
Proceedings of the 12th Conference of the European Chapter of the ACL, pages 433–441,
Athens, Greece, 30 March – 3 April 2009. c©2009 Association for Computational Linguistics

Lightly Supervised Transliteration for Machine Translation

Amit Kirschenbaum
Department of Computer Science

University of Haifa
31905 Haifa, Israel

akirsche@cs.haifa.ac.il

Shuly Wintner
Department of Computer Science

University of Haifa
31905 Haifa, Israel

shuly@cs.haifa.ac.il

Abstract

We present a Hebrew to English transliter-
ation method in the context of a machine
translation system. Our method uses ma-
chine learning to determine which terms
are to be transliterated rather than trans-
lated. The training corpus for this purpose
includes only positive examples, acquired
semi-automatically. Our classifier reduces
more than 38% of the errors made by a
baseline method. The identified terms are
then transliterated. We present an SMT-
based transliteration model trained with a
parallel corpus extracted from Wikipedia
using a fairly simple method which re-
quires minimal knowledge. The correct re-
sult is produced in more than 76% of the
cases, and in 92% of the instances it is one
of the top-5 results. We also demonstrate a
small improvement in the performance of
a Hebrew-to-English MT system that uses
our transliteration module.

1 Introduction

Transliteration is the process of converting terms
written in one language into their approximate
spelling or phonetic equivalents in another lan-
guage. Transliteration is defined for a pair of lan-
guages, a source language and a target language.
The two languages may differ in their script sys-
tems and phonetic inventories. This paper ad-
dresses transliteration from Hebrew to English as
part of a machine translation system.

Transliteration of terms from Hebrew into En-
glish is a hard task, for the most part because of the
differences in the phonological and orthographic
systems of the two languages. On the one hand,
there are cases where a Hebrew letter can be pro-
nounced in multiple ways. For example, Hebrew
ב! can be pronounced either as [b] or as [v]. On

the other hand, two different Hebrew sounds can
be mapped into the same English letter. For exam-
ple, both ת! and ט! are in most cases mapped to [t].
A major difficulty stems from the fact that in the
Hebrew orthography (like Arabic), words are rep-
resented as sequences of consonants where vow-
els are only partially and very inconsistently rep-
resented. Even letters that are considered as rep-
resenting vowels may sometimes represent conso-
nants, specifically ו! [v]/[o]/[u] and י! [y]/[i]. As a
result, the mapping between Hebrew orthography
and phonology is highly ambiguous.

Transliteration has acquired a growing inter-
est recently, particularly in the field of Machine
Translation (MT). It handles those terms where no
translation would suffice or even exist. Failing to
recognize such terms would result in poor perfor-
mance of the translation system. In the context
of an MT system, one has to first identify which
terms should be transliterated rather than trans-
lated, and then produce a proper transliteration for
these terms. We address both tasks in this work.

Identification of Terms To-be Transliterated
(TTT) must not be confused with recognition of
Named Entities (NE) (Hermjakob et al., 2008).
On the one hand, many NEs should be translated
rather than transliterated, for example:1

m$rd hm$p@im
misrad hamishpatim
ministry-of the-sentences
‘Ministry of Justice’

1To facilitate readability, examples are presented with in-
terlinear gloss, including an ASCII representation of Hebrew
orthography followed by a broad phonemic transcription, a
word-for-word gloss in English where relevant, and the cor-
responding free text in English. The following table presents
the ASCII encoding of Hebrew used in this paper:

א! ב! ג! ד! ה! ו! ז! ח! ט! י! כ|!
a b g d h w z x @ i k
ל! מ|! נ|! ס! ע! פ|! צ|! ק! ר! ש! ת!
l m n s & p c q r $ t

433

him htikwn
hayam hatichon
the-sea the-central
‘the Mediterranean Sea’

On the other hand, there are terms that are not
NEs, such as borrowed words or culturally specific
terms that are transliterated rather than translated,
as shown by the following examples:

aqzis@ncializm
eqzistentzializm
‘Existentialism’

@lit
talit
‘Tallit’

As these examples show, transliteration cannot
be considered the default strategy to handle NEs
in MT and translation does not necessarily apply
for all other cases.

Candidacy for either transliteration or transla-
tion is not necessarily determined by orthographic
features. In contrast to English (and many other
languages), proper names in Hebrew are not cap-
italized. As a result, the following homographs
may be interpreted as either a proper name, a noun,
or a verb:

alwn
alon
‘oak’

alwn
alun
‘I will sleep’

alwn
alon
‘Alon’ (name)

One usually distinguishes between two types of
transliteration (Knight and Graehl, 1997): For-
ward transliteration, where an originally Hebrew
term is to be transliterated to English; and Back-
ward transliteration, in which a foreign term that
has already been transliterated into Hebrew is to
be recovered. Forward transliteration may result in
several acceptable alternatives. This is mainly due
to phonetic gaps between the languages and lack
of standards for expressing Hebrew phonemes in
English. For example, the Hebrew term cdiq may
be transliterated as Tzadik, Tsadik, Tsaddiq, etc.
On the other hand, backward transliteration is re-
strictive. There is usually only one acceptable way
to express the transliterated term. So, for exam-
ple, the name wiliam can be transliterated only
to William and not, for example, to Viliem, even
though the Hebrew character w may stand for the
consonant [v] and the character a may be vow-
elized as [e].

We approach the task of transliteration in the
context of Machine Translation in two phases.
First, we describe a lightly-supervised classifier
that can identify TTTs in the text (section 4). The
identified terms are then transliterated (section 5)
using a transliteration model based on Statistical

Machine Translation (SMT). The two modules are
combined and integrated in a Hebrew to English
MT system (section 6).

The main contribution of this work is the actual
transliteration module, which has already been in-
tegrated in a Hebrew to English MT system. The
accuracy of the transliteration is comparable with
state-of-the-art results for other language pairs,
where much more training material is available.
More generally, we believe that the method we de-
scribe here can be easily adapted to other language
pairs, especially those for which few resources are
available. Specifically, we did not have access to
a significant parallel corpus, and most of the re-
sources we used are readily available for many
other languages.

2 Previous Work

In this section we sketch some related works, fo-
cusing on transliteration from Hebrew and Arabic,
and on the context of machine translation.

Arbabi et al. (1994) present a hybrid algorithm
for romanization of Arabic names using neural
networks and a knowledge based system. The pro-
gram applies vowelization rules, based on Arabic
morphology and stemming from the knowledge
base, to unvowelized names. This stage, termed
the broad approach, exhaustively yields all valid
vowelizations of the input. To solve this over-
generation, the narrow approach is then used. In
this approach, the program uses a neural network
to filter unreliable names, that is, names whose
vowelizations are not in actual use. The vowelized
names are converted into a standard phonetic rep-
resentation which in turn is used to produce var-
ious spellings in languages which use Roman al-
phabet. The broad approach covers close to 80%
of the names given to it, though with some extra-
neous vowelization. The narrow approach covers
over 45% of the names presented to it with higher
precision than the broad approach.

This approach requires a vast linguistic knowl-
edge in order to create the knowledge base of vow-
elization rules. In addition, these rules are appli-
cable only to names that adhere to the Arabic mor-
phology.

Stalls and Knight (1998) propose a method for
back transliteration of names that originate in En-
glish and occur in Arabic texts. The method uses a
sequence of probabilistic models to convert names
written in Arabic into the English script. First,

434

an Arabic name is passed through a phonemic
model producing a network of possible English
sound sequences, where the probability of each
sound is location dependent. Next, phonetic se-
quences are transformed into English phrases. Fi-
nally, each possible result is scored according to a
unigram word model. This method translates cor-
rectly about 32% of the tested names. Those not
translated are frequently not foreign names.

This method uses a pronunciation dictionary
and is therefore restricted to transliterating only
words of known pronunciation. Both of the above
methods perform only unidirectional translitera-
tion, that is, either forward- or backward- translit-
eration, while our work handles both.

Al-Onaizan and Knight (2002) describe a sys-
tem which combines a phonetic based model with
a spelling model for transliteration. The spelling
based model directly maps sequences of English
letters into sequences of Arabic letters without the
need of English pronunciation. The method uses a
translation model based on IBM Model 1 (Brown
et al., 1993), in which translation candidates of
a phrase are generated by combining translations
and transliterations of the phrase components, and
matching the result against a large corpus. The
system’s overall accuracy is about 72% for top-1
results and 84% for top-20 results.

This method is restricted to transliterating NEs,
and performs best for person names. As noted
above, the TTT problem is not identical to the
NER problem. In addition, the method requires a
list of transliteration pairs from which the translit-
eration model could be learned.

Yoon et al. (2007) use phonetic distinctive
features and phonology-based pseudo features
to learn both language-specific and language-
universal transliteration characteristics. Distinc-
tive features are the characteristics that define the
set of phonemic segments (consonants, vowels) in
a given language. Pseudo features capture sound
change patterns that involve the position in the syl-
lable. Distinctive features and pseudo features are
extracted from source- and target-language train-
ing data to train a linear classifier. The classifier
computes compatibility scores between English
source words and target-language words. When
several target-language strings are transliteration
candidates for a source word, the one with the
highest score is selected as the transliteration. The
method was evaluated using parallel corpora of

English with each of four target languages. NEs
were extracted from the English side and were
compared with all the words in the target lan-
guage to find proper transliterations. The baseline
presented for the case of transliteration from En-
glish to Arabic achieves Mean Reciprocal Rank
(MRR) of 0.66 and this method improves its re-
sults by 7%. This technique involves knowledge
about phonological characteristics, such as elision
of consonants based on their position in the word,
which requires expert knowledge of the language.
In addition, conversion of terms into a phonemic
representation poses hurdles in representing short
vowels in Arabic and will have similar behavior in
Hebrew. Moreover, English to Arabic transliter-
ation is easier than Arabic to English, because in
the former, vowels should be deleted whereas in
the latter they should be generated.

Matthews (2007) presents a model for translit-
eration from Arabic to English based on SMT.
The parallel corpus from which the translation
model is acquired contains approximately 2500
pairs, which are part of a bilingual person names
corpus (LDC2005G02). This biases the model to-
ward transliterating person names. The language
model presented for that method consisted of 10K
entries of names which is, again, not complete.
This model also uses different settings for maxi-
mum phrase length in the translation model and
different n-gram order for the language model. It
achieves an accuracy of 43% when transliterating
from Arabic to English.

Goldwasser and Roth (2008) introduce a dis-
criminative method for identifying NE transliter-
ation pairs in English-Hebrew. Given a word pair
(ws, wt), where ws is an English NE, the system
determines whether wt, a string in Hebrew, is its
transliteration. The classification is based on pair-
wise features: sets of substrings are extracted from
each of the words, and substrings from the two sets
are then coupled to form the features. The accu-
racy of correctly identifying transliteration pairs
in top-1 and top-5 was 52% and 88%, respec-
tively. Whereas this approach selects most suitable
transliteration out of a list of candidates, our ap-
proach generates a list of possible transliterations
ranked by their accuracy.

Despite the importance of identifying TTTs,
this task has only been addressed recently. Gold-
berg and Elhadad (2008) present a loosely super-
vised method for non contextual identification of

435

transliterated foreign words in Hebrew texts. The
method is a Naive-Bayes classifier which learns
from noisy data. Such data are acquired by over-
generation of transliterations for a set of words in
a foreign script, using mappings from the phone-
mic representation of words to the Hebrew script.
Precision and recall obtained are 80% and 82%,
respectively. However, although foreign words
are indeed often TTTs, many originally Hebrew
words should sometimes be transliterated. As
explained in section 4, there are words in He-
brew that may be subject to either translation or
transliteration, depending on the context. A non-
contextual approach would not suffice for our task.

Hermjakob et al. (2008) describe a method for
identifying NEs that should be transliterated in
Arabic texts. The method first tries to find a
matching English word for each Arabic word in a
parallel corpus, and tag the Arabic words as either
names or non-names based on a matching algo-
rithm. This algorithm uses a scoring model which
assigns manually-crafted costs to pairs of Arabic
and English substrings, allowing for context re-
strictions. A number of language specific heuris-
tics, such as considering only capitalized words
as candidates and using lists of stop words, are
used to enhance the algorithm’s accuracy. The
tagged Arabic corpus is then divided: One part is
used to collect statistics about the distribution of
name/non-name patterns among tokens, bigrams
and trigrams. The rest of the tagged corpus is
used for training using an averaged perceptron.
The precision of the identification task is 92.1%
and its recall is 95.9%. This work also presents
a novel transliteration model, which is integrated
into a machine translation system. Its accuracy,
measured by the percentage of correctly translated
names, is 89.7%.

Our work is very similar in its goals and the
overall framework, but in contrast to Hermjakob
et al. (2008) we use much less supervision, and in
particular, we do not use a parallel corpus. We also
do not use manually-crafted weights for (hundreds
of) bilingual pairs of strings. More generally, our
transliteration model is much more language-pair
neutral.

3 Resources and Methodology

Our work consists of of two sub-tasks: Identifying
TTTs and then transliterating them. Specifically,
we use the following resources for this work: For

the identification task we use a large un-annotated
corpus of articles from Hebrew press and web-
forums (Itai and Wintner, 2008) consisting of 16
million tokens. The corpus is POS-tagged (Bar-
Haim et al., 2008). We bootstrap a training cor-
pus for one-class SVM (section 4.2) using a list
of rare Hebrew character n-grams (section 4.1) to
generate a set of positive, high-precision exam-
ples for TTTs in the tagged corpus. POS tags for
the positive examples and their surrounding tokens
are used as features for the one-class SVM (sec-
tion 4.2).

For the transliteration itself we use a list that
maps Hebrew consonants to their English counter-
parts to extract a list of Hebrew-English transla-
tion pairs from Wikipedia (section 5.2). To learn
the transliteration model we utilize Moses (sec-
tion 5) which is also used for decoding. Decod-
ing also relies on a target language model, which
is trained by applying SRILM to Web 1T corpus
(section 5.1).

Importantly, the resources we use for this work
are readily available for a large number of lan-
guages and can be easily obtained. None of these
require any special expertise in linguistics. Cru-
cially, no parallel corpus was used.

4 What to transliterate

The task in this phase, then, is to determine for
each token in a given text whether it should be
translated or transliterated. We developed a set
of guidelines to determine which words are to be
transliterated. For example, person names are al-
ways transliterated, although many of them have
homographs that can be translated. Foreign words,
which retain the sound patterns of their original
language with no semantic translation involved,
are also (back-)transliterated. On the other hand,
names of countries may be subject to translation
or transliteration, as demonstrated in the follow-
ing examples:

crpt
tsarfat
‘France’

sprd
sfarad
‘Spain’

qwngw
kongo
‘Congo’

We use information obtained from POS tagging
(Bar-Haim et al., 2008) to address the problem of
identifying TTTs. Each token is assigned a POS
and is additionally marked if it was not found in a
lexicon (Itai et al., 2006). As a baseline, we tag for
transliteration Out Of Vocabulary (OOV) tokens.

436

Our evaluation metric is tagging accuracy, that is,
the percentage of correctly tagged tokens.

4.1 Rule-based tagging
Many of the TTTs do appear in the lexicon,
though, and their number will grow with the avail-
ability of more language resources. As noted
above, some TTTs can be identified based on their
surface forms; these words are mainly loan words.
For example, the word brwdqsting (broadcasting)
contains several sequences of graphemes that are
not frequent in Hebrew (e.g., ng in a word-final
position).

We manually generated a list of such features to
serve as tagging rules. To create this list we used
a few dozens of character bigrams, about a dozen
trigrams and a couple of unigrams and four-grams,
that are highly unlikely to occur in words of He-
brew origin. Rules associate n-grams with scores
and these scores are summed when applying the
rules to tokens. A typical rule is of the form: if
σ1σ2 are the final characters of w, add c to the
score of w, where w is a word in Hebrew, σ1 and
σ2 are Hebrew characters, and c is an positive in-
teger. A word is tagged for transliteration if the
sum of the scores associated with its substrings is
higher than a predefined threshold.

We apply these rules to a large Hebrew corpus
and create an initial set of instances of terms that,
with high probability, should be be transliterated
rather than translated. Of course, many TTTs, es-
pecially those whose surface forms are typical of
Hebrew, will be missed when using this tagging
technique. Our solution is to learn the contexts in
which TTTs tend to occur, and contrast these con-
texts with those for translated terms. The underly-
ing assumption is that the former contexts are syn-
tactically determined, and are independent of the
actual surface form of the term (and of whether or
not it occurs in the lexicon). Since the result of
the rule-based tagging is considered as examples
of TTTs, this automatically-annotated corpus can
be used to extract such contexts.

4.2 Training with one class classifier
The above process provides us with 40279 exam-
ples of TTTs out of a total of more than 16 mil-
lion tokens. These examples, however, are only
positive examples. In order to learn from the in-
complete data we utilized a One Class Classifier.
Classification problems generally involve two or
more classes of objects. A function separating

these classes is to be learned and used by the clas-
sifier. One class classification utilizes only target
class objects to learn a function that distinguishes
them from any other objects.

SVM (Support Vector Machine) (Vapnik, 1995)
is a classification technique which finds a linear
separating hyperplane with maximal margins be-
tween data instances of two classes. The sepa-
rating hyperplane is found for a mapping of data
instances into a higher dimension, using a ker-
nel function. Schölkopf et al. (2000) introduce
an adaptation of the SVM methodology to the
problem of one-class classification. We used one-
class SVM as implemented in LIBSVM (Chang
and Lin, 2001). The features selected to represent
each TTT were its POS and the POS of the token
preceding it in the sentence. The kernel function
which yielded the best results on this problem was
a sigmoid with standard parameters.

4.3 Results

To evaluate the TTT identification model we cre-
ated a gold standard, tagged according to the
guidelines described above, by a single lexicog-
rapher. The testing corpus consists of 25 sen-
tences from the same sources as the training cor-
pus and contains 518 tokens, of which 98 are
TTTs. We experimented with two different base-
lines: the naı̈ve baseline always decides to trans-
late; a slightly better baseline consults the lexicon,
and tags as TTT any token that does not occur in
the lexicon. We measure our performance in error
rate reduction of tagging accuracy, compared with
the latter baseline.

Our initial approach consisted of consulting
only the decision of the one-class SVM. How-
ever, since there are TTTs that can be easily iden-
tified using features obtained from their surface
form, our method also examines each token using
surface-form features, as described in section 4.1.
If a token has no surface features that identify it
as a TTT, we take the decision of the one-class
SVM. Table 1 presents different configurations we
experimented with, and their results. The first two
columns present the two baselines we used, as ex-
plained above. The third column (OCS) shows the
results based only on decisions made by the One
Class SVM. The penultimate column shows the re-
sults obtained by our method combining the SVM
with surface-based features. The final column
presents the Error Rate Reduction (ERR) achieved

437

when using our method, compared to the base-
line of transliterating OOV words. As can be ob-
served, our method increases classification accu-
racy: more than 38% of the errors over the base-
line are reduced.

Naı̈ve Baseline OCS Our ERR
79.9 84.23 88.04 90.26 38.24

Table 1: TTT identification results (% of the in-
stances identified correctly)

The importance of the recognition process is
demonstrated in the following example. The un-
derlined phrase was recognized correctly by our
method.

kbwdw habwd $l bn ari
kvodo heavud shel ben ari
His-honor the-lost of Ben Ari

‘Ben Ari’s lost honor ’

Both the word ben and the word ari have literal
meanings in Hebrew (son and lion, respectively),
and their combination might be interpreted as a
phrase since it is formed as a Hebrew noun con-
struct. Recognizing them as transliteration candi-
dates is crucial for improving the performance of
MT systems.

5 How to transliterate

Once a token is classified as a TTT, it is sent to
the transliteration module. Our approach handles
the transliteration task as a case of phrase-based
SMT, based on the noisy channel model. Accord-
ing to this model, when translating a string f in the
source language into the target language, a string
ê is chosen out of all target language strings e if it
has the maximal probability given f (Brown et al.,
1993):

ê = arg max
e
{Pr(e|f)}

= arg max
e
{Pr(f |e) · Pr(e)}

where Pr(f |e) is the translation model and Pr(e)
is the target language model. In phrase-based
translation, f is divided into phrases f̄1 . . . f̄I ,
and each source phrase f̄i is translated into target
phrase ēi according to a phrase translation model.
Target phrases may then be reordered using a dis-
tortion model.

We use SMT for transliteration; this approach
views transliteration pairs as aligned sentences and

characters are viewed as words. In the case of
phrase-based SMT, phrases are sequences of char-
acters. We used Moses (Koehn et al., 2007), a
phrase-based SMT toolkit, for training the transla-
tion model (and later for decoding). In order to ex-
tract phrases, bidirectional word level alignments
are first created, both source to target and target
to source. Alignments are merged heuristically if
they are consistent, in order to extract phrases.

5.1 Target language model

We created an English target language model from
unigrams of Web 1T (Brants and Franz, 2006).
The unigrams are viewed as character n-grams to
fit into the SMT system. We used SRILM (Stol-
cke, 2002) with a modified Kneser-Ney smooth-
ing, to generate a language model of order 5.

5.2 Hebrew-English translation model

No parallel corpus of Hebrew-English transliter-
ation pairs is available, and compiling one man-
ually is time-consuming and labor-intensive. In-
stead, we extracted a parallel list of Hebrew and
English terms from Wikipedia and automatically
generated such a corpus. The terms are paral-
lel titles of Wikipedia articles and thus can safely
be assumed to denote the same entity. In many
cases these titles are transliterations of one an-
other. From this list we extracted transliteration
pairs according to similarity of consonants in par-
allel English and Hebrew entries.

The similarity measure is based only on conso-
nants since vowels are often not represented at all
in Hebrew. We constructed a table relating He-
brew and English consonants, based on common
knowledge patterns that relate sound to spelling in
both languages. Sound patterns that are not part of
the phoneme inventory of Hebrew but are nonethe-
less represented in Hebrew orthography were also
included in the table. Every entry in the mapping
table consists of a Hebrew letter and a possible
Latin letter or letter sequences that might match
it. A typical entry is the following:

$:SH|S|CH

such that SH, S or CH are possible candidates for
matching the Hebrew letter $.

Both Hebrew and English titles in Wikipedia
may be composed of several words. However,
words composing the entries in each of the lan-
guages may be ordered differently. Therefore, ev-
ery word in Hebrew is compared with every word

438

in English, assuming that titles are short enough.
The example in Table 2 presents an aligned pair of
multi-lingual Wikipedia entries with high similar-
ity of consonants. This is therefore considered as a
transliteration pair. In contrast, the title empty set
which is translated to hqbwch hriqh shows a low
similarity of consonants. This pair is not selected
for the training corpus.

g r a t e f u l d e a d
g r i i @ p w l d d

Table 2: Titles of Wikipedia entries

Out of 41914 Hebrew and English terms re-
trieved from Wikipedia, more than 20000 were de-
termined as transliteration pairs. Out of this set,
500 were randomly chosen to serve as a test set,
500 others were chosen to serve as a development
set, and the rest are the training set. Minimum
error rate training was done on the development
set to optimize translation performance obtained
by the training phase.2 For decoding, we prohib-
ited Moses form performing character reordering
(distortion). While reordering may be needed for
translation, we want to ensure the monotone na-
ture of transliteration.

5.3 Results
We applied Moses to the test set to get a list of
top-n transliteration options for each entry in the
set. The results obtained by Moses were further
re-ranked to take into account their frequency as
reflected in the unigrams of Web 1T (Brants and
Franz, 2006). The re-ranking method first nor-
malizes the scores of Moses’ results to the range
of [0, 1]. The respective frequencies of these re-
sults in Web1T corpus are also normalized to this
range. The score s of each transliteration op-
tion is a linear combination of these two elements:
s = αsM + (1− α)sW , where sM is the normal-
ized score obtained for the transliteration option
by Moses, and sW is its normalized frequency.
α is empirically set to 0.75. Table 3 summarizes
the proportion of the terms transliterated correctly
across top-n results as achieved by Moses, and
their improvement after re-ranking.

We further experimented with two methods for
reducing the list of transliteration options to the
most prominent ones by taking a variable number
of candidates rather than a fixed number. This is

2We used moses-mert.pl in the Moses package.

Results Top-1 Top-2 Top-5 Top-10
Moses 68.4 81.6 90.2 93.6

Re-ranked 76.6 86.6 92.6 93.6

Table 3: Transliteration results (% of the instances
transliterated correctly)

important for limiting the search space of MT sys-
tems. The first method (var1) measures the ratio
between the scores of each two consecutive op-
tions and generates the option that scored lower
only if this ratio exceeds a predefined threshold.
We found that the best setting for the threshold
is 0.75, resulting in an accuracy of 88.6% and
an average of 2.32 results per token. Our sec-
ond method (var2) views the score as a probabil-
ity mass, and generates all the results whose com-
bined probabilities are at most p. We found that
the best value for p is 0.5, resulting in an accuracy
of 87.4% and 1.92 results per token on average.
Both methods outperform the top-2 accuracy.

Table 4 presents a few examples from the
test set that were correctly transliterated by our
method. Some incorrect transliterations are
demonstrated in Table 5.

Source Transliteration
np$ nefesh
hlmsbrgr hellmesberger
smb@iwn sambation
hiprbwlh hyperbola
$prd shepard
ba$h bachet
xt$pswt hatshepsut
brgnch berganza
ali$r elissar
g’wbani giovanni

Table 4: Transliteration examples generated cor-
rectly from the test set

6 Integration with machine translation

We have integrated our system as a module in a
Machine Translation system, based on Lavie et
al. (2004a). The system consults the TTT clas-
sifier described in section 4 for each token, before
translating it. If the classifier determines that the
token should be transliterated, then the transliter-
ation procedure described in section 5 is applied
to the token to produce the transliteration results.

439

Source Transliteration Target
rbindrnt rbindrant rabindranath
aswirh asuira essaouira
kmpi@ champit chamaephyte
bwdlr bodler baudelaire
lwrh laura lorre
hwlis ollies hollies
wnwm onom venom

Table 5: Incorrect transliteration examples

We provide an external evaluation in the form of
BLEU (Papineni et al., 2001) and Meteor (Lavie
et al., 2004b) scores for SMT with and without the
transliteration module.

When integrating our method in the MT system
we use the best transliteration options as obtained
when using the re-ranking procedure described in
section 5.3. The translation results for all condi-
tions are presented in Table 6, compared to the
basic MT system where no transliteration takes
place. Using the transliteration module yields a
statistically significant improvement in METEOR
scores (p < 0.05). METEOR scores are most rel-
evant since they reflect improvement in recall. The
MT system cannot yet take into consideration the
weights of the transliteration options. Translation
results are expected to improve once these weights
are taken into account.

System BLEU METEOR
Base 9.35 35.33127
Top-1 9.85 38.37584
Top-10 9.18 37.95336
var1 8.72 37.28186
var2 8.71 37.11948

Table 6: Integration of transliteration module in
MT system

7 Conclusions

We presented a new method for transliteration in
the context of Machine Translation. This method
identifies, for a given text, tokens that should
be transliterated rather than translated, and ap-
plies a transliteration procedure to the identified
words. The method uses only positive exam-
ples for learning which words to transliterate and
achieves over 38% error rate reduction when com-
pared to the baseline. In contrast to previous stud-

ies this method does not use any parallel corpora
for learning the features which define the translit-
erated terms. The simple transliteration scheme is
accurate and requires minimal resources which are
general and easy to obtain. The correct transliter-
ation is generated in more than 76% of the cases,
and in 92% of the instances it is one of the top-5
results.

We believe that some simple extensions could
further improve the accuracy of the translitera-
tion module, and these are the focus of current
and future research. First, we would like to use
available gazetteers, such as lists of place and
person names available from the US census bu-
reau, http://world-gazetteer.com/ or
http://geonames.org. Then, we consider
utilizing the bigram and trigram parts of Web
1T (Brants and Franz, 2006), to improve the
TTT identifier with respect to identifying multi-
token expressions which should be transliterated.
In addition, we would like to take into account
the weights of the different transliteration options
when deciding which to select in the translation.
Finally, we are interested in applying this module
to different language pairs, especially ones with
limited resources.

Acknowledgments

We wish to thank Gennadi Lembersky for his help
in integrating our work into the MT system, as
well as to Erik Peterson and Alon Lavie for pro-
viding the code for extracting bilingual article ti-
tles from Wikipedia. We thank Google Inc. and the
LDC for making the Web 1T corpus available to
us. Dan Roth provided good advice in early stages
of this work. This research was supported by
THE ISRAEL SCIENCE FOUNDATION (grant
No. 137/06); by the Israel Internet Association; by
the Knowledge Center for Processing Hebrew; and
by the Caesarea Rothschild Institute for Interdis-
ciplinary Application of Computer Science at the
University of Haifa.

References
Yaser Al-Onaizan and Kevin Knight. 2002. Translat-

ing named entities using monolingual and bilingual
resources. In ACL ’02: Proceedings of the 40th An-
nual Meeting on Association for Computational Lin-
guistics, pages 400–408, Morristown, NJ, USA. As-
sociation for Computational Linguistics.

Mansur Arbabi, Scott M. Fischthal, Vincent C. Cheng,

440

and Elizabeth Bart. 1994. Algorithms for arabic
name transliteration. IBM Journal of Research and
Development, 38(2):183–194.

Roy Bar-Haim, Khalil Sima’an, and Yoad Winter.
2008. Part-of-speech tagging of Modern Hebrew
text. Natural Language Engineering, 14(2):223–
251.

Thorsten Brants and Alex Franz. 2006. Web 1T 5-
gram version 1.1. Technical report, Google Re-
seach.

Peter F. Brown, Stephen Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathe-
matic of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263–
311.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIB-
SVM: a library for support vector machines.
Software available at http://www.csie.ntu.
edu.tw/˜cjlin/libsvm.

Yoav Goldberg and Michael Elhadad. 2008. Identifica-
tion of transliterated foreign words in hebrew script.
In CICLing, pages 466–477.

Dan Goldwasser and Dan Roth. 2008. Active sample
selection for named entity transliteration. In Pro-
ceedings of ACL-08: HLT, Short Papers, pages 53–
56, Columbus, Ohio, June. Association for Compu-
tational Linguistics.

Ulf Hermjakob, Kevin Knight, and Hal Daumé III.
2008. Name translation in statistical machine trans-
lation - learning when to transliterate. In Proceed-
ings of ACL-08: HLT, pages 389–397, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Alon Itai and Shuly Wintner. 2008. Language re-
sources for Hebrew. Language Resources and Eval-
uation, 42(1):75–98, March.

Alon Itai, Shuly Wintner, and Shlomo Yona. 2006. A
computational lexicon of contemporary hebrew. In
Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC-2006),
pages 19–22, Genoa, Italy.

Kevin Knight and Jonathan Graehl. 1997. Machine
transliteration. In Proceedings of the 35th Annual
Meeting of the Association for Computational Lin-
guistics, pages 128–135, Madrid, Spain. Association
for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster

Sessions, pages 177–180, Prague, Czech Republic,
June. Association for Computational Linguistics.

Alon Lavie, Erik Peterson, Katharina Probst, Shuly
Wintner, and Yaniv Eytani. 2004a. Rapid prototyp-
ing of a transfer-based Hebrew-to-English machine
translation system. In Proceedings of the 10th In-
ternational Conference on Theoretical and Method-
ological Issues in Machine Translation, pages 1–10,
Baltimore, MD, October.

Alon Lavie, Kenji Sagae, and Shyamsundar Jayara-
man. 2004b. The significance of recall in automatic
metrics for mt evaluation. In Robert E. Frederking
and Kathryn Taylor, editors, AMTA, volume 3265 of
Lecture Notes in Computer Science, pages 134–143.
Springer.

David Matthews. 2007. Machine transliteration of
proper names. Master’s thesis, School of Informat-
ics, University of Edinburgh.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: a method for automatic
evaluation of machine translation. In ACL ’02: Pro-
ceedings of the 40th Annual Meeting on Associa-
tion for Computational Linguistics, pages 311–318,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Bernhard Schölkopf, Alex J. Smola, Robert
Williamson, and Peter Bartlett. 2000. New
support vector algorithms. Neural Computation,
12:1207–1245.

Bonnie Glover Stalls and Kevin Knight. 1998. Trans-
lating names and technical terms in Arabic text.
In Proceedings of the COLING/ACL Workshop on
Computational Approaches to Semitic Languages,
pages 34–41.

Andreas Stolcke. 2002. SRILM – an extensible lan-
guage modeling toolkit. In Proceedings Interna-
tional Conference on Spoken Language Processing
(ICSLP 2002), pages 901–904.

Vladimir N. Vapnik. 1995. The nature of statistical
learning theory. Springer-Verlag New York, Inc.,
New York, NY, USA.

Su-Youn Yoon, Kyoung-Young Kim, and Richard
Sproat. 2007. Multilingual transliteration using fea-
ture based phonetic method. In Proceedings of the
45th Annual Meeting of the Association of Compu-
tational Linguistics, pages 112–119, Prague, Czech
Republic, June. Association for Computational Lin-
guistics.

441

