principles rather

than the classical context window based approach to context. Using grammatical

structures according to the CMU link grammar parser, local context is defined

considering information collected from the resulting links to a word.

• A new set of features is considered. These features reflect the information in the

new definition of local context, and use word similarity according to WordNet’s

lexical taxonomy for word matching. By using this alternative approach to match

words, it is possible to gather information about similar words as input to train a

statistical model thus alleviating the lexical bottleneckproblem.

A sample corpus was created to develop statistical classifiers for 10 nouns and

1 verb. The corpus consisted of a subset of Semcor sentences containing a word of

interest. These sentences were parsed with the CMU parser and manually checked to

select adequate linkages. The final corpus therefore consisted of both sense tagged

words and linkages from which local contexts were extracted. From this corpus, 70%

of examples were used to generate features and train the statistical classifiers, whilst

the remainder was reserved for testing purposes.

Although a complete system was not created due to time constraints, with the lack

of feature reduction techniques being most notable in the results, the current perfor-

mance of the maximum entropy approach with the new set of features was evaluated

in five different tests:

• Evaluation of the performance of a generic classifier built to disambiguate in-

stances of the 11 test words.

• Evaluation of the performance of specialised classifiers built to handle each of
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Figure 7.1: Proposed Minimal Set of Partial-Taggers for WSD

the 11 test words. Two classifiers were trained for each word,one including the

use of sense distribution features, and one without.

• Evaluation of the ability of each of the best performing classifiers for each word

to simplify the task of manual annotation of senses.

• Evaluation of the best performing classifiers to disambiguate example contexts

containing the test verb and at least one test noun. These contexts are completely

ambiguous, i.e. context words were treated as ambiguous andnot sense labelled.

• Demonstration of the ability of the classifiers to successfully assign senses for

words not available in the training data.

The results show that use of specialised classifiers for eachword, instead of a generic

classifier for all words, produces improved results at 56% precision and recall for the

nouns tested. Sense distribution features are most useful for words with few available

examples. However, they can reduce accuracy for more ambiguous words with an ad-

equate number of examples. Using the classifiers to reduce the number of senses to be
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considered by a human annotator can reduce the cost of annotation by approximately

60%. Finally, contexts containing only words considered show improved results, giv-

ing an average precision and recall of 66% across all 11 test words.

Overall, results for the WSD ideas developed so far have beenfairly modest, espe-

cially when also considering results for the test verb used having 45 senses according

to WordNet. The main intention of the tests performed was to give evidence of the

utility of the new ideas and demonstrate encouraging results early in their development

into a full WSD system. For this reason, and given the difficulty of preparing a large

enough corpus with the CMU parser to provide data for the ME approach, the tests

performed cannot be directly compared to existing systems.Relative performance to

other systems can however be inferred. This suggests that these ideas produce results

at the upper end of the Senseval 2 results scale. Difficultiesfor direct comparison are

further compounded as Semcor does not present a gold-standard data set for the evalu-

ation of WSD techniques, as average agreement between Semcor and the DCO corpus

is only approximately 57% (Kilgarriff, 1998a), therefore some of the sense tags may

be incorrect. To directly compare the current implementation would firstly require a

gold-standard sense and syntax tagged corpus. However, it is not sensible to perform

this until further work is performed on the implemented solutions, such as the inclusion

of feature reduction techniques to simplify the ME models. Once this ME implementa-

tion is complete, together with implementations of the other partial-taggers described

for a complete system, then it would be sensible to use the Senseval 2 data in order to

compare results objectively with other systems.

7.2 Future Work

Overall, the work performed for calculating semantic similarity between nouns was

highly successful. Possible extensions of this work involve further efforts to use other

WordNet relations to calculate semantic similarity, although it is also believed that it

would be timely to start developing more rigorous evaluation techniques for similar-

ity measures. A number of approaches should be considered. Firstly, the question

of how results from systems are compared to human judgementsshould be revisited.

For instance, is Pearson’s product-moment correlation thebest measure to objectively

compare the standard of the results of the different systems, or is the relative ranking

of word pairs more important than the final values assigned? As it is more natural for
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humans to rank words relative to each other according to similarity than it is for them

to assign similarity values to word pairs, and as similarityvalues from measures can

be fine-tuned to particular tasks, Pearson’s correlation oflinear dependence between

values may not provide an objective comparison between similarity measures. In the

light of this, Spearman’s Rank correlation coefficient may provide a more objective

evaluation measure to compare similarity measures againsteach other. A technique

is proposed for fine-tuning similarity measure results so they fit to a more suitable

distribution curve on a graph for a number of words. Also, thecurrent sets of hu-

man judgements available are fairly small, with the 30 word pairs given by Miller and

Charles (1991) being the most commonly used set, therefore work should be performed

to develop a gold-standard data set for evaluating similarity measures.

As similarity measures are generally used as sub-tasks within a larger NLP system,

they should also be evaluated using an accepted set of application specific problems

such as the WSD of related nouns problem visited in chapter 4.Again, for such eval-

uations to be truly objective, the labelled data must be considered to be sufficiently

replicable and large enough to represent a gold-standard data set for evaluation. Fi-

nally, the measures implemented can be used to completely link words in Wordsmyth

entries to WordNet with higher accuracy than Resnik’s approach.

The work on WSD leaves a number of tasks open to further investigation. The

primary task requirement is to find suitable feature reduction techniques for the new

features defined in chapter 6.

Once suitable feature reduction techniques have been implemented, attention should

be turned to produce adequate quantities of training data inorder to be able to repeat the

Senseval experiments, enabling the possibility of objectively comparing results from

the approach taken against existing WSD systems. This will also provide a more suit-

able test platform to isolate the effects of original aspects of the system, where specific

aspects can be evaluated in isolation, such as:

• The effect of using semantic similarity to match words in theME features.

• The effect of using the new definition of context based on semantic relationships

determined using syntactical information in contrast to using a classical context

window approach.

Further tests should be performed to determine how a combination of the features in-

troduced in this thesis together with features from other work for WSD with ME can
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further improve WSD, in a similar way to the tests performed by Suárez and Palomar

(2002).

Some further alternative approaches have also been considered that are of interest.

Firstly, using Discourse Representation Structures (Kamp, 1981) as input to the system

may provide a richer source of context than simply using the syntactic relationships

between words in a sentence. Also, given the similarity between features in ME and

those used in support vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik,

1995), it is believed that SVMs can be readily created using the information calculated

for ME classifiers. As SVM train much faster than ME models, they may be a more

practical approach to creating future classifiers for WSD.

Finally, further partial-taggers should be implemented once a suitable final statisti-

cal tagger is available in order to evaluate a full, robust WSD system.

7.3 Contributions of the Research

This section lists the original contributions the work in this thesis provides to the fields

of semantic similarity and word senses disambiguation:

7.3.1 New Ideas

• A new way to use WordNet’s lexical taxonomy for the calculation of semantic

similarity between nouns that outperforms existing techniques (Section 4.3 and

4.4).

• A technique to reduce the hypernym taxonomy of WordNet 1.6 toonly contain

layman terms (Section 4.3.3).

• A new set of WSD algorithms for disambiguating semanticallyrelated words by

calculating the similarity between senses of the related words (Section 4.5.2 and

appendix C).

• A proposal for a multiple partial tagger approach for WSD of all words in texts

(Section 6.1).

• A new definition of local context for use in a WSD system (Section 6.2 and

6.3.2).
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• A new set of features based on this definition of context, and using semantic

similarity to match words instead of word-form (Section 6.3.2).

• An evaluation approach to evaluate the cost of manually disambiguating words

while assisted by a WSD algorithm that reduces the senses to be considered

(Section 6.3.3).

7.3.2 Tools and Systems Produced

• A number of new shape-based similarity measures (Section 4.4).

• A system for disambiguating groups of nouns, assuming the groups contain se-

mantically related nouns (Section 4.5.2 and appendix C).

• A number of experimental ME WSD classifiers created specifically to disam-

biguate 11 selected words (Section 6.3.3).

• An application to assist users in parsing sentences with theCMU parser by pro-

viding information for more rapid disambiguation of ambiguous linkages (Sec-

tion 2.4).

• A tool for extracting local contexts from CMU linkages (Section 2.4).

• A tool for extracting ME features from local contexts (Section 2.4).

7.3.3 Data and Resources

• A subset of the Wordsmyth thesaurus with all nouns manually labelled with

WordNet senses. This small corpus of thesaurus entries is intended for evalu-

ating WSD systems for related nouns (Section 4.5.2).

• A subset of Semcor has been parsed using the CMU link grammar parser for the

development of WSD systems requiring syntactic information (Section 6.3.3).

• A set of local contexts, and ME features are available for thesubset of data

extracted from Semcor (Section 6.3.3).
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7.4 Final Thoughts

Overall, the work presented in this thesis has been successful, though some results have

been modest. WSD still has far to go before truly automated systems become robust to

the point of being practical without human intervention. However, the current trend of

research is producing ever more promising results with increasingly informed lexical

resources. An aspect of this work that is for the most part missing in existing research,

is use of semantic similarity to match words. The main justification given here for this

approach is to address the lexical bottleneck problem, and to be able to disambiguate

words or word senses for which no examples were available. The motivation for such

an approach can, however, be more ambitious. Once high quality WSD approaches

are developed, once multilingual lexicons such as EuroWordNet (Vossen, 1997) reach

further maturity, and when a large enough corpus of examplesis available for one lan-

guage, using semantic similarity to match words opens the possibility to create WSD

classifiers for different languages using resources from only one language. Whilst the

resulting WSD systems may have difficulty capturing some of the cultural differences

particular to different languages, this will greatly improve possibilities for various tasks

within the NLP field.
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Appendix A

Using Hyponym Branching Similarity

Measures Comparable to Statistical

Alternatives for Word Sense

Disambiguation

(Originally published as (Dionisio et al., 2001))

A.1 Abstract

This paper presents 8 similarity measures for use with a wordsense disambiguation

system for tagging words from open texts with senses according to WordNet. These

similarity measures employ hypernym and hyponym information contained within the

WordNet taxonomy to assign a value representing the similarity between two word

senses. Comparative results show that the measures performwell against the Wu &

Palmer similarity measure, and thus is comparable to the original statistically based

measure of the word sense disambiguation algorithm used.

A.2 Introduction

Word Sense Disambiguation (WSD) is a major sub task of many Natural Language

Processing (NLP) tasks (Kilgarriff, 1997), ranging from machine translation of docu-
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ments to information extraction. The main aim in WSD is to usean algorithm, or suite

of algorithms, to sense tag words in a document according to some lexical resource.

Two of the most widely used lexical resources in recent yearshas been the Long-

man Dictionary of Contemporary English (LDOCE) (Procter, 1978) and, more increas-

ingly, WordNet (Miller et al., 1990; Fellbaum, 1998). Recent techniques can be classi-

fied into one of three types (Mihalcea and Moldovan, 1998):

1. WSD techniques solely making use of information from lexical resources (Agirre

and Rigau, 1995), (Wilks and Stevenson, 1998b), (Lesk, 1986)

2. Statistical WSD techniques trained from sense tagged training corpora, referred

to as supervised training methods (Stetina et al., 1998), (Gale et al., 1992b).

3. WSD using statistical techniques trained with untagged training corpora, referred

to as unsupervised training methods (Yarowsky, 1995), (Resnik, 1995a, 1999),

(Rigau et al., 1997).

Supervised training methods suffer from the “lexical bottleneck” problem due to

the lack of training examples. Attempts to alleviate this problem have used unsuper-

vised training techniques, making use of open texts withoutsense tagged information.

Finding sufficient training data to enable these techniquesto work well for open texts

still remains a problem. This paper investigates methods belonging to the first class of

algorithms and shows results comparable to the statisticaltechniques for tagging nouns

according to senses in WordNet, without requiring statistical training.

The organisation of lexical information within WordNet canbe problematic for

techniques relying on its taxonomy in order to disambiguatelemmas. Resnik (Resnik,

1995a) shows that hypernym relations vary in the amount of generalisation they rep-

resent, therefore they are deceptive for measures relying on edge counting techniques.

Resnik tries to tackle this problem by weighting these relations according to statisti-

cally collected information.

Section 2 presents measures that take into account the branching of hyponyms for

each sense within a hypernym path when calculating the similarity between two word

senses. These investigate the sensitivity of such measuresto highly developed subhier-

archies of WordNet’s taxonomy. Section 3 gives a WSD algorithm, as presented in

(Resnik, 1995a), which is used as a vehicle for the comparison of the measures
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simWu&Palmer (c1, c2) =    2 * d(c3)
d(c1) + d(c2)

(a)

simshape (c1, c2) =           shape(c1)         , if shape(c1) < |hyponym(hyp(x))|i

|hyponym(hyp(c2))|
i

= |hyponym(hyp(c2))|
i , otherwise

shape(c1)
where c1 & c2 have a common subsumer

(b)

simshape (c1, c2) =          shape(c1)         * d(c3) , if shape(c1) < |hyponym(hyp(c2))|
i

|hyponym(hyp(c2))|
i

= |hyponym(hyp(c2))|
i * d(c3) , otherwise

shape(c1)
where a c1 & c2 have a common subsumer, and c3 is the most informative subsumer.

(c)

simshape (c1, c2) =          shape(c1)          * (1 -.   1   .) , if shape(c1) < |hyponym(hyp(c2))|
i

|hyponym(hyp(c2))|
i  d(c3)

= |hyponym(hyp(c2))|
i * (1 -.   1   .) , otherwise

shape(c1)  d(c3)
where c1 & c2 have a common subsumer, and c3 is the most informative subsumer.

(d)

simshape (c1, c2) =          shape(c1)          * shape(c3) , if shape(c1) < |hyponym(hyp(c2))|
i

|hyponym(hyp(c2))|
i

= |hyponym(hyp(c2))|
i * shape(c3) , otherwise

shape(c1)
where c1 & c2 have a common subsumer, and c3 is the most informative subsumer.

(e)

simshape (c1, c2) =          shape(c1)         * (1 -.      1       .)      , if shape(c1) < |hyponym(hyp(c2))|
i

|hyponym(hyp(c2))|
i  shape(c3)

= |hyponym(hyp(c2))|
i * (1 -.      1       .)      , otherwise

shape(c1)  shape(c3)
where c1 & c2 have a common subsumer, and c3 is the most informative subsumer.

(f)

simshape (c1, c2) =          shape(c1)          * (1 -.              1             .),   if shape(c1) < |hyponym(hyp(c2))|
i

|hyponym(hyp(c2))|
i ave_hyponym_branch(c3)

= |hyponym(hyp(c2))|
i * (1 -.              1             .), otherwise

shape(c1) ave_hyponym_branch(c3)
where c1 & c2 have a common subsumer, and c3 is the most informative subsumer.

(g)

simhybrid (c1, c2) = simWu&Plamer (c1, c2) * simshape (c1, c2)
where 0 ≤ simshape (c1, c2) ≤ 1

(h)

simhybrid (c1, c2) = (1 -     1   ) * (1 -.                1                .)
d(c3)  shape(c1) + shape(c2)

where c3 is the most informative subsumer.

(i)

Where for all the above algorithms:
i = d(c1) – d(c3)

and hyp = hypernym
and |hyponym(y)| is the number of hyponyms for sense y
and shape(x) = 1 , if x is a root node

shape(x) = shape(hyp(x)) * |hyponym(hyp(x))| , otherwise

Figure A.1: Similarity Measures
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presented in section 2. Section 4 compares the measures using input words taken from

categories of Roget’s Thesaurus (Procter, 1978) and shows how these relate to results

in (Resnik, 1995a). Section 5 describes some of the ongoing and future direction of the

work presented in this paper.

A.3 Similarity Measures

Resnik (Resnik, 1999) presents a slightly revised version of the original Wu & Palmer

similarity measure (Wu and Palmer, 1994), as shown in FigureA.1 in (1a). Results

from (1a) are comparable to results from the original statistically based similarity mea-

sure of the WSD algorithm (Resnik, 1999). This measure is used as a baseline against

which the other similarity measures presented in Figure A.1can be compared. The

measure calculates values based on hypernym tree depths. d(x) is the depth of a par-

ticular hypernym subtree. Values for d(c1) and d(c2) are calculated from routes in the

hypernym subtrees ofc1 andc2 respectively that contain a sense,c3, that is a common

hypernym to both ofc1 andc2. This sense,c3, is referred to as the most informative

subsumer (MIS).

In order to handle pairs of noun senses with no common sense intheir hypernym

structures, a “virtual” node is used. A match at this node states that the only similarity

between two senses is that they are nouns. The depth at the virtual node, d(virtual), is

0. Other WordNet root nodes (e.g. entity, abstraction, etc...) have a depth of 1. For the

hypernym structure in Figure A.2, if when compared to another sense’s structure the

MIS is liquid or fluid, d(brew) = 8. Otherwise in other cases d(brew) = 7.

The measures (1b) to (1i) are all based around the idea that senses with a larger

number of daughter nodes (hyponyms) have a more general/abstract relation to their

hyponyms. To reflect this idea in a similarity measure, the hypernym distances should

be related to the number of hyponyms of a sense’s hypernym. This notion is the basis

of a measure that uses information about the taxonomy of WordNet to add biases to

hypernym distances along a hypernym subtree. shape(x) is a measure of the hyponym

branching along a path from parent(x) up to the virtual node,although in practice it

is only necessary to calculate shape up to the MIS for the input senses. In order to

give preference to senses where either of the two senses is anancestor in the hyper-

nym subtree of the other sense, shape(x)/hyponyms(parent(y)) is replaced with 1 in the

simshape measures.
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entity, something

object, physical object

substance, matter       artifact, artefact

            food, nutrient            fluid               drug

liquid

beverage, drink, drinkable, potable  drug of abuse, street drug

alcohol, alcoholic beverage, drink, intoxicant, inebriant

brew, brewage

Figure A.2: Hypernym structure for the noun “brew” (Sense 1)

The motivation behind (1b) is to have a similarity measure that is less sensitive to

some of the irregularities of WordNet’s taxonomy. The measure prefers senses where

the average number of hyponym branches along one sense’s path is similar to the num-

ber of branches of the other sense’s hypernym.

Measure (1b) does not take into account information shared by two different senses,

only the differences. A measure of this common information can be calculated from

the WordNet taxonomy using the subtree of the MIS. Measures (1c) to (1g) extend

(1b) using different multipliers, based on information contained above the MIS, to

prefer pairs of senses that share a MIS deeper in the hypernymsubtree.

Measures (1c) and (1e) use multipliers calculated according to the depth and shape

(respectively) above the MIS. The potential problem with these measures comes from

the difference in magnitude between (1b) and the multipliers in (1c) and (1e). As (1b)

produces values within the range of 0 to 1 and depth and shape measures produce

values above 1, the final measure may become overly influencedby the multiplier.

Measures (1d) and (1f) overcome this by normalising the multiplier to within the range

of 0 to 1. These measure produce values closer to (1b) the deeper the MIS appears in

the subtree, but reduce the value of (1b) if the MIS is close tothe root.

In (1g), avehyponymbranch(c3) replaces shape(c3) to determine whether the av-

erage hyponym branching of the hypernyms of the MIS producesimproved results.

This paper will only investigate a measure using the averagehyponym branching value
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normalised to within 0 and 1.

Measures (1h) and (1i) combine ideas from both the Wu & Palmermeasure (1a),

and from the hypernym branching methods. (1h) calculates the product of the results

from (1a) and one of the algorithmssimshape, for measures where0 ≤ simshape ≤ 1

is guaranteed. (1i) is an adaptation of the (1a), using the hypernym branching measure

shape(x) instead of hypernym depths.

A.4 WSD Algorithm

The WSD algorithm presented in (Resnik, 1995a) produces high quality results when

disambiguating noun groupings (Resnik, 1995a, 1999), and can be parameterised with

different similarity measures of the formsim(sensex, sensey). Experiments have

shown that Resnik’s original statistical similarity measure and the Wu & Palmer mea-

sure produce comparable results when used with this WSD algorithm (Resnik, 1999).

Given W = { w[1],…,w[n]} , a set of nouns

for i = 1 to n, for j = i to n {
v[i, j] = sim(w[i], w[j])
c[i, j] = MIS of w[i] and w[j]

for k = 1 to num_senses(w[i])
if c[i, j] is an ancestor of sense[i, k]

increment support[i, k] by v[i, j]

for k’ = 1 to num_senses(w[j])
if c[i, j] is an ancestor of sense[j, k’ ]

increment support[j, k’ ] by v[i, j]

increment normalisation[i] by v[i, k]
increment normalisation[j] by v[i, k]

}

for i = 1 to n, for k = 1 to num_senses(w[i]) {
if !(normalization[i] == 0.0)

phi[i, k] = support[i, k] / normalisation[i]
else

phi[i, k] = 1 / num_senses(w[i])
}

Figure A.3: Resnik’s Word Sense Disambiguation algorithm

Figure A.3 shows the Resnik WSD algorithm. The measure for word i sense k

is contained in the variable “phi”. The sense with the highest measure is selected as
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the most suitable sense. In the case of a tie, the sense with the smallest sense number

according WordNet’s sense ordering is selected.

A.5 Comparison

The measures are compared using a thesaurus classes exampletaken from (Resnik,

1995a). This example was intended to show how Resnik’s WSD algorithm, along with

Resnik’s statistically based similarity measure, performed when disambiguating the

highly ambiguous noun “line”. It is difficult to make a directcomparison with the

original example as the results from (Resnik, 1995a) use a different version of Word-

Net, and Resnik does not state which version was used. Additionally, reproduction of

this work requires collection of the supporting data to derive statistical information.

Hence the use of the comparable performing non statistical Wu & Palmer measure as

the baseline.

The comparison uses words and phrases from 13 different Roget’s thesaurus cate-

gories containing the noun “line”, found online. Replacing<category number> with

the Roget’s category number of interest produces the entry for the relevant category.

These words and phrases are then reduced to nouns with WordNet entries, omitting

obsolete and foreign words.

The noun “line” has 29 different senses according to WordNet1.6. A full de-

scription of these definitions can be obtained using the WordNet web interface. Only

relevant senses used in the results in Figure A.4 are listed here:

2. line – (a mark that is long relative to its width; “He drew a line on the chart”; “The

substance produced characteristic lines on the spectroscope”)

5. line – (a linear string of words expressing some idea; “theletter consisted of three

short lines”)

7. line – (a fortified position (especially one marking the most forward position of

troops); “they attacked the enemy’s line”)

9. cable, electrical cable, line, transmission line – (an electrical conductor connecting

telephones or television or power stations)

10. course, line – (a connected series of events or actions ordevelopments; “the govern-

ment took a firm course” or “historians can only point out those lines for which evidence
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is available”)

11. line – (a spatial location defined by a real or imaginary unidimensional extent)

13. pipeline, line – (a pipe used to transport liquids or gases; “a pipeline runs from the

wells to the seaport”)

14. line, railway line, rail line – (railroad track and roadbed)

15. telephone line, phone line, line – (a telephone connection)

17. lineage, line, line of descent, descent, bloodline, blood line, blood, pedigree, ances-

try, origin, parentage, stock – (the descendants of one individual; “his entire lineage has

been warriors”)

18. line – (something long and thin and flexible)

19. occupation, business, line of work, line – (the principal activity in your life; “he’s

not in my line of business”)

20. line – (in games or sports; a mark indicating positions orbounds of the playing area)

24. agate line, line – (space for one line of print (one columnwide and 1/14 inch deep)

used to measure advertising)

26. tune, melody, air, strain, melodic line, line, melodic phrase – (a succession of notes

forming a distinctive sequence; “she was humming an air fromBeethoven”)

27. note, short letter, line – (a short personal letter; “drop me a line when you get there”)

29. production line, assembly line, line – (a factory systemin which an article is con-

veyed through sites at which successive operations are performed on it)

Figure A.4 shows the results of the WSD algorithm using different similarity mea-

sures. For each similarity measure, the top three sense IDs selected are displayed in

the lefthand column, along with their respective measures in the righthand column. For

measure (1h), (1b) is used as a suitablesimshape.

As (Resnik, 1995a) mentions, it is difficult to select acceptable senses of “line”

according to WordNet 1.6 for some of Roget’s categories usedin the comparison per-

formed (e.g. #200, #203 and #466). This explains some of the less satisfactory results.

Figure A.5 shows how the selected senses in the above resultscompare to the

senses selected in (Resnik, 1995a). Results from #200, #203and #466 have not been
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used for this comparison. Also, there is no assumption that the results presented in

(Resnik, 1995a) are correct, only that they are good. As a result, the percentages given

in Figure A.5 do not show accuracy, and are only intended as a comparison with results

of Resnik’s example. The reader could decide whether the results in (Resnik, 1995a)

are actually correct (especially for Roget categories #413& #597), or if other senses

according WordNet 1.6 better describe the meaning of “line”against the thesaurus

classes.

To get a clearer view of the comparison between the measures,5 people were asked

to select suitable senses for each of the Categories used in the creation of Figure A.5.

The people were to select all appropriate senses from WordNet’s definitions of “line”.

These intuitions were then compared with the results from all measures, including

those given in (Resnik, 1995a), and are summarised in FigureA.6.

Similarity measure (1e) is shown to consistently give poor results for this example.

This shows that, due to the size of the values the shape(x) measure generates, using

shape(x) as a multiplier in (1e) overly influences the measure’s results. It is interesting

that (1d) gives comparable results to (1f), which suggests that the normalised multipli-

ers used by the two measures improve results. Further investigation is required to see

if the additional processing in (1f) has any advantage over (1d).

A.6 Conclusions & Future Work

Results in Figure A.5, and especially those in Figure A.6 arevery positive for all

measures presented in this paper apart from measure (1e). This suggests that (1e)

performs badly against highly ambiguous words. The resultsof the other measures

can be seen to be above the baseline provided by (1a), and thatthey are comparable to

results from Resnik’s statistically based measure.

Work is currently being undertaken to determine how well thesimilarity measures

compare in other situations, including distributionally derived noun groupings, to fur-

ther assess how well the alternative shape similarity measures perform against the Wu

& Palmer (1a) similarity measure.

Work to determine how well these techniques perform with thetask of open text

disambiguation is also being undertaken using a collectionof Semantic Concordance

files, SemCor (Miller et al., 1994; Fellbaum, 1998), which are semantically tagged

against WordNet 1.6. As the Resnik WSD algorithm has been developed to disam-
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biguate small groups of nouns with similar semantic meaning, it is likely that it will

not be adequate for the task of full open text WSD. Thus, otherapproaches and algo-

rithms will be developed to try and maximise the efficiency ofusing semantic similarity

measures for the task of WSD.

The techniques described here will be used along with different techniques to re-

strict the senses of words to consider within a context, and to assess the best possible

sense tags to assign to words according to WordNet.
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Roget’s
Category

(1a) (1b) (1c) (1d) (1e) (1f) (1g) (1h) (1i)

#45
Connection

9
15
18

0.650
0.361
0.347

18
9
15

0.749
0.708
0.688

9
15
29

0.622
0.493
0.397

9
15
29

0.619
0.532
0.448

9
15
29

0.993
0.006
0.000

9
15
29

0.671
0.614
0.550

9
15
29

0.672
0.510
0.521

9
15
18

0.529
0.468
0.429

9
15
29

0.771
0.329
0.274

#69
Continuity

17
10
26

0.260
0.207
0.121

17
10
18

0.487
0.462
0.401

17
10
26

0.262
0.226
0.119

17
10
26

0.236
0.225
0.181

26
13
9

0.954
0.040
0.002

17
26
18

0.222
0.198
0.198

18
26
9

0.308
0.274
0.272

17
10
26

0.271
0.242
0.158

17
9
13

0.222
0.198
0.119

#166
Paternity

17
13
9

0.530
0.236
0.190

17
7
9

0.753
0.586
0.586

17
13
9

0.650
0.205
0.176

17
13
2

0.700
0.117
0.103

13
9
17

0.988
0.009
0.003

17
13
14

0.654
0.176
0.176

17
9
15

0.602
0.162
0.162

17
13
9

0.703
0.159
0.144

17
27
2

0.472
0.213
0.211

#167
Posterity

9
15
29

0.553
0.553
0.553

9
15
29

0.893
0.893
0.893

9
15
29

0.530
0.530
0.530

9
15
29

0.494
0.494
0.494

9
15
29

0.846
0.846
0.846

9
15
29

0.594
0.594
0.594

9
15
29

0.620
0.620
0.620

9
15
29

0.548
0.548
0.548
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Figure A.4: Comparison Results

(1a) (1b) (1c) (1d) (1e) (1f) (1g) (1h) (1i)
% Matching Results 80% 50% 70% 60% 20% 60% 50% 60% 80%

Figure A.5: Percentages of the number of selections which match the first selections
(the sense with the highest measure) from (Resnik, 1995a)
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A.6 Conclusions & Future Work

(1a) (1b) (1c) (1d) (1e) (1f) (1g) (1h) (1i) Resnik
% Correct 60% 70% 70% 80% 50% 80% 70% 80% 60% 80%

Figure A.6: Percentages of the number of selected senses that match with manually
selected tags
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Appendix B

Data and Scatter Graphs for Human

Similarity Judgement Correlation

B.1 Human Judgement Data

B.1.1 Rubenstein and Goodenough (1965) Human Judgements

Word 1 Word 2 Similarity
cord smile 0.02
rooster voyage 0.04
noon string 0.04
fruit furnace 0.05
autograph shore 0.06
automobile wizard 0.11
mound stove 0.14
grin implement 0.18
asylum fruit 0.19
asylum monk 0.39
graveyard madhouse 0.42
glass magician 0.44
boy rooster 0.44
cushion jewel 0.45
monk slave 0.57
asylum cemetery 0.79
coast forest 0.85
grin lad 0.88

207



B.1 Human Judgement Data

shore woodland 0.9
monk oracle 0.91
boy sage 0.96
automobile cushion 0.97
mound shore 0.97
lad wizard 0.99
forest graveyard 1
food rooster 1.09
cemetery woodland 1.18
shore voyage 1.22
bird woodland 1.24
coast hill 1.26
furnace implement 1.37
crane rooster 1.41
hill woodland 1.48
car journey 1.55
cemetery mound 1.69
glass jewel 1.78
magician oracle 1.82
crane implement 2.37
brother lad 2.41
sage wizard 2.46
oracle sage 2.61
bird crane 2.63
bird cock 2.63
food fruit 2.69
brother monk 2.74
asylum madhouse 3.04
furnace stove 3.14
magician wizard 3.21
hill mound 3.29
cord string 3.41
glass tumbler 3.45
grin smile 3.46
serf slave 3.46
journey voyage 3.58
autograph signature 3.59
coast shore 3.6
forest woodland 3.65
implement tool 3.66
cock rooster 3.68
boy lad 3.82
cushion pillow 3.84
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B.1 Human Judgement Data

cemetery graveyard 3.88
automobile car 3.92
midday noon 3.94
gem jewel 3.94

Table B.1: Rubenstein and Goodenough (1965) Human Judgements

B.1.2 Miller and Charles (1991) Human Judgements

Word 1 Word 2 Similarity
rooster voyage 0.08
noon string 0.08
glass magician 0.11
chord smile 0.13
lad wizard 0.42
coast forest 0.42
monk slave 0.55
shore woodland 0.63
forest graveyard 0.84
coast hill 0.87
food rooster 0.89
cemetery woodland 0.95
monk oracle 1.1
journey car 1.16
lad brother 1.66
crane implement 1.68
brother monk 2.82
tool implement 2.95
bird crane 2.97
bird cock 3.05
food fruit 3.08
furnace stove 3.11
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B.1 Human Judgement Data

midday noon 3.42
magician wizard 3.5
asylum madhouse 3.61
coast shore 3.7
boy lad 3.76
journey voyage 3.84
gem jewel 3.84
automobile car 3.92

Table B.2: Miller and Charles (1991) Human Judgements

B.1.3 Resnik (1999) Human Judgements

Word 1 Word 2 Similarity
rooster voyage 0
noon string 0
glass magician 0.1
chord smile 0.1
crane implement 0.3
coast forest 0.6
forest graveyard 0.6
lad wizard 0.7
monk slave 0.7
coast hill 0.7
journey car 0.7
monk oracle 0.8
food rooster 1.1
lad brother 1.2
bird cock 2.1
furnace stove 2.1
food fruit 2.2
brother monk 2.4
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B.2 Rubenstein & Goodenough Human Judgement Correlations

tool implement 2.4
midday noon 2.6
bird crane 3.4
magician wizard 3.6
asylum madhouse 3.5
coast shore 3.5
boy lad 3.5
journey voyage 3.5
gem jewel 3.5
automobile car 3.9

Table B.3: Resnik (1999) Human Judgements

B.2 Rubenstein & Goodenough Human Judgement Cor-

relations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations

SBSM+
9

Unnormalised Normalised

Entire Structure

Layman Structure

Flattened
Layman Structure

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

SBSM×
1

Unnormalised Normalised

Entire Structure

Layman Structure

Flattened
Layman Structure

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

216



B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.2 Rubenstein & Goodenough Human Judgement Correlations
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B.3 Miller & Charles Human Judgement Correlations

B.3 Miller & Charles Human Judgement Correlations
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B.3 Miller & Charles Human Judgement Correlations
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B.3 Miller & Charles Human Judgement Correlations
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B.4 Resnik Human Judgement Correlations
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B.4 Resnik Human Judgement Correlations

SBSM+
2

Unnormalised Normalised

Entire Structure

Layman Structure

Flattened
Layman Structure

0

1.6

3.2

4.8

6.4

8

0

1.6

3.2

4.8

6.4

8

0 1 2 3 4
0

1.6

3.2

4.8

6.4

8

0

1.6

3.2

4.8

6.4

8

0

1.6

3.2

4.8

6.4

8

0 1 2 3 4
0

1.6

3.2

4.8

6.4

8

SBSM+
3

Unnormalised Normalised

Entire Structure

Layman Structure

Flattened
Layman Structure

0

60

120

180

240

300

0

60

120

180

240

300

0 1 2 3 4
0

60

120

180

240

300

0

60

120

180

240

300

0

60

120

180

240

300

0 1 2 3 4
0

60

120

180

240

300

232
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Appendix C

Word Sense Disambiguation

Algorithms for Noun Groups

C.1 Greedy WSD algorithm

A greedy WSD algorithm is produced by calculating the sum of the similarity for

each word sense in the noun-group against all other word senses in the noun group.

Similarity is calculated using a function “similarity” taking four arguments, two words

and a word sense for each word. Therefore similarity is measures between two word

senses,<word1>#<sense1> and<word2>#<sense2>. The sum is then normalised

using the sum of the similarity of each word senses of a word, against all other word

senses in the noun group. The algorithm selects the sense foreach word with the

highest resulting value as the correct sense for the word according to the noun group.

Listing C.1: Greedy WSD

Given t h e s e t o f nouns W ={w1 , . . . , wn}

f o r word index1 = 1 t o n− 1
{

word1 = W[ word index1 ]
f o r word index2 = word index1 + 1 t o n
{

word2 = W[ word index2 ]
f o r sense1 = 1 t o n oo f s e n s e s ( word1 )
{
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C.2 Exclusive Greedy WSD algorithm

f o r sense2 = 1 t o n oo f s e n s e s ( word2 )
{

sim = s i m i l a r i t y ( word1 , sense1 , word2 , sense2 )

n o r m a l i z a t i o n ( wordindex1 ) + = sim
n o r m a l i z a t i o n ( wordindex2 ) + = sim
s u p p o r t ( word index1 , sense1 ) + = sim
s u p p o r t ( word index2 , sense2 ) + = sim
}
}
}
}

f o r word index = 1 t o n
{

word = W[ word index ]
f o r s en s e = 1 t o n oo f s e n s e s ( word )
{

i f ( n o r m a l i z a t i o n ( word index ) ! = 0 )
s u p p o r t ( word index , s en s e )\ = n o r m a l i z a t i o n ( wordindex )

}
}

C.2 Exclusive Greedy WSD algorithm

This algorithm is similar to the Greedy algorithm, however for all word senses only

similarity values greater than a specified percentage of thehighest similarity value per

word sense are considered. Such a percentage is specified as athreshold ranging from

0 to 1. The changes are made to avoid increasing support for the sense of a word when

the similarity detected between pairs is low in comparison to the highest similarity

detected for another of the word’s senses.

Listing C.2: Exclusive Greedy WSD

Given t h e s e t o f nouns W ={w1 , . . . , wn}

f o r word index = 1 t o n
{

word = W[ word index ]
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C.2 Exclusive Greedy WSD algorithm

f o r s en s e = 1 t o n oo f s e n s e s ( word )
{

m a x s i m i l a r i t y ( word index , s en s e ) =
f i n d h i g h e s t s i m i l a r i t y ( word , sense , words )

}
}

f o r word index1 = 1 t o n− 1
{

word1 = W[ word index1 ]
f o r word index2 = word index1 + 1 t o n
{

word2 = W[ word index2 ]
f o r sense1 = 1 t o n oo f s e n s e s ( word1 )
{

f o r sense2 = 1 t o n oo f s e n s e s ( word2 )
{

sim = s i m i l a r i t y ( word1 , sense1 , word2 , sense2 )

i f ( sim >= m a x s i m i l a r i t y ( word1 , sense1 )∗ t h r e s h o l d )
{

n o r m a l i z a t i o n ( wordindex1 ) + = sim
s u p p o r t ( word index1 , sense1 ) + = sim
}

i f ( sim >= m a x s i m i l a r i t y ( word2 , sense2 )∗ t h r e s h o l d )
{

n o r m a l i z a t i o n ( wordindex2 ) + = sim
s u p p o r t ( word index2 , sense2 ) + = sim
}
}
}
}
}

f o r word index = 1 t o n
{

word = W[ word index ]
f o r s en s e = 1 t o n oo f s e n s e s ( word )
{

i f ( n o r m a l i z a t i o n ( word ) ! = 0 )
s u p p o r t ( word index , s en s e )\ = n o r m a l i z a t i o n ( wordindex )
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C.3 WSD Using Only Related Senses

}
}

C.3 WSD Using Only Related Senses

Again, this algorithm is similar to the Greedy algorithm, however for all word senses

only similarity values greater than a specified threshold are considered. Such a thresh-

old is selected such that any word-pair with a similarity above the threshold will be

classed as related, or similar, and anything below the threshold is considered suffi-

ciently different to not be semantically related. Therefore the algorithm only increases

support when two word sense pairs are significantly similar.

Listing C.3: Related Senses WSD

Given t h e s e t o f nouns W ={w1 , . . . , wn}

f o r word index1 = 1 t o n− 1
{

word1 = W[ word index1 ]
f o r word index2 = word index1 + 1 t o n
{

word2 = W[ word index2 ]
f o r sense1 = 1 t o n oo f s e n s e s ( word1 )
{

f o r sense2 = 1 t o n oo f s e n s e s ( word2 )
{

sim = s i m i l a r i t y ( word1 , sense1 , word2 , sense2 )

i f ( sim >= t h r e s h o l d )
{

n o r m a l i z a t i o n ( wordindex1 ) + = sim
s u p p o r t ( word index1 , sense1 ) + = sim
}

i f ( sim >= t h r e s h o l d )
{

n o r m a l i z a t i o n ( wordindex2 ) + = sim
s u p p o r t ( word index2 , sense2 ) + = sim
}
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C.3 WSD Using Only Related Senses

}
}
}
}

f o r word index = 1 t o n
{

word = W[ word index ]
f o r s en s e = 1 t o n oo f s e n s e s ( word )
{

i f ( n o r m a l i z a t i o n ( word ) ! = 0 )
s u p p o r t ( word index , s en s e )\ = n o r m a l i z a t i o n ( wordindex )

}
}
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Appendix D

Manually Tagged Selected Entries

from Wordsmyth Thesaurus

This appendix includes all the entries selected from the Wordsmyth thesaurus for the

evaluation in Section 4.5.2. All nouns within each thesaurus entry used have been

manually tagged with their equivalent WordNet 1.6 sense/senses. If a noun has no

sense tag, it is deemed not to have an adequate definition according to WordNet. Also,

some entries within Wordsmyth omit information such as definitions.
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Adult

#DEF: 1. a person
who is fully grown,
mature, and considered
legally responsible.
adult, 1
grownup, 1
man, 1
woman, 1

#DEF: 2. a mature
animal or plant.
adult, 2
adulthood

Air

#DEF: 2. an open
place in the frozen
surface of a lake, pond,
or stream.
air_hole, 1
outlet, 3
blowhole, 2
flue, 3
duct, 1
exhaust
spiracle
vent, 1
opening, 9
orifice, 1
window, 2, 6
passage, 7
chimney, 1
smokestack, 1
spout, 1

#DEF: 3. see air
pocket.
air_hole, 1

air_pocket, 1

#DEF: a route
regularly used by
aircraft;
airway.
air_lane, 1
airway, 2
corridor
route, 1

#DEF: 1. the
tasteless, odorless, and
colorless mixture of
nitrogen, oxygen, and
ther gases that forms
the earth’s atmosphere.
air, 1
atmosphere, 3, 5
ozone, 1
stratosphere, 1
oxygen, 1
gas, 2

#DEF: 2. all that is
above the ground; sky.
air, 3
sky, 1
heaven
atmosphere, 3, 5
stratosphere, 1
welkin, 1
ether
airspace, 1

#DEF: 3. movement of
the atmosphere; breeze or
wind.
air, 6
wind, 1
airflow, 1
breeze, 1
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draft, 2
current
zephyr, 1
waft
breath, 5

#DEF: 4. the
peculiar character,
manner, bearing, or aspect
of a person or thing:
#EXA: He has a
strange air.
air, 5, 7
character, 2, 3
atmosphere, 6
aura, 3
ambiance
manner, 2
bearing, 3
aspect, 1, 2
style, 2, 5
climate, 2
feel, 2, 3
impression, 2
appearance, 1
demeanor, 1
mien, 1
tone, 3, 4, 5, 10
spirit, 2, 3

#DEF: 5. (pl.)
pretense or affectation:
#EXA: She is
putting on airs.
airs, 1
affectedness, 1
affectation, 1
pretense, 4
pretension, 1
arrogance, 1
swank

#DEF: 6. travel or
transportation by aircraft.
#EXA: He sent
them by air.
air, 2
airplane, 1
plane, 1
aircraft, 1
jet, 1
jetliner

Airplane

#DEF: any of
various aircraft that
are heavier than air and
are driven by propellers
or jet engines.
airplane, 1
aircraft, 1
plane, 1
jet, 1
propjet, 1
turboprop, 1, 2
turbojet, 1
airship, 1
helicopter, 1
airliner, 1

Airport

#DEF: a large area
of level land where
airplanes can land and
take off, usu. including
a passenger terminal and
cargo and repair
facilities.
airport, 1
airfield, 1
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airdrome, 1
flying_field, 1
airstrip, 1
landing_field, 1
air_base, 1
terminal, 1

Album

#DEF: 1. a book or
binder with blank pages
or empty pockets in
which a collection can
be inserted, as of
photographs, stamps, or
mementos.
album, 2
book, 2
scrapbook, 1
notebook, 1
portfolio, 1
folder
file
compilation, 1
catalogue, 2
binder, 3

#DEF: 2. a
phonograph record or set
of records, or the
jacket or binder thereof.
album, 1
record, 2
LP, 1
disk, 3
recording, 3
soundtrack, 1
CD, 4
compact_disk, 1
tape, 5

#DEF: 3. a printed
collection of pictures,
or musical or literary
selections.
album, 2
collection, 1, 2
anthology, 1
record, 5
documentation
chronicle, 1

Alphabet

#DEF: 2. the
fundamental principles
of a subject; rudiments.
alphabet, 1
script, 3
writing, 4
letters

Arm

#DEF: 1. either of
the two upper limbs of
the human body, between
the shoulders and the
wrists.
arm, 1
forelimb, 1
brachium
limb, 1
forearm, 1

#DEF: 2. any part
that extends from a main
body and resembles an
arm.
arm, 1, 2
appendage, 1
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brachium, 1
limb, 1
branch, 6
ramification
bough, 1
offshoot
projection, 4
crosspiece

#DEF: 3. the part
of an organization that
specializes in
operations or
enforcement; authority.
arm, 5
authority, 5
power, 5
command, 2
division, 4
department, 1
force, 5, 7
detachment, 4

#DEF: 1. (usu. pl.)
weapons, esp. those that
shoot or explode.
arm, 3
firearm, 1
gun, 1, 2
rifle, 1
pistol, 1
revolver, 1
six-shooter, 1
shotgun, 1
machine_gun, 1
weapon, 1
armament, 1
munition, 1
ammunition, 1
cannon, 1, 3
artillery, 1
ordnance, 2

#DEF: 2. a part of
a military force.
arm, 5
command, 2
ordnance
power
branch, 1
outfit, 1

#DEF: 3. (pl.) the
insignia of a family or
institution:
#EXA: a coat of arms.
arms, 2
coat_of_arms, 1
blazon, 1
heraldry, 2
crest, 4
insignia, 1
escutcheon, 3

Army

#DEF: 1. the
military land force of a
nation.
army, 1
soldier, 1
soldiery, 1
troops, 1
military, 1
armed_forces, 1
artillery, 2
cavalry, 1, 2
infantry, 1
militia, 1

#DEF: 2. a great
number of people or
things:
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#EXA: The singer
had an army of fans.
army, 2
host, 2
multitude, 2
legion, 4
crowd, 1
flock, 4
horde, 1, 3
throng, 1
bevy, 1
mass, 2
aggregation, 1

#DEF: 3. a large,
organized group.
army, 2
legion, 4
battalion, 2
brigade, 1
throng, 1
crowd, 1
flock, 4
horde, 1, 3
force, 4, 5, 8
assemblage, 1
group, 1
troop, 1, 2, 3, 4

Baby

#DEF: 1. an
extremely young girl or
boy; infant.
baby, 1
infant, 1
babe, 1
bambino, 1
newborn, 1
neonate, 1
papoose, 1

child, 1, 2, 5, 6
suckling, 1
nursling, 1
weanling
toddler, 1
tot, 1
kid, 1, 3
youngster, 1

#DEF: 2. an young
or newborn animal:
#EXA: This
gorilla was tame when it
was a baby.
baby, 3
newborn, 1
suckling, 2
weanling
young, 1
progeny

#DEF: 3. the
youngest person in a
family or group.
baby, 4
junior, 3
youngster

#DEF: 4. a person
who behaves childishly or
immaturely.
baby, 5
child, 3
naif

#DEF: 5. (informal)
a young woman (usu. used
in direct address).
baby, 2
babe
sweetheart, 3
honey, 2
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girlfriend, 2
gal, 3
girl, 1, 4, 5
lass, 1

#DEF: 6. (informal)
something of personal
concern or pride:
#EXA: That
project is his baby.
baby, 6
pride, 5

Backpack

#DEF: a pack used
to carry objects, esp.
camping gear, on one’s
back; knapsack.
backpack, 1
knapsack, 1
rucksack, 1
packsack
pack, 9
sack, 1
bag, 1, 6
pouch, 1
tote, 1
kit, 1
luggage, 1
baggage, 1
package, 2
valise, 1

Balloon

#DEF: 1. a bag made
of thin material that is
filled with a gas that is
lighter than air and

causes it to rise.
balloon, 2
zeppelin, 1
dirigible, 1
blimp, 2
airship, 1
aerostat

#DEF: 2. such a bag
used to transport
passengers or scientific
equipment.
balloon, 2
aerostat
zeppelin, 1
dirigible, 1
blimp, 2
airship, 1

Bank

#DEF: at a bank,
the funds credited to a
depositor and subject to
withdrawal by him or her.
bank_account, 1
accumulation, 4
mass
sediment
funds, 1
deposit, 3
lees
dregs
settlings
precipitate
silt
alluvium

#DEF: a promissory
note issued by an
authorized bank.
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bank_note, 1
bill, 3
treasury_note, 1
note, 6
paper_money, 1
legal_tender, 1
money, 1, 3
greenback, 1
currency, 1
certificate, 2
silver_certificate, 1
gold_certificate
promissory_note, 1
IOU, 1
green
tender, 1

#DEF: 1. a heap or
mass of something, such
as earth or clouds.
bank, 3, 7
heap, 1, 2
mass, 2, 3
pile, 1, 2
stack, 1, 2
drift, 4
accumulation, 2
bundle, 1
cock
shock, 7
rick, 2
mow
bale, 1

#DEF: 2. a slope,
usu. of earth.
bank, 2, 9
embankment, 1
mound, 4
slope, 1
acclivity, 1
incline, 1

dike
levee
parapet
drift
ridge, 1
rise, 3
hill, 2
knoll
dune, 1
hillock

#DEF: 3. the ground
at the edge of a river
or stream.
bank, 2
shore, 1
edge
beach, 1
foreshore, 1
littoral, 1

#DEF: 1. a business
concerned with the
safeguarding, exchanging,
and lending of money.
bank, 1
credit_union, 1
savings_bank, 1
Federal_Reserve_Bank, 1
thrift_institution, 1
depository, 1
trust_company, 1
S_and_L

#DEF: 2. the reserve
of money held by a
gambling establishment.
bank, 8
kitty, 1, 2
pot, 6

#DEF: 3. a supply
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or reserve:
#EXA: a blood
bank.
bank, 3, 4
storehouse, 1
warehouse, 1
repository, 1
store, 2, 4, 5
reservoir, 1
reserve, 2
depository, 1
stockpile, 1
stock, 4
supply, 1
fund, 2
piggy_bank, 1

Bath

#DEF: 1. a process
of washing or soaking
something in order to
cleanse, refresh, or heal.
bath, 2
washing, 1
wash, 2
soak, 2
cleaning, 1
cleansing, 1
ablution, 1
immersion, 3
soaking, 3
rinse, 4
shower, 2
scrub, 2
scrubbing, 1
sponge
sauna

#DEF: 2. water or
other liquid used for

washing.
bath, 2
ablution, 1
water, 1
suds, 1
solution, 1
soak, 2

#DEF: 3. (often pl.)
an establishment where
people go to take a bath
or to obtain therapy.
bath, 5
bathhouse, 2
sauna, 1
sudatorium
spa
sanitarium
Turkish_bath, 1, 2
health_club
natatorium, 1
sanatorium, 1

#DEF: 4. a bathroom.
#PHR: take a
bath.
bath, 5
bathroom, 1, 2
washroom, 1
toilet, 1
lavatory, 1
water_closet, 1
W.C., 1
restroom, 1
can, 6
privy, 1
outhouse, 1
latrine, 1
powder_room, 1
lounge, 2
comfort_station, 1
commode, 1
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Bathroom

#DEF: a room with a
toilet and often
containing a sink,
bathtub, or other
facility for washing.
bathroom, 1, 2
bath, 5
washroom, 1
toilet, 1
lavatory, 1
water_closet, 1
W.C., 1
restroom, 1
ladies’_room, 1
men’s_room, 1
can, 6
privy, 1, 2
outhouse, 1
latrine, 1
powder_room, 1
lounge, 2
comfort_station, 1
commode, 1

Bed

#DEF: 1. a piece of
furniture used for
resting or sleeping.
bed, 1
bunk, 2, 3, 5
cot, 2, 3
four-poster, 1
truckle, 1
trundle_bed, 1
sack, 6
berth, 3

#DEF: 2. any place
or thing used for resting
or sleeping.
bed, 1
pallet, 2
sleeping_bag, 1
berth, 3
roost
chamber, 5
bedroom, 1

#DEF: 3. an area of
ground used for planting,
or the plants themselves:
#EXA: a bed of
flowers.
bed, 2
garden, 1
plot, 2
patch, 2
plat
flat

#DEF: 4. the bottom
of a body of water:
#EXA: a lake
bed.
bed, 3
bottom, 5
base
floor, 5

#DEF: 5. a
supporting base or layer:
#EXA: a bed of
gravel under the bricks.
bed, 6
foundation, 3
substratum, 1
layer, 2
basis, 2
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support, 7
substructure, 1
stratum, 1
deposit
seam, 3
lode, 1
base, 2, 8

Bible

#DEF: 1. the
principal sacred writings
of Judaism, comprising the
Old Testament, and of
Christianity, comprising
both the Old and New
Testaments.
Bible, 1
Holy_Scripture, 1
Scripture, 1
Holy_Writ, 1
Good_Book, 1
The_Book
Word, 7
Old_Testament, 1
New_Testament, 1
Gospel, 1

#DEF: 3. (l.c.) any
book or text that is
considered authoritative
or official.
bible, 2
scripture, 1, 2
authority, 7
handbook, 1
guide, 3
manual, 1
vade_mecum, 1
guidebook, 1
reference, 4

primer, 1
textbook, 1
text, 3

Bomb

#DEF: 4. (informal)
a failure:
#EXA: His
concert was a bomb.
bomb, 3
flop, 3
failure, 2
failing, 2
dud, 1
lemon
bust, 1
defeat, 1
fiasco, 1
fizzle
washout, 1
debacle, 3
miscarriage, 1
muff, 2

Book

#DEF: 1. a
collection of bound paper
sheets, usu. containing
written or printed words.
book, 1, 2, 8
volume, 3
edition, 1
folio
album, 2
booklet, 1
notebook, 1
handbook, 1
diary, 2
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tome, 1
journal, 4

#DEF: 2. a literary
work such as a novel or
volume of poetry.
book, 1
edition, 1, 3
opus, 1
literature, 1
publication, 1
belles-lettres, 1
manuscript, 1

#DEF: 3. (pl.)
financial or business
records:
#EXA: He keeps
the books.
book, 5
ledger, 1
daybook, 1
journal, 1
log, 4, 5
blotter, 2
record, 1, 7
transcript, 1

#DEF: 4. (cap.) the
Bible (prec. by the).
book
Bible, 1
Word, 7
scripture, 1
Holy_Scripture, 1
Good_Book, 1
Holy_Writ, 1
Gospel, 1
Old_Testament, 1
New_Testament, 1

#DEF: 5. a set of

similar things bound
together into one unit,
such as matches, stamps,
or tickets.
book, 8
roll, 6
pad, 1
packet, 1

Boss

#DEF: 1. a person
who employs others or
supervises their work;
manager.
boss, 1
manager, 1
executive, 1
CEO, 1
chief, 1, 2
leader, 1
foreman, 1
superintendent, 1
super
master, 2, 4
supervisor, 1
head, 4
taskmaster, 1
overseer, 1
administrator, 1
employer, 1

#DEF: 2. a
politician who dominates
a local party.
boss, 4
cacique
party, 5
man, 1
eminence, 1
kingmaker
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war-horse, 2
whip, 2

#DEF: 1. a rounded
projection or swelling.
boss, 5
nub, 1
bubble, 1
knob, 1
node, 5
bulb, 5
stud, 2
knurl
nubble
blister, 1
bulge, 1
bump, 1
swell, 2
billow

#DEF: 2. an
ornamental projection,
such as a knob or stud.
boss, 5
stud, 2
nailhead, 1, 2
knob, 4
burl, 3

Bottle

#DEF: 1. a container,
usu. made of glass and
having a slender neck,
used mainly for storing
or serving liquids.
bottle, 1
carafe, 1
magnum, 1
vacuum_bottle, 1
demijohn, 1

decanter, 1
flagon, 1
flask, 1
cruet, 1
flacon
jug, 1
jeroboam, 1

#DEF: 2. the amount
such a container will
hold:
#EXA: I used a
bottle of wine in this
stew.
bottle, 2
jar, 2
jug, 2
glassful, 1
quart, 1, 2
pint, 1, 3
cup, 2
gallon, 1, 2

#DEF: 3. formula or
cow’s milk fed to infants
in place of mother’s
milk, usu. contained in a
bottle fitted with a
nipple.
bottle
formula, 6
milk, 1, 4

Bowl

#DEF: 1. a deep,
rounded dish used mostly
for containing food,
liquids, or the like.
bowl, 1, 3
dish, 1
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saucer, 2
porringer, 1
cup, 1
tureen, 1

#DEF: 2. the
contents of such a dish:
#EXA: I ate a
bowl of cereal.
bowl, 4
dish, 3
cup, 2

#DEF: 3. the rounded,
dishlike part of something,
as of a spoon, sink, or
toilet.
bowl, 2
sink, 1
toilet, 2
washbasin, 2
basin, 1, 2

#DEF: 4. a rounded
valley or other
geographical depression
or formation.
bowl, 2
valley, 1
hollow, 2
basin, 4
depression, 3
indentation, 1
dip, 1
crater, 3
hole, 5

#DEF: 5. a rounded
stadium or outdoor
theater.
bowl, 5
stadium, 1

amphitheater, 2
coliseum, 1
arena, 3

#DEF: 6. in the
United States, a football
game played at the end of
the season by specially
elected teams:
#EXA: the Super
Bowl.
bowl
tournament, 1
playoff, 1
championship
meet, 1

#DEF: 1. a large
wooden ball shaped or
weighted so as to roll in
a curved path, used in
lawn bowling.
bowl, 6
ball, 1

#DEF: 2. (pl., but
used with a sing. verb)
the game or sport of lawn
bowling.
bowls, 1
lawn_bowling, 1
boules
boccie, 1

#DEF: 3. a roll or
throw of the ball in
bowling or bowls.
bowl
boules
roll, 15
throw, 1
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Box

#DEF: 1. a container
made of cardboard, wood,
or other stiff material,
usu. rectangular and
having a lid for the top.
box, 1
container, 1
carton, 2
crate, 1
trunk, 2
package, 2
parcel, 1
chest, 2
case, 7
pack, 3
packet, 2

#DEF: 2. the amount
contained in or the
contents of a box; boxful.
box, 3
carton, 1
boxful, 1
case, 10

#DEF: 3. any of
various enclosures that
contain and protect:
#EXA: the gear
box of an automobile.
box, 1
case, 7, 11, 13, 16
housing, 2
sheath, 1, 2
jacket, 2, 4
casement

#DEF: 5. an enclosed
area in a theater where

spectators sit.
box, 2
compartment, 2

#DEF: 6. a difficult
situation; predicament;
dilemma.
box, 7
dilemma, 1
predicament, 1
quandary, 1
plight, 1
conundrum, 1

#DEF: a hit or blow
struck with the hand or
fist.
box, 10
blow, 1
hit, 2
cuff
punch, 1
swat, 1
slap, 2
smack, 6
whack, 1
belt, 6
thwack, 1
buffet
knock, 3, 5
sock
jab, 1, 2

Boy

#DEF: 1. a male
child or adolescent.
boy, 1
youth, 1
stripling, 1
child, 1, 2
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son, 1
youngster, 1
adolescent, 1
teenager, 1
kid, 1, 3

#DEF: 2. (informal)
a man.
boy, 2
dude, 1
chap, 1
fellow, 1
man, 1

#DEF: 3. a young
immature man.
boy, 1
youth, 1
lad, 2

Car

#1. an automobile.
car, 1
automobile, 1
auto, 1
motorcar, 1
vehicle, 1
sedan, 1
coupe, 1
limousine, 1
limo, 1
convertible, 1
roadster, 1
runabout, 1
hot_rod, 1
rattletrap
jalopy, 1
crate
buggy, 1
heap, 3

cab, 3
taxi, 1
taxicab, 1
hackney, 1
hack, 4

#2. a vehicle that runs
on rails, such as a
streetcar or railroad car.
car, 2, 5
vehicle, 1
streetcar, 1
coach, 3
diner, 2
sleeper, 3
smoker, 3
caboose
Pullman, 1
tram, 1, 2
trolley, 1
cable_car, 1

#3. an enclosure for
carrying people, as in an
elevator or balloon.
car, 2, 3, 4, 5
cab, 1
elevator, 1
balloon, 1
trolley, 1
tram, 1, 2
cable_car, 1

Carpet

#DEF: 1. a heavy
fabric covering for floors.
(See rug.)
carpet, 1
rug, 1
mat, 1
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scatter_rug, 1
area_rug
throw_rug, 1
runner

#DEF: 2. a covering
similar to a carpet:
#EXA: a carpet
of flowers.
carpet, 1
rug, 1
mat, 1, 3
runner
covering, 2

Cave

#DEF: 1. a natural
hollow or series of
hollows in the earth,
esp. one with an opening
in a hillside or cliff.
cave, 1
cavern, 2
grotto, 1
cove, 2
hollow, 1
cavity, 1
underground, 2
den, 2
mine, 1

#DEF: 2. an
nderground storage
chamber, esp. a wine
cellar.
cave, 1
cellar, 1, 2, 3
wine_cellar, 1
grotto, 1
vault, 1, 2

basement, 1
chamber

Chair

#DEF: 3. the person
occupying such a position;
anyone who presides over
a group or meeting.
chair, 3
chairperson, 1
chairman, 1
facilitator, 1
moderator, 2
head, 4

Chief

#DEF: the foremost
or most important person
in a group; leader.
chief, 1
leader, 1
head, 4
kingpin, 1
top
dozen
principal, 2
boss, 3
top_dog, 1
headman, 2
chieftain, 1, 2
master, 5
paramount

Child

#DEF: 1. a young
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human; baby.
child, 1, 2
kid, 1, 3
youngster, 1
juvenile, 1
baby, 1
infant, 1
youth, 1
boy, 1, 3
girl, 2, 3
lad, 2
lass
stripling, 1
junior, 4
tot, 1
toddler, 1
tyke, 2
preteen

#DEF: 2. a son or
daughter.
child, 2
offspring, 1
son, 1
daughter, 1
descendant, 1
progeny, 1
scion, 1
issue, 6

#DEF: 3. a
descendant.
child, 2
offspring, 1
descendant, 1
progeny, 1
scion, 1
issue, 6
son, 1
daughter, 1

#DEF: 4. someone

who acts in a childish or
immature way.
child, 3
baby, 5
juvenile
adolescent
greenhorn

#DEF: 5. one who is
considered to be the
natural product of
particular times or
circumstances:
#EXA: a child
of the revolution.
child, 2
product, 3
son, 1
daughter, 1
offshoot, 1

Church

#DEF: 1. a building
for public Christian
worship.
church, 2
meetinghouse, 1
tabernacle, 1
chapel, 1
cathedral, 1, 2
basilica, 1
temple, 1

#DEF: 2. such
worship itself.
church, 3
worship, 1
devotion, 4
service, 3
mass, 4
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communion, 1
office, 6
vespers, 2
novena
matins, 1
compline, 1

#DEF: 3. the
congregation or membership
of a religious
denomination or sect.
church, 1
congregation, 1
fold, 2
communion
parish, 1
laity, 1
flock, 1

#DEF: 4. (often pl.)
a particular Christian
denomination or sect:
#EXA: the
Baptist Church.
church, 1
denomination, 1
sect, 1
faith, 3
religion, 1, 2
cult, 1, 3
creed, 1, 2
persuasion, 2

#DEF: 5. the local
or national organization
and authority of a
particular religious
denomination.
church, 1
clergy, 1
ministry, 1
hierarchy, 2

episcopacy
papacy, 1
Vatican, 1
presbytery, 1
vestry, 1
Christendom, 1

#DEF: 6. organized
religion in general:
#EXA: the role
of the church in daily
life.
church, 1
religion, 2
faith, 3
worship, 1
devotion, 3, 4

Clock

#DEF: a mechanical
or electric device, other
than a watch, for
measuring or indicating
time.
clock, 1
timekeeper, 3
timepiece, 1
chronometer, 1
time_clock, 1

Clown

#DEF: 1. a comic
performer, as in a circus,
who wears odd clothes and
exaggerated makeup and
entertains by jokes,
tricks, juggling, and the
like.
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clown, 2
jester, 1
fool, 3
harlequin, 1
pantomime, 1
mime, 1
humorist, 1

#DEF: 2. a person
who acts in a comical,
prankish manner.
clown, 2
buffoon, 2
jester, 1
zany, 1
wag, 1
farceur
comedian, 1
joker, 1
cutup
merry_andrew, 1
harlequin, 1
comic, 1
prankster, 1

#DEF: 3. a crude,
impolite, or oafish
person.
clown, 1
boor, 1
churl, 1
lout, 1
joker, 2
brute, 1
yahoo, 1
oaf, 1

Compass

#DEF: 2. a boundary
or limit, or the space or

scope included within it:
#EXA: the
compass of the town walls;
#EXA: the
compass of the state’s
authority.
compass, 2, 3
circumference, 1
limit, 1, 3, 4
circuit
perimeter, 1
periphery, 1
boundary, 1, 2
border, 1, 2
margin, 1
edge, 2
outline, 1

Cup

#DEF: someone or
something that is liked
or known well:
#EXA: Those
people aren’t my cup of
tea;
#EXA: His cup
of tea is fixing
computers.
cup_of_tea, 1
metier, 1
forte, 1
thing
bag, 9
partiality, 2
specialty, 1
predilection, 1
preference, 2
province
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Cycle

#DEF: 1. an event
or sequence of events
repeated at regular or
approximately regular
time intervals:
#EXA: the cycle
of seasons in a year;
cycle, 1
circle
round, 2
revolution, 3
series, 1
sequence, 1, 2
course, 2
rotation, 2

#DEF: 2. the time
interval required for
uch a sequence to occur;
periodicity.
#EXA: a
frequency of sixty cycles
per second.
cycle, 1
period, 1
time, 2
generation, 3
session, 2
periodicity, 1

#DEF: 3. a long
time; age; era.
cycle, 1
span
time, 2
eon, 2
years, 2
century, 1
decade, 1

#DEF: 4. a bicycle,

unicycle, motorcycle, or
the like.
cycle, 6
bike, 2
bicycle, 1

Diamond

#DEF: 2. a geometric
shape with four equal
straight sides, two equal,
opposed acute angles, and
two equal, opposed obtuse
angles.
diamond, 1, 2
stone, 5
precious_stone, 1
gemstone, 1
rock, 2
gem, 2, 5
jewel, 1

Dress

#DEF: 1. a girl’s or
woman’s one-piece garment
consisting of a blouse
connected to the waist
of a skirt.
dress, 1
frock, 1
gown, 1
shift, 8
shirtwaist, 1

#DEF: 2. apparel;
clothing.
dress, 2
apparel, 1
clothing, 1
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raiment, 1
garb, 1
habit, 3
habiliments
duds, 1
threads, 1
toggery
wear, 2
costume, 1, 2, 3, 4
outfit, 2
getup, 1
togs, 1

#DEF: 3. formal
clothing.
dress, 2
vestment, 1
attire, 1
evening_dress, 1
white_tie, 2
Sunday_best, 1
robe, 1
formal
dinner_jacket, 1
tuxedo, 1
apparel, 1
array, 3
caparison, 1
black_tie, 1

Drill

#DEF: 1. a tool
consisting of a shaft that
has sharp cutting edges
and is used to make holes
in wood, metal, or the
like, usu. by means of
rotation; drill bit.
drill, 1, 2
bit, 9

borer, 1
rotary

#DEF: 2. a device
that holds and often
powers a drill bit or
drill shaft.
drill, 1, 2
borer, 1
rotary

#DEF: 3. a learning
or training procedure
consisting of frequent
repetition of an action
or item to be learned:
#EXA: a marching
drill;
#EXA: a
multiplication drill.
drill, 4, 5
exercise, 3
training, 1
practice, 2
regimen
routine, 1

#DEF: 4. any of
various marine mollusks
that kill oysters and
the like by making holes
in their shells.
drill
mollusk, 1
gastropod, 1

Drink

#1. a liquid for
swallowing; a beverage
or a certain quantity
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of liquid.
drink, 3, 5
beverage, 1
quaff
liquid, 1, 3
refreshment, 1
soft_drink, 1
soda, 2
juice, 1

#2. an alcoholic beverage.
drink, 3, 5
potation, 1
intoxicant, 1
alcohol, 1
beverage, 1
liquor, 1
wine, 1
beer, 1
spirits, 1
booze, 1
sauce
moonshine, 2
firewater, 1
cocktail, 1
nightcap, 1
tipple, 1

#3. a certain quantity of
alcohol.
drink, 1, 5
glass, 3
bottle, 2
can, 2
slug
brew, 1

#4. excessive use of
alcohol:
#EXA: Drink
caused him to lose his
job.

drink, 2
insobriety
intemperance, 2
drunkenness, 1, 2
intoxication, 1
inebriety, 1
alcoholism, 1, 2
dipsomania, 1
crapulence, 1
tipple, 1
boozing, 1
bibulous

#5. (informal) a body of
water:
#EXA: I fell
off the boat and into the
drink.
drink, 4
water, 2
ocean, 1
sea, 1
brine, 1
briny, 1
lake, 1
river, 1
pond, 1

Drum

#DEF: 2. a booming
sound produced by or as
if by a drum.
drum, 2
thunder, 1
rumble, 1
boom, 1
roll, 8, 9
growl, 1
roar, 1
resonance, 3
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reverberation, 1

Earth

#DEF: 1. (often
cap.) the fifth largest
planet in the solar
system, which is third in
order from the sun and
has a diameter of about
7, 930 miles.
earth, 1
globe, 1

#DEF: 2. all of the
inhabitants that dwell
upon Earth:
#EXA: Earth
prays for peace.
earth
world, 1
mankind, 1
humanity, 1
race, 3
population, 1
people, 1

#DEF: 3. the outer
layer of the planet;
ground.
earth, 2, 3
land, 4
ground, 1, 3
soil, 2
terra_firma, 1
topsoil, 1
clay, 1

#DEF: 4. soil or
dirt.
earth, 2

ground, 3, 7
soil, 2, 3
dirt, 1
terra_firma, 1
clay, 2
sod, 1
dust, 1

Electricity

#DEF: 2. the
science concerned with
such a phenomenon and
its effects.
electricity
polarity
magnetism

#DEF: 4. a state of
tension or excitement.
electricity, 3
current, 1
direct_current, 1
DC, 2
alternating_current, 1
AC, 2
power, 2
juice

Explosive

#DEF: a substance
that is capable of
causing an explosion,
esp. an agent prepared
for that purpose, such
as dynamite.
#DER:
explosively, adv. ;
#DER:

269



explosiveness, n.
explosive, 1
fulminate
detonator, 1
charge, 15
dynamite, 1
TNT, 1
trinitrotoluene, 1
gunpowder, 1
cordite, 1
gelignite, 1
fuse, 2

Eye

#DEF: 1. the organ
of sight and the area
close around it, including
the lids, lashes, and brow.
eye, 1
orb, 1
eyeball, 1
peeper, 2

#DEF: 2. skill in
observing:
#EXA: an eye
for color.
eye, 2
sense, 3
sensitivity, 1
awareness, 1
judgment, 7
discernment, 4
perception, 4

#DEF: 3. (usu. pl.)
judgment or understanding:
#EXA: In
society’s eyes, they are
outlaws.

eye, 2
view, 5
opinion, 1
judgment, 1
understanding, 1
estimation, 4
ken, 1

#DEF: 4. close
attention:
#EXA: Keep an
eye on my things while
I’m gone.
eye, 3
watch, 3
lookout
attention, 1

#DEF: 6. the center,
as of a storm.
eye, 4
center, 1
middle, 1
hub, 2
heart, 4
midst, 1

#DEF: 7. any of
various things that
resemble an eye:
#EXA: the eye
of the needle;
#EXA: the eye
of the target.
eye, 5
eyelet, 1
grommet
hole
slit, 1

Family
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#DEF: 2. such
ancestors themselves.
family_tree, 1
ancestor, 1
predecessor, 1
forerunner, 1
forebear, 1
ancestress, 1
progenitor, 1
ancestry, 1
antecedent, 1
root
genealogy, 1
parentage, 2
background

#DEF: 1. a group
consisting of parents and
their children.
family, 1
folk, 3
household, 1
house, 4
menage, 1
kindred, 1
clan, 1
kin, 1, 2
extended_family, 1

#DEF: 2. all of
one’s ancestors and
descendants; those
related by blood kinship.
family, 4, 5
relation, 3
people, 4
kin, 1, 2
kinfolk, 1
kindred, 1
ancestry, 1
relative, 1
folk, 3

descendants, 1
offspring, 1
progeny, 1
ancestor, 1

#DEF: 3. all those
persons descended from a
common ancestor.
family, 4
descendants, 1
offspring, 1
progeny, 1
posterity, 1
lineage, 1
relation, 3
people, 4
kinfolk, 1
kindred, 1
relative, 1
folk, 3
parentage, 2

#DEF: 4. any group
living together, as if
they were related by
blood, in a single
household.
family, 1
household, 1
menage, 1
house, 4
folk, 3
kindred, 1
clan, 1
people, 4

#DEF: 5. any group
of things related in form,
function, or period of
manufacture or origin.
family, 3
class, 1
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genus, 1
category, 1
group, 1
kind, 1
type, 1
order, 8, 10

Fan

#DEF: 1. a
mechanical apparatus, usu.
driven by electricity,
that creates an air
current by moving several
vanes or blades in
rotation.
fan, 1
blower, 1, 2
air_conditioning, 1
ventilator, 1

#DEF: 2. a hand-held
device that opens out to
form a triangular shape
and that is used to cool
the face or body by waving
back and forth.
fan, 1
palm_leaf
punkah, 1

#DEF: an
enthusiastic follower of
an activity such as a
sport or a performing art,
for of a person or persons
who engage in tha
activity:

#EXA: a football
fan;
#EXA: the fans

of a movie star.
fan, 2, 3
enthusiast, 1
afficionado, 1
devotee, 1
buff, 1
fancier, 1
follower
hound
addict, 1
nut, 5
fiend, 3
junkie
groupie, 1
votary, 3
disciple, 1

Feather

#DEF: 4. condition
or character:
#EXA: in fine
feather;
feather
shape, 6
condition, 1
trim, 1
form, 7
order, 5
fettle, 1
kilter
health, 1

Festival

#DEF: 1. a day or
more of celebration to
commemorate a notable
occasion, such as a
religious holiday.
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festival, 1
holiday, 2
feast, 3
fete, 1
celebration, 2
observance, 2
holy_day, 1
gala, 1
revel, 1
jubilee, 1
ceremony, 1
carnival, 1
Saturnalia, 1
fiesta, 1
name_day, 1
occasion, 2

#DEF: 2. a
regularly occurring
ceremony or celebration:
#EXA: the
harvest festival.
festival, 1
celebration, 2
fete, 1
observance, 2
ceremony, 1
revel, 1
jubilee, 1
gala, 1
carnival, 1
Saturnalia, 1
fiesta, 1
occasion, 2

#DEF: 3. a series of
presentations, or a
gathering of exhibitors in
one or more of the fine
arts, theater arts, or
crafts, or such a
gathering based on a

central theme, food,
season, or the like:
#EXA: a music
festival;
#EXA: the apple
festival.
festival, 2
fair, 1
carnival, 3

Film

#DEF: 4. (often
cap.) motion pictures
generally, or the motion
picture industry.
film, 1
movie, 1
motion_picture, 1
moving_picture, 1
picture, 6
feature, 3
showing, 1
show, 4
screening, 1
cinema

Fire

#DEF: a hydrant to
which a firefighting hose
can be attached; fireplug.
fire_hydrant, 1
hydrant, 2
fireplug, 1
plug, 6

#DEF: 1. the
ffects, such as heat,
light, and flames,
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produced by burning.
fire, 3
flame, 1
combustion, 1
light, 1
spark, 1
glow, 3, 5
illumination, 3
incandescence, 2
sparkle, 2, 3
energy, 1
heat, 1, 2
radiance, 2

#DEF: 2. a
particular burning, as in
a stove or furnace.
fire, 1, 3
blaze, 1
bonfire, 1

#DEF: 3. an instance
of destructive burning:
#EXA: There was
a fire at the library last
night.
fire, 1
blaze, 1
conflagration, 1
holocaust
wildfire, 1
inferno, 3
flare-up

#DEF: 4. passion or
imaginative excitement:
#EXA: the fire
of her poetry.
fire, 6
fervor, 1
ardor, 3
passion, 1

heat, 4
verve, 1
enthusiasm, 1
power, 1
vehemence, 1
intensity, 1, 2
imagination, 1

#DEF: 5. a severe
trial.
fire, 7
trial, 6
ordeal, 1
trouble, 2, 3, 4
affliction, 1, 3
torture

#DEF: 6. the
discharging of a weapon
or weapons.
fire, 2
discharge, 9
shot, 3
flak, 4
fusillade, 1
volley, 1
barrage, 2
salvo, 2
cannonade, 1
enfilade
gunfire, 1

Flower

#DEF: 2. a plant
capable of producing
blossoms, grown primarily
for visual enjoyment.
flower, 1
blossom, 1
inflorescence, 2

274



bloom, 2
bud, 1

#DEF: 3. the best or
most flourishing example
or state of something:
#EXA: He was the
flower of his generation;
flower, 3
prime, 2
efflorescence, 1
heyday, 1
bloom, 5
summit, 1
peak, 2
zenith
climax, 4
flush, 1

Foot

#DEF: 4. the part of
something that is lowest
or opposite the head:
#EXA: the foot
of the cliff;
#EXA: the foot
of the bed.
foot, 3, 5
base, 2, 5, 8
rock_bottom, 1
bottom, 2
nadir
foundation, 3
belly
floor, 3, 5

Freeway

#DEF: a highway with

limited access and no
tolls; expressway.
freeway, 1
thruway, 1
turnpike, 2
pike, 1
interstate
expressway, 1
route, 2
parkway, 1
autobahn, 1
highway, 1
speedway, 1

Fruit

#DEF: 2. something
that is a result or
outcome:
#EXA: These are
the fruit of my efforts.
fruit, 2
child, 2
product, 3
progeny, 1
issue, 6, 7
offspring, 1, 2
outcome, 1, 2
result, 1, 3
descendant, 1
heir, 2
offshoot, 1
spawn

Fungus

#DEF: any organism,
including mushrooms,
yeasts, molds, rusts, and
others, characterized by
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lack of chlorophyll and
by subsistence on organic
matter.
fungus, 1
mold, 5
mildew, 2
smut, 3
rust, 4
parasite, 1

Game

#DEF: 2. any planned
strategy to reach an
objective.
game_plan, 1
strategy, 1
plan, 1
game
scheme, 1
stratagem, 2

#DEF: 1. something
done for amusement;
diversion; pastime.
game, 3
diversion, 1
pastime, 1
distraction, 3
entertainment, 1
recreation, 1
amusement, 2
play, 14
fun, 1

#DEF: 2. a usu.
competitive form of play
or sport having certain
rules and equipment for
play:
#EXA: a game of

chess;
#EXA: a football
game.
game, 2, 3
sport, 1
play
competition, 2
match, 2
contest, 1

#DEF: 3. a strategy
or plan.
game
strategy, 1
plan, 1
game_plan, 1
scheme, 1
stratagem, 2

#DEF: 4. wild
animals hunted for sport
or food.
game, 4
quarry, 3
wildlife, 1
big_game, 1
take

#DEF: 5. the flesh
of such animals, used for
food.
game, 8
fowl, 2
meat, 1
take

Garden

#DEF: 2. (often.
pl.) a public park or
recreation area, often
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devoted to the housing and
display of plants or
animals.
garden, 1
plot, 1
patch, 2
bed, 2
plat
flat

Gas

#DEF: 8. (slang)
something amusing or
astonishing:
#EXA: Those
crobats were a gas.
gas
chatter, 1
gossip, 1
small_talk, 1
chitchat, 1
prate, 1
palaver, 2
gab, 1
jabber, 1
babble, 1
patter, 1
prattle, 1
gibber, 1
twaddle, 1
blather, 1
blab
blast, 5
ball

Gate

#DEF: 2. a passage
for entrance or exit.

gate, 1
portal, 1
entry, 5
entranceway, 1
entryway, 1
ingress, 1
door, 2
doorway, 1
hall, 1, 2
entrance, 1
inlet
approach, 3
driveway, 1
adit, 1
opening, 1
hatch, 3
postern, 1
hallway, 1
foyer, 1
access, 3

Gemstone

#DEF: a precious
stone fine enough to cut
and polish for jewelry.
gemstone, 1
gem, 2
bijou, 1
stone, 5
jewel, 1, 2
sparkler
rock

Girl

#DEF: 1. a female
child or adolescent.
girl, 2
female, 2
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maiden, 1
lass, 1
filly, 1
maid, 2
gal, 3
nymph, 3

#DEF: 2. an intimate
female friend; sweetheart.
girl, 4
girlfriend, 2
sweetheart, 1
inamorata
lass, 1

#DEF: 3. (informal)
a woman.
girl, 1, 5
woman, 1
lady, 1, 2
female, 2

God

#DEF: 2. (cap.) the
omnipotent and omniscient
being that is worshiped
by Christians, Jews, and
Muslims as the creator
and ruler of the universe.
god, 1
angel, 1
seraph, 1
cherub, 2
archangel, 1
goddess, 1
celestial

#DEF: 3. a physical
image or representation
of a supernatural being;

idol.
god, 4
Mammon, 1, 2
deity, 1
religion
golden_calf, 1
idol, 1
effigy, 1
statue, 1
relic, 2
fetish, 1
joss, 1
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Appendix E

The Maximum Entropy Framework

A training sample of data yields some information about the decisions made within

various contexts; however this only accounts for a small portion of all possible situa-

tions due to the sparse nature of the data for the task being modelled. The task of ME

is to train a classifier,p(d|c), that conforms to the empirical distributions of the training

sample but in addition remains as uniform as possible for allother possibilities. Given

information about how features affect decisions made in thetest data, the task is to find

a classifier that uses these features to calculatep(d|c). That is to say, the principal of

maximum entropy is:

“To select a model from a setC of allowed probability distributions,

choose the modelp∗ ∈ C with maximum entropy H(p)”

p∗ = arg max
p∈C

H(p) (E.1)

whereH(p) is the measure of uniformity. Berger et al. (1996) give the mathematical

measure of conditional entropy as a measure of the uniformity of p(d|c), as shown in

equation E.2.

H(p) = −
∑

c,d

p̃(c)p(d|c) log p(d|c) (E.2)

To ensure that the classifier will conform to the informationabout the features, the set

C of allowable classifiers is defined by equation E.3.

C ≡ {p ∈ P |p(fi) = p̃(fi) ∧ i ∈ {1, 2, . . . , n}} (E.3)
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wheren is the number of features used by the classifiers.

Ratnaparkhi (1997) gives a simple example of the use of maximum entropy. Con-

sider the task of estimating the distributionp(c, d), where there are possible contexts

c ∈ {x, y} and possible decisionsd ∈ {0, 1}. The only prior information available

is that p(x, 0) + p(y, 0) = 0.6. Constructing a feature from the given information

produces function E.4 and the probability in E.5.

f1(c, d) =

{

1 : if d = 0

0 : otherwise
(E.4)

p̃(f1) = 0.6 (E.5)

It is apparent that there are a large number of distributionsthat will satisfy the

feature, such as table E.1. However, the maximum entropy approach selects the clas-

sifier deemed to be most uniform, or non-committal, given in table E.2. For small

p(c, d) 0 1
x 0.1 0.3
y 0.5 0.1

Total 0.6 0.4 1

Table E.1: One Way To Satisfy The Constraints

p(c, d) 0 1
x 0.3 0.2
y 0.3 0.2

Total 0.6 0.4 1

Table E.2: The Most Uniform Way To Satisfy The Constraints

examples, such as the one outlined above, the calculation for the distribution is trivial.

However, for most problems of interest this is not the case. For such cases, an alterna-

tive approach is required. Berger et al. (1996) and Berger (1997) give a method using

Lagrange Multipliers from the theory of constrained optimisation:

• The problem of findingp∗ ∈ C in the original optimisation problem is referred
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as the primal problem, given in equation E.6.

∃p∗ = arg max
p∈C

H(p) (E.6)

• For each feature,fi, a Lagrange multiplier,λi, is introduced. The Lagrangian

Λ(p, λ) is defined as E.7.

Λ(p, λ) = H(p) +

n
∑

i=1

λi(p(fi)− p̃(fi)) (E.7)

wheren is the number of features.

• The task is to findpλ, the classifier whereΛ(p, λ) reaches its maximum. For

this a new definition forp(fi) is required using the Lagrange multipliers. A dual

problem,Ψ(λ), is maximised to find the values ofλ. When this maximum is

reaches,Ψ(λ) will be equal toΛ(p, λ).

pλ ≡ arg max
p∈P

Λ(p, λ) (E.8)

Ψ(λ) ≡ Λ(p, λ) (E.9)

The dual problem expresses the conditional distributionp(d|c) in terms of the fea-

tures that are active, where a feature is active when its value is 1. The Lagrange multi-

pliers,λ, weights the affect of each of the features in the final classifier. Equations E.10

to E.13 define the dual problem, and the new definition for calculatingp(d|c) using the

Lagrange multiples.

pλ(d|c) =
1

Zλ(c)
exp

(

n
∑

i=1

λifi(c, d)

)

(E.10)

Zλ(c) =
∑

d∈D

exp

(

n
∑

i=1

λifi(c, d)

)

(E.11)

pλ(f) =
∑

c∈C,

d∈D

p̃(c)pλ(d|c)f(c, d) (E.12)
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Ψ(λ) = −
∑

c∈C

p̃(c) logZλ(c) +

n
∑

i=1

λip̃(fi) (E.13)

Maximising the unconstrained dual function (E.13) gives a set of Lagrange multi-

pliers that also maximiseΛ(p, λ), therefore we solve the dual optimisation problem by

satisfying E.14.

∃λ∗ = arg max
λ

Ψ(λ) (E.14)

It will sometimes be the case thatλ∗ cannot be calculated exactly. In the iterative

training algorithm introduced later in this section, each iteration,i, produces a set of

Lagrange multipliers,λi. Ψ(λ) increases for each iteration of the algorithm, therefore

λ∗ can be estimated due to the fact thatλ∗←λn.

A fundamental principal of the theory of Maximum Entropy, the Kuhn-Tucker the-

orem, reinforces the relationship between the primal and dual problems given here. So

it follows, as Berger et al. (1996) state:

“The maximum entropy model subject to the constraintsC has the

parametric formpλ, where the parameters valuesλ∗ can be determined by

maximising the dual functionΨ(λ).” (Berger et al., 1996)

The optimal set of Lagrange multiples,λ∗, can be calculated using a number of

numerical methods given that the dual functionΨ(λ) produces a smooth convex-∩

graph againstλ. Berger et al. (1996); Berger (1997) describe an improved iterative

scaling (IIS) algorithm to calculate the Lagrange multipliers. The algorithm itself is

a generalisation of the Darroch-Ratcliff procedure, and a proof for the convergence of

the algorithm is given by Pietra et al. (1997, 1995). The algorithm can be applied to

any model that meets the criteria in E.15.

∀c ∈ C · ∀d ∈ D · ∀i ∈ {1, 2, . . . , n} · fi(c, d) ≥ 0 (E.15)

wheren is the number of features.

The main task of the algorithm in listing D.1 is to calculate the∆λi that satisfies the

equality in 2a for each iteration. If#f(c, d) is constant forfi, ∆λi can be calculated

directly. Rearranging the equality in 2a produces the equation in E.16.

∆λi =
1

#f(c, d)
ln

p̃(fi)

pλ(fi)
(E.16)
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Algorithm D.1: Improved Iterative Scaling (IIS) Algorithm

1. ∀i ∈ {1, 2, . . . , n}, λi = 0

2. ∀i ∈ {1, 2, . . . , n},

(a) Let∆λi be the solution to
∑

c,d

p̃(d|c)fi(c, d) exp (∆λi#f(c, d)) = p̃(f)

where= f(c, d) ≡
n
∑

i=1

fi(c, d).

(b) Update the value ofλi according to:λi ← λi + ∆λi.

3. Return to step 2 if not allλi have converged.

If #f(c, d) is not constant forfi, Newton’s method is applied to find∆λi. Newtons

method is illustrated in equation E.17.

αn+1 = αn −
g(αn)

g′(αn)
(E.17)

For the dual problem (E.13),g(αn) is calculated using E.18.

g(αn) =

(

∑

c,d

p̃(c)pλ(d|c)fi(c, d) exp (αn#f(c, d))

)

− p̃(fi) (E.18)

The derivative ofg(αn) than be calculated trivially given rules E.19 and E.20.

f(x) = mcnx − k (E.19)

f ′(x) = nmcnx (E.20)

wherec, k,m andn are constants. Using these rules,g′(αn) is given by differentiating

g(αn) is respect toαn, producing E.21.

g(αn) =

(

∑

c,d

#f(c, d)p̃(c)pλ(d|c)fi(c, d) exp (αn#f(c, d))

)

− p̃(fi) (E.21)

The recursive algorithm runs untilg(α∗) = 0 is satisfied, and∆λi = α∗. In the

implementation used, it was found that Newton’s method worked well using E.22 for

α0.

α0 =
1

average(#f(c, d))
ln

p̃(fi)

pλ(fi)
(E.22)
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An alternative divide-and-conquer algorithm, shown in D.2, can also be used to

find g(α∗) = 0 when selectingα0 becomes problematic. If a change of sign is detected

between two values,αu andαl, α∗ must lie between the two values. A divide-and-

conquer algorithm is applied to find the value ofα∗ by testing the mean,αm of αu and

αl, and replacing the relevantα to reduce the range of values considered untilαu and

αl converge. At this pointg(α∗) = 0. This is shown diagrammatically in Figure E.1.

Figure E.1: Illustration of Divide-and-Conquer Algorithm

Algorithm D.2: Divide-and-Conquer Algorithm to Calculateα∗

1. Start with two values, upper boundαu and lower boundαl.

2. Calculate the average of the two valuesαm.

3. If not(g(αu) = 0) Then

(a) Calculates = sign(g(αm))

(b) If (s = “+”) Thenαu = αm Elseαl = αm

Else

(a) Returnαm

4. Goto 2

Given thatα∗ lies betweenαu andαl, the divide-and-conquer algorithm is guaran-

teed to findα∗.
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Appendix F

Distribution of Examples for Word

Sense Disambiguation Tests

Number of Number of Number
Word Training Similar Training of Test

Split

Examples Examples Examples
Dog 25 364 13 65.79%
Eye 113 72 45 71.52%
Family 83 407 45 64.84%
Give 406 32 178 69.52%
Information 81 225 40 66.94%
Instruction 10 270 5 66.67%
Party 46 299 16 74.19%
Report 47 292 22 68.12%
Suggestion 16 279 6 72.73%
Vote 12 110 6 66.67%
Work 142 252 59 70.65%

Table F.1: Data Available for Each Word of Interest
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Number of Number of NumberDog
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 25 4 13 65.79%
2 0 291 0 No Examples
3 0 291 0 No Examples
4 0 275 0 No Examples
5 0 13 0 No Examples
6 0 14 0 No Examples

Table F.2: Data Available for “Dog”

Number of Number of NumberEye
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 104 8 43 70.75%
2 6 0 0 100.00%
3 3 2 2 60.00%
4 0 61 0 No Examples
5 0 1 0 No Examples

Table F.3: Data Available for “Eye”

Number of Number of NumberFamily
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 40 34 19 67.80%
2 31 5 18 63.27%
3 6 16 4 60.00%
4 4 36 2 66.67%
5 1 317 1 50.00%
6 1 31 1 50.00%
7 0 71 0 No Examples

Table F.4: Data Available for “Famliy”
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Number of Number of NumberGive
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 88 0 38 69.84%
2 88 10 39 69.29%
3 53 151 23 69.74%
4 39 1 17 69.64%
5 13 0 6 68.42%
6 16 4 8 66.67%
7 14 0 7 66.67%
8 13 0 6 68.42%
9 13 0 5 72.22%
10 7 0 2 77.78%
11 8 0 3 72.73%
12 6 3 3 66.67%
13 7 0 2 77.78%
14 6 0 3 66.67%
15 3 0 1 75.00%
16 4 0 2 66.67%
17 7 11 3 70.00%
18 4 1 1 80.00%
19 2 0 1 66.67%
20 4 0 1 80.00%
21 3 0 1 75.00%
22 1 0 1 50.00%
23 1 0 1 50.00%
24 4 1 2 66.67%
25 1 2 1 50.00%
26 0 0 0 No Examples
27 1 0 1 50.00%
28-45 0 0 0 No Examples

Table F.5: Data Available for “Give”
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Number of Number of NumberInformation
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 50 225 25 66.67%
2 0 140 0 No Examples
3 30 21 15 66.67%
4 0 22 0 No Examples
5 1 40 0 100.00%

Table F.6: Data Available for “Information”

Number of Number of NumberInstruction
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 5 134 3 62.50%
2 4 108 1 80.00%
3 1 21 1 50.00%
4 0 114 0 No Examples

Table F.7: Data Available for “Instruction”

Number of Number of NumberParty
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 25 29 9 73.53%
2 4 2 0 100.00%
3 7 2 3 70.00%
4 9 2 4 69.23%
5 1 264 0 100.00%

Table F.8: Data Available for “Party”
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Number of Number of NumberReport
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 34 136 16 68.00%
2 7 145 1 87.50%
3 5 4 4 55.56%
4 1 12 1 50.00%
5 0 170 0 No Examples
6 0 184 0 No Examples
7 0 0 0 No Examples

Table F.9: Data Available for “Report”

Number of Number of NumberSuggestion
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 9 17 4 69.23%
2 6 177 2 75.00%
3 1 49 0 100.00%
4 0 3 0 No Examples
5 0 33 0 No Examples

Table F.10: Data Available for “Suggestion”

Number of Number of NumberVote
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 11 13 3 78.57%
2 0 20 3 0.00%
3 1 27 0 100.00%
4 0 23 0 No Examples
5 0 40 0 No Examples

Table F.11: Data Available for “Vote”
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Number of Number of NumberWork
Training Similar Training of Test Split RatioSense

Examples Examples Examples
1 56 98 23 70.89%
2 49 44 25 66.22%
3 22 55 6 78.57%
4 12 0 3 80.00%
5 0 73 0 No Examples
6 0 53 1 0.00%
7 3 9 1 75.00%

Table F.12: Data Available for “Work”
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Lin, D. (1998c). An information-theoretic definition of similarity. In Proceedings 15th

International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann,

San Francisco, CA.

Litkowski, K. C. (1997, April). Desiderata for tagging withWordNet synsets or mcca

categories. InProceedings of the ACL-SIGLEX Workshop on Tagging Text with

Lexical Semantics: Why, What, and How?, Washington, D.C., pp. 12–17.

Marcus, M., G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson,

K. Katz, and B. Schasberger (1994). The Penn Treebank: Annotating predicate ar-

gument structure. InProceedings of the ARPA Human Language Technology Work-

shop, (ARPA’94). also known as Treebank II.

Marcus, M. P., B. Santorini, and M. A. Marchinkiewicz (1993). Building a large an-

notated corpus of English: The Penn Treebank.Computational Linguistics 19(2),

313–330.

Markowitz, J., T. Ahlswede, and M. Evens (1986). Semantically significant patterns in

dictionary definitions. InProceedings of the 24th Annual Meeting of the Association

for Computational Linguistics (ACL), New York, pp. 112–119.

Martinez, D. and E. Agirre (2000). One sense per collocationand genre/topic varia-

tions. InProceedings of the Joint SIGDA T Conference on Empirical Methods in

Natural Language Processing and Very Large Corpora, Hong Kong.

Masterman, M. (1957). The thesaurus in syntax and semantics. Mechanical Transla-

tion 4(1-2), 35–43.

301



BIBLIOGRAPHY

Masterman, M. (1961). Semantic message detection for machine translation, using an

interlingua. InInternational Conference on Machine Translation of Languages and

Applied Language Analysis, Her Majesty’s Stationary Office, London, pp. 438–475.

McCelland, J. L. and D. E. Rumelhart (1981). An interactive activation of context

effects in letter perception: Part 1. an account of basic findings. Psychological Re-

view 88(6), 375–407.

McRoy, S. W. (1992). Using multiple knowledge sources for word sense discrimina-

tion. Computational Linguistics 18(1), 1–30.

Mel’cuk, I. A. (1988, February).Dependency Syntax: Theory and Practice. State

University of New York Pr.

MeSH (1995). MeSH - Tree Structures. National Library of Medicine,

http://www.nlm.nih.gov/mesh/meshhome.html.

Meyer, D. E. and R. W. Schvaneveldt (1971). Facilitation in recognizing pairs of words:

Evidence of a dependence between retrieval operations.Journal of Experimental

Psychology 90(2), 227–234.
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