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Abstract

GREAT is a finite-state toolkit which is
devoted to Machine Translation and that
learns structured models from bilingual
data. The training procedure is based on
grammatical inference techniques to ob-
tain stochastic transducers that model both
the structure of the languages and the re-
lationship between them. The inference
of grammars from natural language causes
the models to become larger when a less
restrictive task is involved; even more if
a bilingual modelling is being considered.
GREAT has been successful to implement
the GIATI learning methodology, using
different scalability issues to be able to
deal with corpora of high volume of data.
This is reported with experiments on the
EuroParl corpus, which is a state-of-the-
art task in Statistical Machine Translation.

1 Introduction

Over the last years, grammatical inference tech-
niques have not been widely employed in the ma-
chine translation area. Nevertheless, it is not un-
known that researchers are trying to include some
structured information into their models in order to
capture the grammatical regularities that there are
in languages together with their own relationship.

GIATI (Casacuberta, 2000; Casacuberta et al.,
2005) is a grammatical inference methodology to
infer stochastic transducers in a bilingual mod-
elling approach for statistical machine translation.

From a statistical point of view, the translation
problem can be stated as follows: given a source
sentences = s1 . . . sJ , the goal is to find a target
sentencêt = t1 . . . t

Î
, among all possible target

stringst, that maximises the posterior probability:

t̂ = argmax
t

Pr(t|s) (1)

The conditional probabilityPr(t|s) can be re-
placed by a joint probability distributionPr(s, t)
which is modelled by a stochastic transducer being
inferred through the GIATI methodology (Casacu-
berta et al., 2004; Casacuberta and Vidal, 2004):

t̂ = argmax
t

Pr(s, t) (2)

This paper describes GREAT, a software pack-
age for bilingual modelling from parallel corpus.

GREAT is a finite-state toolkit which was born
to overcome the computational problems that pre-
vious implementations of GIATI (Picó, 2005) had
in practice when huge amounts of data were used.
Even more, GREAT is the result of a very metic-
ulous study of GIATI models, which improves
the treatment of smoothing transitions in decod-
ing time, and that also reduces the required time to
translate an input sentence by means of an analysis
that will depend on the granularity of the symbols.

Experiments for a state-of-the-art, voluminous
translation task, such as the EuroParl, are re-
ported. In (González and Casacuberta, 2007),
the so called phrase-based finite-state transducers
were concluded to be a better modelling option for
this task than the ones that derive from a word-
based approach. That is why the experiments here
are exclusively related to this particular kind of
GIATI-based transducers.

The structure of this work is as follows: first,
section 2 is devoted to describe the training proce-
dure, which is in turn divided into several lines, for
instance, the finite-state GIATI-based models are
defined and their corresponding grammatical in-
ference methods are described, including the tech-
niques to deal with tasks of high volume of data;
then, section 3 is related to the decodification pro-
cess, which includes an improved smoothing be-
haviour and an analysis algorithm that performs
according to the granularity of the bilingual sym-
bols in the models; to continue, section 4 deals
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with an exhaustive report on experiments; and fi-
nally, the conclusions are stated in the last section.

2 Finite state models

A stochastic finite-state automatonA is a tuple
(Γ, Q, i, f, P ), whereΓ is an alphabet of symbols,
Q is a finite set of states, functionsi : Q → [0, 1]
andf : Q → [0, 1] refer to the probability of each
state to be, respectively, initial and final, and par-
cial functionP : Q × {Γ ∪ ε} × Q → [0, 1] de-
fines a set of transitions between pairs of states in
such a way that each transition is labelled with a
symbol fromΓ (or the empty stringε), and is as-
signed a probability. Moreover, functionsi, f, and
P have to respect theconsistencyproperty in or-
der to define a distribution of probabilities on the
free monoid. Consistent probability distributions
can be obtained by requiring a series of local con-
straints which are similar to the ones for stochastic
regular grammars (Vidal et al., 2005):

•
∑

q∈Q

i(q) = 1

• ∀q ∈ Q :
∑

γ∈{Γ∪ε},q′∈Q

P (q, γ, q′)+f(q) = 1

A stochastic finite-state transducer is defined
similarly to a stochastic finite-state automaton,
with the difference that transitions between states
are labelled with pairs of symbols that belong to
two different (input and output) alphabets, that
is, (Σ ∪ ε) × (∆ ∪ ε). Then, given some in-
put and output strings,s andt, a stochastic finite-
state transducer is able to associate them a joint
probability Pr(s, t). An example of a stochastic
finite-state transducer can be observed in Figure 1.
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Figure 1: A stochastic finite-state transducer

2.1 Inference of stochastic transducers

The GIATI methodology (Casacuberta et al.,
2005) has been revealed as an interesting approach

to infer stochastic finite-state transducers through
the modelling of languages. Rather than learn-
ing translations, GIATI first converts every pair
of parallel sentences in the training corpus into a
corresponding extended-symbol string in order to,
straight afterwards, infer a language model from.

More concretely, given a parallel corpus con-
sisting of a finite sampleC of string pairs: first,
each training pair(x̄, ȳ) ∈ Σ⋆×∆⋆ is transformed
into a stringz̄ ∈ Γ⋆ from an extended alphabet,
yielding a string corpusS; then, a stochastic finite-
state automatonA is inferred fromS; finally, tran-
sition labels inA are turned back into pairs of
strings of source/target symbols inΣ⋆ × ∆⋆, thus
converting the automatonA into a transducerT .

The first transformation is modelled by some la-
belling functionL : Σ⋆ ×∆⋆ → Γ⋆, while the last
transformation is defined by an inverse labelling
function Λ(·), such thatΛ(L(C)) = C. Build-
ing a corpus of extended symbols from the original
bilingual corpus allows for the use of many useful
algorithms for learning stochastic finite-state au-
tomata (or equivalent models) that have been pro-
posed in the literature on grammatical inference.

2.2 Phrase-basedn-gram transducers

Phrase-basedn-gram transducers represent an in-
teresting application of the GIATI methodology,
where the extended symbols are actually bilingual
phrase pairs, andn-gram models are employed as
language models (González et al., 2008). Figure 2
shows a general scheme for the representation of
n-grams through stochastic finite state automata.
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Figure 2: A finite-staten-gram model

25



The states in the model refer to all then-gram
histories that have been seen in the string corpusS
in training time. Consuming transitions jump from
states in a determined layer to the one immediately
above, increasing the history level. Once the top
level has been reached,n-gram transitions allow
for movements inside this layer, from state to state,
updating the history to the lastn − 1 seen events.

Given that an n-gram event
Γn−1Γn−2 . . .Γ2Γ1Γ0 is statistically stated
as Pr(Γ0|Γn−1Γn−2 . . .Γ2Γ1), then it is appro-
priately represented as a finite state transition
between their corresponding up-to-date histories,
which are associated to some states (see Figure 3).

Γn−1Γn−2 . . .Γ2Γ1Γ0

Figure 3: Finite-state representation ofn-grams

Γn−1 . . .Γ3Γ2Γ1 Γn−2 . . .Γ2Γ1Γ0

Γ0

Therefore, transitions are labelled with a sym-
bol from Γ and every extended symbol inΓ is a
translation pair coming from a phrase-based dic-
tionary which is inferred from the parallel corpus.

Nevertheless, backoff transitions to lower his-
tory levels are taken for smoothing purposes. If
the lowest level is reached and no transition has
been found for next wordsj , then a transition to
the<unk> state is fired, thus consideringsj as a
non-starting word for any bilingual phrase in the
model. There is only 1 initial state, which is deno-
ted as<s>, and it is placed at the 1st history level.

The inverse labelling function is applied over
the automaton transitions as in Figure 4, obtaining
a single transducer (Casacuberta and Vidal, 2004).

Q’Q

Q Q’

On demande une activité

Action is required

Pr= p

Pr= p

On/ε demande/ε une/ε

activité/

Action is required

Pr= 1Pr= 1 Pr= 1

Figure 4: Phrase-based inverse labelling function

Intermediate states are artificially created since

they do not belong to the original automaton
model. As a result, they are non-final states, with
only one incoming and one outcoming edge each.

2.3 Transducer pruning via n-gram events

GREAT implements this pruning technique, which
is inspired by some other statistical machine trans-
lation decoders that usually filter their phrase-
based translation dictionaries by means of the
words in the test set sentences (Koehn et al., 2007).

As already seen in Figure 3, anyn-gram event
is represented as a transition between their cor-
responding historical states. In order to be able
to navigate through this transition, the analy-
sis must have reached theΓn−1 . . .Γ3Γ2Γ1 state
and the remaining input must fit the source ele-
ments ofΓ0. In other words, the full source se-
quence from then-gram eventΓn−1 . . .Γ3Γ2Γ1Γ0

has to be present in the test set. Otherwise,
its corresponding transition will not be able to
be employed during the analysis of the test set
sentences. As a result,n-gram events that are
not in the test set can skip their transition gener-
ation, since they will not be affected during de-
coding time, thus reducing the size of the model.
If there is also a backoff probability that is asso-
ciated to the samen-gram event, its correspond-
ing transition generation can be skipped too, since
its source state will never be reached, as it is the
state which represents then-gram event. Nev-
ertheless, since trained extended-symboln-gram
events would typically include more thann source
words, the verification of their presence or their
absence inside the test set would imply hashing all
the test-set word sequences, which is rather im-
practical. Instead, a window size is used to hash
the words in the test set, then the trainedn-gram
events are scanned on their source sequence using
this window size to check if they might be skipped
or not. It should be clear that the bigger the win-
dow size is, the moren-gram rejections there will
be, therefore the transducer will be smaller. How-
ever, the translation results will not be affected as
these disappearing transitions are unreachable us-
ing that test set. As the window size increases, the
resulting filtered transducer is closer to the mini-
mum transducer that reflects the test set sentences.

3 Finite state decoding

Equation 2 expresses the MT problem in terms of
a finite state model that is able to compute the ex-
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pressionPr(s, t). Given that only the input sen-
tence is known, the model has to be parsed, taking
into account all possiblet that are compatible with
s. The best output hypothesist̂ would be that one
which corresponds to a path through the transduc-
tion model that, with the highest probability, ac-
cepts the input sequence as part of the input lan-
guage of the transducer.

Although the navigation through the model is
constrained by the input sentence, the search space
can be extremely large. As a consequence, only
the most scored partial hypotheses are being con-
sidered as possible candidates to become the solu-
tion. This search process is very efficiently carried
out by a beam-search approach of the well known
Viterbi algorithm (Jelinek, 1998), whose temporal
asymptotic cost isΘ(J · |Q| ·M), whereM is the
average number of incoming transitions per state.

3.1 Parsing strategies: from words to phrases

The trellis structure that is commonly employed
for the analysis of an input sentence through a
stochastic finite state transducer has a variable size
that depends on the beam factor in a dynamic
beam-search strategy. That way, only those nodes
scoring at a predefined threshold from the best one
in every stage will be considered for the next stage.

A word-based parsing strategy would start with
the initial state<s>, looking for the best transi-
tions that are compatible with the first words1.
The corresponding target states are then placed
into the output structure, which will be used for the
analysis of the second words2. Iteratively, every
state in the structure is scanned in order to get the
input labels that match the current analysis word
si, and then to build an output structure with the
best scored partial paths. Finally, the states that
result from the last analysis step are then rescored
by their corresponding final probabilities.

This is the standard algorithm for parsing
a source sentence through an non-deterministic
stochastic finite state transducer. Nevertheless, it
may not be the most appropriate one when dealing
with this type of phrase-basedn-gram transducers.

As it must be observed in Figure 4, a set of
consecutive transitions represent only one phrase
translation probability after a given history. In
fact, the path from Q to Q’ should only be fol-
lowed if the remaining input sentence, which has
not been analysed yet, begins with the full input
sequenceOn demande une activité. Otherwise, it

should not be taken into account. However, as far
as the words in the test sentence are compatible
with the corresponding transitions, and according
to the phrase score, this (word) synchronous pars-
ing algorithm may store these intermediate states
into the trellis structure, even if the full path will
not be accomplished in the end. As a consequence,
these entries will be using a valuable position in-
side the trellis structure to an idle result. This will
be not only a waste of time, but also a distortion
on the best score per stage, reducing the effective
power of the beam parameter during the decoding.
Some other better analysis options may be rejected
because of their a-priori lower score. Therefore,
this decoding algorithm can lead the system to a
worse translation result. Alternatively, the beam
factor can be increased in order to be large enough
to store the successful paths, thus more time will
be required for the decoding of any input sentence.

On the other hand, a phrase-based analysis stra-
tegy would never include intermediate states in-
side a trellis structure. Instead, these artificial
states are tried to be parsed through until an ori-
ginal state is being reached, i.e. Q’ in Figure 4.
Word-based and phrase-based analysis are con-
ceptually compared in Figure 5, by means of their
respective edge generation on the trellis structure.

WORD−BASED EDGES

PHRASE−BASED EDGES

Q Q’

On demande une activité

Figure 5: Word-based and phrase-based analysis

However, in order to be able to use a scrolled
two-stage implementation of a Viterbi phrase-
based analysis, the target states, which may be
positioned at several stages of distance from the
current one, are directly advanced to the next one.
Therefore, the nodes in the trellis must be stored
together with their corresponding last input posi-
tion that was parsed. In the same manner, states
in the structure are only scanned if their posi-
tion indicator is lower than the current analysis
word. Otherwise, they have already taken it into
account so they are directly transfered to the next
stage. The algorithm remains synchronous with
the words in the input sentence, however, on this
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particular occasion, states in thei-th step of anal-
ysis are guaranteed to have parsedat least until
the i-th word, but maybe they have gone further.
Figure 6 is a graphical diagram about this concept.

Qi

Q′
j Q′

j Q′
j

Q′
j

i j

On demande une activité

Figure 6: A phrase-based analysis implementation

Moreover, all the states that are being stored in
the successive stages, that is, the ones from the ori-
ginal topology of the finite-state representation of
the n-gram model, are also guaranteed to lead to
a final state in the model, because if they are not
final states themselves, then there will always be a
successful path towards a final state.

GREAT incorporates an analysis strategy that
depends on the granularity of the bilingual sym-
bols themselves so that a phrase-based decoding
is applied when a phrase-based transducer is used.

3.2 Backoff smoothing

Two smoothing criteria have been explored in or-
der to parse the input through the GIATI model.
First, a standard backoff behaviour, where back-
off transitions are taken as failure transitions, was
implemented. There, backoff transitions are only
followed if there is not any other successful path
that has been compatible with the remaining input.

However, GREAT also includes another more
refined smoothing behaviour, to be applied over
the same bilingualn-gram transducers, where
smoothing edges are interpreted in a different way.

GREAT suggests to apply the backoff crite-
rion according to its definition in the grammati-
cal inference method which incorporated it into
the language model being learnt and that will be
represented as a stochastic finite-state automaton.
In other words, from then-gram point of view,
backoff weights (or finite-state transitions) should
only be employed if no transitions are found in the
n-gram automaton for a currentbilingual symbol.
Nevertheless, input words in translation applica-
tions do not belong to those bilingual languages.
Instead, input sequences have to be analysed in

such a way as if they could be internally repre-
senting any possible bilingual symbol from the ex-
tended vocabulary that matches their source sides.
That way, bilingual symbols are considered to be a
sort of input, so the backoff smoothing criterion is
then applied to each compatible, bilingual symbol.

For phrase-based transducers, it means that for a
successful transition(x̄, ȳ), there is no need to go
backoff and find other paths consuming that bilin-
gual symbol, but we must try backoff transitions
to look for any other successful transition(x̄′, ȳ′),
which is also compatible with the current position.

Conceptually, this procedure would be as if the
input sentence, rather than a source string, was ac-
tually composed of a left-to-right bilingual graph,
being built from the expansion of every input word
into their compatible, bilingual symbols as in a
category-based approach. Phrase-based bilingual
symbols would be graphically represented as a sort
of skip transitions inside this bilingual input graph.

This new interpretation about the backoff
smoothing weights on bilingualn-gram models,
which is not a priori a trivial feature to be included,
is easily implemented for stochastic transducers
by considering backoff transitions asε/ε transi-
tions and keeping track of a dynamic list of forbid-
den states every time a backoff transition is taken.

An outline about the management of state ac-
tiveness, which is integrated into the parsing algo-
rithm, is shown below:

ALGORITHM

for Q in {states to explore}
for Q-Q’ in {transitions} (a)

if Q’ is active
[...]
set Q’ to inactive

if Q is not NULL
if Q not in the top level
for Q’ in {inactive states}

set Q’ to active
Q’’ := backoff(Q’)
set Q’’ to inactive

Q := backoff(Q)
GoTo (a)

else
[...]
for Q’ in {inactive states}
set Q’ to active

[...]

END ALGORITHM
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The algorithm will try to translate several con-
secutive input words as a whole phrase, always al-
lowing a backoff transition in order to cover all
the compatible phrases in the model, not only the
ones which have been seen after a given history,
but after all its suffixes as well. A dynamic list
of forbidden states will take care to accomplish an
exploration constraint that has to be included into
the parsing algorithm: a path between two states
Q and Q’ has necessarily to be traced through the
minimum number of backoff transitions; any other
Q-Q’ or Q-Q” paths, where Q” is the destination
of a Q’-Q” backoff path, should be ignored. This
constraint will cause that only one transition per
bilingual symbol will be followed, and that it will
be the highest in the hierarchy of history levels.
Figure 7 shows a parsing example over a finite-
state representation of a smoothed bigram model.
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Figure 7:Compatible edges for a bigram model.
Given a reaching state Q, let us assume that the
transitions that correspond to certain bilingual
phrase pairsp

1
, p

2
andp

3
are all compatible with

the remaining input. However, the bigram (Q,
p

3
) did not occur throughout the training corpus,

therefore there is no a direct transition from Q to
p

3
. A backoff transition enables the access top

3

because the bigram (Q,p
3
) turns into a unigram

event that is actually inside the model. Unigram
transitions top

1
andp

2
must be ignored because

their corresponding bigram events were success-
fully found one level above.

4 Experiments

GREAT has been successfully employed to work
with the French-English EuroParl corpus, that is,
the benchmark corpus of the NAACL 2006 shared
task of the Workshop on Machine Translation

of the Association for Computational Linguistics.
The corpus characteristics can be seen in Table 1.

Table 1:Characteristics of the Fr-En EuroParl.

French English
Sentences 688031

Training Run. words 15.6 M 13.8 M
Vocabulary 80348 61626
Sentences 2000

Dev-Test Run. words 66200 57951

The EuroParl corpus is built on the proceedings
of the European Parliament, which are published
on its web and are freely available. Because of
its nature, this corpus has a large variability and
complexity, since the translations into the differ-
ent official languages are performed by groups of
human translators. The fact that not all transla-
tors agree in their translation criteria implies that a
given source sentence can be translated in various
different ways throughout the corpus.

Since the proceedings are not available in every
language as a whole, a different subset of the cor-
pus is extracted for every different language pair,
thus evolving into somewhat a different corpus for
each pair of languages.

4.1 System evaluation

We evaluated the performance of our methods by
using the following evaluation measures:

BLEU (Bilingual Evaluation Understudy) score:
This indicator computes the precision of uni-
grams, bigrams, trigrams, and tetragrams
with respect to a set of reference translations,
with a penalty for too short sentences (Pap-
ineni et al., 2001). BLEU measures accuracy,
not error rate.

WER (Word Error Rate): The WER criterion calcu-
lates the minimum number of editions (subs-
titutions, insertions or deletions) that are
needed to convert the system hypothesis into
the sentence considered ground truth. Be-
cause of its nature, this measure is very pes-
simistic.

Time. It refers to the average time (in milliseconds)
to translate one word from the test corpus,
without considering loading times.
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4.2 Results

A set of experimental results were obtained in or-
der to assess the impact of the proposed techniques
in the work with phrase-basedn-gram transducers.

By assuming an unconstrained parsing, that is,
the successive trellis structure is large enough to
store all the states that are compatible within the
analysis of a source sentence, the results are not
very sensitive to then-gram degree, just showing
that bigrams are powerful enough for this corpus.
However, apart from this, Table 2 is also show-
ing a significant better performance for the second,
more refined behaviour for the backoff transitions.

Table 2:Results for the two smoothing criteria.

n
Backoff 1 2 3 4 5
baseline

BLEU 26.8 26.3 25.8 25.7 25.7
WER 62.3 63.9 64.5 64.5 64.5

GREAT
BLEU 26.8 28.0 27.9 27.9 27.9
WER 62.3 61.9 62.0 62.0 62.0

From now on, the algorithms will be tested on
the phrase-basedbigram transducer, being built
according to the GIATI method, where backoff is
employed asε/ε transitions with forbidden states.

In these conditions, the results, following a
word-based and a phrase-based decoding strategy,
which are in function of the dynamic beam factor,
can be analysed in Tables 3 and 4.

Table 3:Results for a word-based analysis.

beam Time (ms) BLEU WER
1.00 0.1 0.4 94.6
1.02 0.3 12.8 81.9
1.05 5.2 20.0 74.0
1.10 30.0 24.9 68.2
1.25 99.0 27.1 64.6
1.50 147.0 27.5 62.9
2.00 173.6 27.8 62.1
3.50 252.3 28.0 61.9

From the comparison of Tables 3 and 4, it can
be deduced that a word-based analysis is itera-
tively taking into account a quite high percentage
of useless states, thus needing to increase the beam
parameter to include the successful paths into the
analysis. The price for considering such a long list

Table 4:Results for a phrase-based analysis.

beam Time (ms) BLEU WER
1.00 0.2 19.8 71.8
1.02 0.4 22.1 68.6
1.05 0.7 24.3 66.0
1.10 2.4 26.1 64.2
1.25 7.0 27.1 62.8
1.50 9.7 27.5 62.3
2.00 11.4 27.8 62.0
3.50 12.3 28.0 61.9

of states in every iteration of the algorithm is in
terms of temporal requirements.

However, a phrase-based approach only stores
those states that have been successfully reached by
a full phrase compatibility with the input sentence.
Therefore, it takes more time to process an indi-
vidual state, but since the list of states is shorter,
the search method performs at a better speed rate.
Another important element to point out between
Tables 3 and 4, is about the differences on quality
results for a same beam parameter in both tables.
Word-based decoding strategies suffer the effec-
tive reduction on the beam factor that was men-
tioned on section 3.1 because their best scores on
every analysis stage, which determine the explo-
ration boundaries, may refer to a no way out path.
Logically, these differences are progressively re-
duced as the beam parameter increases, since the
search space is explored in a more exhaustive way.

Table 5:Number of trained and survivedn-grams.

n-grams
Window size unigrams bigrams

No filter 1,593,677 4,477,382
2 299,002 512,943
3 153,153 141,883
4 130,666 90,265
5 126,056 78,824
6 125,516 77,341

On the other hand, a phrase-based extended-
symbol bigram model, being learnt by means of
the full training data, computes an overall set of
approximately 6 million events. The application
of the n-gram pruning technique, using a grow-
ing window parameter, can effectively reduce that
number to only 200,000. Thesen-grams, when
represented as transducer transitions, suppose a re-
duction from 20 million transitions to only those
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500,000 that are affected by the test set sentences.
As a result, the size of the model to be parsed
decreases, therefore, the decoding time also de-
creases. Tables 5 and 6 show the effect of this
pruning method on the size of the transducers, then
on the decoding time with a phrase-based analysis,
which is the best strategy for phrase-based models.

Table 6:Decoding time for several windows sizes.

Window size Edges Time (ms)
No filter 19,333,520 362.4

2 2,752,882 41.3
3 911,054 17.3
4 612,006 12.8
5 541,059 11.9
6 531,333 11.8

Needless to say that BLEU and WER keep on
their best numbers for all the transducer sizes as
the test set is not present in the pruned transitions.

5 Conclusions

GIATI is a grammatical inference technique to
learn stochastic transducers from bilingual data
for their usage in statistical machine translation.
Finite-state transducers are able to model both the
structure of both languages and their relationship.
GREAT is a finite-state toolkit which was born to
overcome the computational problems that previ-
ous implementations of GIATI present in practice
when huge amounts of parallel data are employed.

Moreover, GREAT is the result of a very metic-
ulous study of GIATI models, which improves
the treatment of smoothing transitions in decod-
ing time, and that also reduces the required time to
translate an input sentence by means of an analysis
that will depend on the granularity of the symbols.

A pruning technique has been designed forn-
gram approaches, which reduces the transducer
size to integrate only those transitions that are re-
ally required for the translation of the test set. That
has allowed us to perform some experiments con-
cerning a state-of-the-art, voluminous translation
task, such as the EuroParl, whose results have been
reported in depth. A better performance has been
found when a phrase-based decoding strategy is
selected in order to deal with those GIATI phrase-
based transducers. Besides, this permits us to ap-
ply a more refined interpretation of backoff transi-
tions for a better smoothing translation behaviour.
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