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Abstract

Multi-source statistical machine transla-
tion is the process of generating a single
translation from multiple inputs. Previous
work has focused primarily on selecting
from potential outputs of separate transla-
tion systems, and solely on multi-parallel
corpora and test sets. We demonstrate how
multi-source translation can be adapted for
multiple monolingual inputs. We also ex-
amine different approaches to dealing with
multiple sources, including consensus de-
coding, and we present a novel method
of input combination to generate lattices
for multi-source translation within a single
translation model.

1 Introduction

Multi-source statistical machine translation was
first formally defined by Och and Ney (2001)
as the process of translating multiple meaning-
equivalent source language texts into a single tar-
get language. Multi-source translation is of par-
ticular use when translating a document that has
already been translated into several languages, ei-
ther by humans or machines, and needs to be fur-
ther translated into other target languages. This
situation occurs often in large multi-lingual organ-
isations such as the United Nations and the Euro-
pean Parliament, which must translate their pro-
ceedings into the languages of the member in-
stitutions. It is also common in multi-national
companies, which need to translate product and
marketing documentation for their different mar-
kets. Clearly, any existing translations for a docu-
ment can help automatic translation into other lan-
guages. These different versions of the input can
resolve deficiencies and ambiguities (e.g., syntac-
tic and semantic ambiguity) present in a single in-
put, resulting in higher quality translation output.

In this paper, we present three models of multi-
source translation, with increasing degrees of so-
phistication, which we compare empirically on a
number of different corpora. We generalize the
definition of multi-source translation to include
any translation case with multiple inputs and a sin-
gle output, allowing for, e.g., multiple paraphrased
inputs in a single language. Our methods include
simple output selection, which treats the multi-
source translation task as many independent trans-
lation steps followed by selection of one of their
outputs (Och and Ney, 2001), and output combina-
tion, which uses consensus decoding to construct
a string from n-gram fragments of the translation
outputs (Bangalore et al., 2001). We also present
a novel method, input combination, in which we
compile the input texts into a compact lattice, over
which we perform a single decoding pass. We
show that as we add additional inputs, the simplest
output selection method performs quite poorly rel-
ative to a single input translation system, while the
latter two methods are able to make better use of
the additional inputs.

The paper is structured as follows. §2 presents
the three methods for multi-source translation in
detail: output selection, output combination, and
our novel lattice-based method for input combina-
tion. We report experiments applying these tech-
niques to three different corpora, with both mono-
lingual inputs (§3) and multilingual inputs (§4).
We finish in §5 by analyzing the benefits and draw-
backs of these approaches.

2 Approaches to Multi-Source
Translation

We now present three ways to combine multiple
inputs into a single output translation, in the con-
text of related work for each technique.
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2.1 Output Selection

The most straightforward approach to multi-
source translation, proposed by Och and Ney
(2001), is to independently translate each of the
N source languages and then select a single
translation from the outputs. Given N sources
sN
1 = s1, . . . , sN , first translate each with a sep-

arate translation system, p1, . . . , pN , to obtain N
target translations, tN

1 = t1, . . . , tN . Och and Ney
present two approaches for selecting a single tar-
get from these outputs.

The first, PROD, finds the maximiser of the
product, arg maxt∈tN

1
p(t)

∏N
n=1 pn(sn|t), where

p(t) is the language model probability. For rea-
sons of tractability, the maximisation is performed
only over targets generated by the translation sys-
tems, tN

1 , not the full space of all translations.
The PROD method requires each model to pro-
vide a model score for each tn generated by the
other models. However, this is often impossible
due to the models’ highly divergent output spaces
(Schwartz, 2008), and therefore the technique can-
not be easily applied.

The second approach, MAX, solves
arg maxt∈tN

1
maxN

n=1 p(t)pn(sn|t), which is
much easier to calculate. As with PROD, the
translation models’ outputs are used for the
candidate translations. While different models
may have different score ranges, Och and Ney
(2001) state that there is little benefit in weighting
these scores to normalise the output range. In their
experiments, they show that MAX used on pairs or
triples of language inputs can outperform a model
with single language input, but that performance
degrades as more languages are added.

These methods limit the explored space to a full
translation output of one of the inputs, and there-
fore cannot make good use of the full diversity of
the translations. In this paper we present MAX

scores as a baseline for output selection, and ap-
proximate an oracle using the BLEU metric as an
upper bound for the output selection technique.

2.2 Output Combination

Consensus decoding as a form of system combi-
nation is typically used to integrate the outputs of
multiple translation systems into a single synthetic
output that seeks to combine the best fragments
from each component system. Multi-source trans-
lation can be treated as a special case of consen-
sus decoding. Indeed, several authors have seen

the ε dog barked very loudly
a big dog barked ε loudly

sub insert – shift delete –

Table 1: Example minimum TER edit script.
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loudly

Figure 1: Conversion of TER script from Table 1
to a confusion network.

improvements in translation quality by perform-
ing multi-source translation using generic system
combination techniques (Matusov et al., 2006;
Paulik et al., 2007).

One class of approaches to consensus decoding
focuses on construction of a confusion network
or lattice1 from translation outputs, from which
new sentences can be created using different re-
orderings or combinations of translation fragments
(e.g., Bangalore et al. (2001); Rosti et al. (2007b)).
These methods differ in the types of lattices used,
their means of creation, and scoring method used
to extract the best consensus output from the lat-
tice. The system used in this paper is a variant of
the one proposed in Rosti et al. (2007a), which we
now describe in detail.

The first step in forming a lattice is to align the
inputs. Consensus decoding systems often use the
script of edit operations that minimises the transla-
tion edit rate (TER; Snover et al. (2006)). TER is
a word-based measure of edit distance which also
allows n-gram shifts when calculating the best
match between a hypothesis and reference. Be-
cause TER describes the correspondence between
the hypothesis and reference as a sequence of in-
sertions, substitutions, deletions, and shifts, the
edit script it produces can be used to create a con-
fusion network.

Consider a reference of “The dog barked very
loudly” and a hypothesis “A big dog loudly
barked.” The TER alignment is shown in Ta-
ble 1, along with the edit operations. Note that the
matching “barked” tokens are labelled shift, as one
needs to be shifted for this match to occur. Using
the shifted hypothesis, we can form a confusion

1Different authors refer to “lattices,” “confusion net-
works,” “word sausages,” etc. to describe these data struc-
tures, and specific terminology varies from author to author.
We define a lattice as a weighted directed acyclic graph, and
a confusion network as a special case where each node n in
the ordered graph has word arcs only to node n + 1.
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Figure 2: Structure of a lattice of confusion net-
works for consensus decoding.

network as in Figure 1. Additional sentences can
be added by aligning them to the reference as well.
Each link is weighted by the number of component
sentences sharing that particular word at the given
location.

Similar to Rosti et al. (2007a), we let each hy-
pothesis take a turn as the “reference” for TER,
using it as a skeleton for a confusion network. We
then form a lattice of confusion networks (Fig-
ure 2), assigning a prior weight to each confusion
network based on the average TER of the selected
skeleton with the other hypotheses. This allows
each system to set the word order for a component
confusion network, but at the cost of a more com-
plex lattice structure.

We can score pathsP through these lattices with
the assistance of a language model. Formally, the
path score is given by:

w(P) = ν log pLM (t(P))

+
∑
d∈P

[
N∑

n=1

λn log pn(d|sn)

+ µδ(d, ε) + ξ(1− δ(d, ε))

]
where pLM is the language model probability of
the target string specified by the lattice path, t(P),
pn(d|sn) is the proportion of system n’s k-best
outputs that use arc d in path P , and the last two
terms count the number of epsilon and non-epsilon
transitions in the path. The model parameters are
λ1, . . . , λn, ν, µ, ξ, which are trained using Pow-
ell’s search to maximise the BLEU score for the
highest scoring path, arg maxP w(P).

2.3 Input Combination
Loosely defined, input combination refers to find-
ing a compact single representation of N transla-
tion inputs. The hope is that the new input pre-
serves as many of the salient differences between
the inputs as possible, while eliminating redundant
information. Lattices are well suited to this task.

0 1

ε

watch
it

2

ε
out
's

3
ε
for

4

the

purse
pick

a
ε

5

robber

thief

snatcher
burglar
crook

pocket

6
.

Figure 3: A monolingual confusion network.
Thicker lines indicate higher probability word
arcs.

When translating speech recognition output,
previous work has shown that representing the
ambiguity in the recognized text via confusion
networks leads to better translations than simply
translating the single best hypothesis of the speech
recognition system (Bertoldi et al., 2007). The ap-
plication of input lattices to other forms of input
ambiguity has been limited to encoding input re-
orderings, word segmentation, or morphological
segmentation, all showing improvements in trans-
lation quality (Costa-jussà et al., 2007; Xu et al.,
2005; Dyer et al., 2008). However, these appli-
cations encode the ambiguity arising from a sin-
gle input, while in this work we combine distinct
inputs into a more compact and expressive single
input format.

When given many monolingual inputs, we can
apply TER and construct a confusion network as
in Section 2.2.2 In this application of confusion
networks, arc weights are calculated by summing
votes from each input for a given word, and nor-
malizing all arcs leaving a node to sum to 1.

Figure 3 shows an example of a TER-derived
input from IWSLT data. Because the decoder will
handle reordering, we select the input with the
lowest average TER against the other inputs to
serve as the skeleton system, and do not create a
lattice with multiple skeletons.

The problem becomes more complex when we
consider cases of multi-lingual multi-source trans-
lation. We cannot easily apply TER across lan-
guages because there is no clear notion of an exact
match between words. Matusov et al. (2006) pro-
pose using a statistical word alignment algorithm
as a more robust way of aligning (monolingual)
outputs into a confusion network for system com-

2Barzilay and Lee (2003) construct lattices over para-
phrases using an iterative pairwise multiple sequence align-
ment (MSA) algorithm. Unlike our approach, MSA does not
allow reordering of inputs.
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bination. We take a similar approach for multi-
lingual lattice generation.

Our process consists of four steps: (i) Align
words for each of the N(N − 1) pairs of inputs;
(ii) choose an input (or many inputs) to be the
lattice skeleton; (iii) extract all minimal consis-
tent alignments between the skeleton and the other
inputs; and (iv) add links to the lattice for each
aligned phrase pair.

A multi-parallel corpus such as Europarl
(Koehn, 2005) is ideally suited for training this
setup, as training data is available for each pair of
input languages needed by the word aligner. We
used the GIZA++ word alignment tool (Och and
Ney, 2003) for aligning inputs, trained on a por-
tion of the Europarl training data for each pair.

We select a skeleton input based on which
single-language translation system performs the
best when translating a development set. For our
Europarl test condition, this was French.

We define a minimal consistent alignment
(MCA) as a member of the set of multi-word
alignment pairs that can be extracted from a many-
to-many word alignment between skeleton sen-
tence x and non-skeleton sentence y with the fol-
lowing restrictions: (i) no word in x or y is used
more than once in the set of MCAs; (ii) words
and phrases selected from y cannot be aligned to
null; and (iii) no smaller MCA can be decomposed
from a given pair. This definition is similar to
that of minimal translation units as described in
Quirk and Menezes (2006), although they allow
null words on either side.

Different word alignment approaches will result
in different sets of MCAs. For input lattices, we
want sets of MCAs with as many aligned words
as possible, while minimising the average num-
ber of words in each pair in the set. Experiments
with GIZA++ on the Europarl data showed that
the “grow-diag-final-and” word alignment sym-
metrization heuristic had the best balance between
coverage and pair length: over 85% of skeleton
words were part of a non-null minimal pair, and
the average length of each pair was roughly 1.5
words. This indicates that our lattices will pre-
serve most of the input space while collapsing eas-
ily alignable sub-segments.

Once a set of phrase alignments has been found,
we construct a lattice over the skeleton sentence
x. For each additional input yn we add a set of
links and nodes for each word in x to any relevant

¿ podría darnos las cifras correspondientes a españa y grecia ?

pouvez-vous nous donner les chiffres pour  l' espagne et la grèce ?

siffrorna förkan ni ge oss spanien och grekland ?

Figure 4: A multi-lingual alignment between
French, Spanish and Swedish, showing the min-
imal consistent alignments. The lattice generated
by this alignment is shown in Figure 5.

words in yn, rejoining at the last word in x that
is covered by the pair. Figures 4 and 5 show an
example of the alignments and lattice generated by
using a French skeleton with Spanish and Swedish
sentences.

Once a lattice is created, we can submit it to a
phrase-based decoder in place of text input. The
decoder traverses lattice nodes in a manner simi-
lar to how words are traversed in text translation.
Instead of one input word represented by each lo-
cation in the coverage vector as in text input, with
lattices there are a set of possible input word arcs,
each with its own translation possibilities. The
concept of compatible coverage vectors for the lo-
cations of translated words becomes the notion of
reachability between frontier nodes in the lattice
(Dyer et al., 2008).

It is possible to construct multi-skeleton lat-
tices by connecting up a set of N lattices, each
built around a different skeleton xn, in much the
same manner as multiple confusion networks can
be connected to form a lattice in output combina-
tion. With sufficient diversity in the input order-
ing of each skeleton, the decoder need not perform
reordering. Because of the size and complexity
of these multi-skeleton lattices, we attempt only
monotonic decoding. In this scenario, as in con-
sensus decoding, we hope to exploit the additional
word order information provided by the alternative
skeletons.

3 Experiments: Monolingual Input

We start our experimental evaluation by translat-
ing multiple monolingual inputs into a foreign lan-
guage. This is a best-case scenario for testing
and analytic purposes because we have a single
translation model from one source language to one
target language. While translating from multiple
monolingual inputs is not a common use for ma-
chine translation, it could be useful in situations
where we have a number of paraphrases of the in-
put text, e.g., cross-language information retrieval
and summarization.
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Figure 5: A multi-lingual lattice input for French, Spanish, and Swedish from Europarl dev2006.

Data sets for this condition are readily available
in the form of test sets created for machine trans-
lation evaluation, which contains multiple target
references for each source sentence. By flipping
these test sets around, we create multiple mono-
lingual inputs (the original references) and a sin-
gle reference output (the original source text). We
examine two datasets: the BTEC Italian-English
corpus (Takezawa et al., 2002), and the Multiple
Translation Chinese to English (MTC) corpora,3

as used in past years’ NIST MT evaluations.
All of our translation experiments use the

Moses decoder (Koehn et al., 2007), and are eval-
uated using BLEU-4. Moses is a phrase-based
decoder with features for lexicalized reordering,
distance-based reordering, phrase and word trans-
lation probabilities, phrase and word counts, and
an n-gram language model.

3.1 English to Italian
We use the portion of the BTEC data made avail-
able for the Italian-English translation task at
IWSLT 2007, consisting of approximately 24,000
sentences. We also use the Europarl English-
Italian parallel corpus to supplement our train-
ing data with approximately 1.2 million out-of-
domain sentences. We train a 5-gram language
model over both training corpora using SRILM
(Stolcke, 2002) with Kneser-Ney smoothing and
linear interpolation, the interpolation weight cho-
sen to minimise perplexity on the Italian side of
the development tuning set.

For multiple translation data, we use IWSLT
test sets devset1-3 which have sixteen English
translations for each Italian sentence. The Ital-
ian version of the BTEC corpus was created af-
ter the original Japanese-English version, and only
the first English translation was used to generate
the Italian data. The other fifteen versions of each
English sentence were generated as paraphrases
of the primary English translation. We explore
translation conditions using only the fifteen para-
phrased inputs (“Para.” in Table 2), as well as us-
ing all sixteen English inputs (“All”).

3LDC2002T01, LDC2003T17, LDC2004T07 and
LDC2006T04.

All Para.
BEST 40.06 24.02
ORACLE 51.64 47.27
MAX 29.32 23.94
SYSCOMB 32.89 30.39
CN INPUT 31.86 27.62

Table 2: BLEU scores on the BTEC test set for
translating English inputs into Italian.

We tune our translation models on devset1, sys-
tem combination on devset2 and report results on
devset3 for each condition.

When tuning the single input “Para.” and “All”
baselines, we include all relevant copies of the 506
lines of devset1 English data, and repeat the Ital-
ian reference fifteen or sixteen times on the target
side, resulting in a total of 7,590 and 8,096 sen-
tence pairs respectively.

The results for devset3 are shown in Table 2.
For comparison, we show the BEST score any in-
put produced, as well as an approximated ORA-
CLE output selection generated by choosing the
best BLEU-scoring output for each sentence using
a greedy search. Our output combination method,
SYSCOMB, uses no system-specific weights to
distinguish the inputs. For SYSCOMB and MAX,
we translated all versions of the English input sep-
arately, and we use the top ten distinct hypothe-
ses from each input sentence for n-best input to
SYSCOMB.

For input combination, CN INPUT, we used the
TER-based monolingual input lattice approach de-
scribed in Section 2.3, choosing as a skeleton the
input with the lowest average TER score when
compared with the other inputs (assessed sepa-
rately for each sentence). Each input was given
equal probability in the confusion network links.

Note that the quality of output from translat-
ing the primary English input is much higher than
from translating any of the paraphrases. The pri-
mary input sentence scores a BLEU of 40.06, while
the highest scoring paraphrased input manages
only a 24.02. When we look at “Para.” the dif-
ference in the scores when using a single input
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(BEST) versus all the inputs (SYSCOMB and CN
INPUT) is striking – clearly there is considerable
information in the other inputs which can radically
improve the translation output. Removing the pri-
mary input from ORACLE reinforces this observa-
tion: the score drops by only 4.37 BLEU despite
the nearly 16 BLEU drop for the single best input.

Interestingly, the output selection technique,
MAX, performs at a similar level to the combina-
tion techniques when we include the primary in-
put, but degrades when given only the lower qual-
ity translations of paraphrased input under condi-
tion “Para.” In previous work on multi-lingual out-
put selection, the MAX score degraded after two
or three outputs were combined, but even with-
out the primary reference it maintains a score near
the best single paraphrased input when combining
fifteen outputs. One possible explanation for this
is that the inputs are all being translated with the
same translation model, so comparing their scores
can give a more accurate ranking of their relative
translation quality according to the model. The
input combination method, CN INPUT, performs
better than MAX and only slightly worse than the
output combination approach.

3.2 English to Chinese

We can add an extra dimension to monolingual
multi-source translation by considering inputs of
differing quality. A multi-source translation sys-
tem can exploit features indicating the origin of the
input to improve output quality. For these exper-
iments, we use the MTC English-Chinese corpus,
parts 1–4. This data was translated from Chinese
into English by four teams of annotators, denoted
E01–E04. This allows us to examine the results
for translating the same team’s work over multiple
years.

We train on the news domain portion of the of-
ficial NIST data4 (excluding the UN and Hong
Kong data) for both the translation model and the
5-gram Chinese language model.

While we still have a single translation model,
all of our inputs are now of a traceable origin and
are known to have quality differences when judged
by human evaluators. With this information we
can tune one of two ways: We can create a set of
all input systems and replicate the reference as we
did for English to Italian translation (“All tuned”),

4http://www.nist.gov/speech/tests/mt/
2008

Team Tuning Part 3 Part 4
E01 All 16.18 15.52
E01 Self 16.02 15.63
E02 All 14.29 14.00
E02 Self 13.88 14.05
E03 All 14.99 15.06
E03 Self 15.10 14.94
E04 All 14.03 12.65
E04 Self 14.03 12.59

Table 3: BLEU scores using single inputs from
each different team on the MTC. Bold indicates
the better score between All and Self tuning.

Approach Tuning Part 3 Part 4
MAX All 15.06 15.08
MAX Self 14.97 13.75
SYSCOMB All 16.82 16.24
SYSCOMB Self 16.87 16.45

Table 4: BLEU scores for multi-source translations
of MTC test sets. Better score for each output-
based multi-source method is shown in bold.

or we can tune each input using only the version of
the tuning data generated by the same translation
team (“Self tuned”).5 For example, we can tune
a system with the MTC Part 2 data provided by
translation team E01, and then decode E01’s trans-
lations of parts 3 and 4 with the weights obtained
in tuning. The results for each system are shown
in Table 3. Despite the different tuning conditions,
there is no clear advantage to tuning to all inputs
versus tuning to each input separately – on aver-
age we see a 0.06 BLEU score advantage by using
“All” weights.

With four different inputs to our multi-source
translation system, and two ways of weighting the
features for each input, how can we best utilize
these systems in output selection and combina-
tion? We perform system combination and MAX

selection and obtain the scores shown in Table 4.
The consensus decoding approach uses system-
specific features as described in Section 2.2 to dis-
tinguish between E01-E04.

As with English to Italian, output combination
performs the best of the multi-source techniques.
MAX performs better with translations generated
by “All” weights than with “Self”, and the con-

5Note that in the “Self tuned” setting we have only a quar-
ter as much tuning data as for “All tuned”.
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Input Language test2006 test2007
French (FR) 29.72 30.21
Spanish (ES) 29.55 29.62
Swedish (SV) 29.33 29.44
Portuguese (PT) 28.75 28.79
Danish (DA) 27.20 27.48
Greek (EL) 26.93 26.78
Italian (IT) 26.82 26.51
German (DE) 24.04 24.41
Dutch (NL) 23.79 24.28
Finnish (FI) 18.96 18.85

Table 5: BLEU scores for individual translation
systems into English trained on Europarl, from
best to worst.

verse is true for SYSCOMB. Given the robust per-
formance of MAX when translation scores origi-
nated from the same translation model in English
to Italian, it is not surprising that it favors the
case where all the outputs are scored by the same
model (“All tuned”). On the other hand, diversity
amongst the system outputs has been shown to be
important to the performance of system combina-
tion techniques (Macherey and Och, 2007). This
may give an indication as to why the “Self tuned”
data produced higher scores in consensus decod-
ing – the outputs will be more highly divergent due
to their different tuning conditions.

4 Experiments: Multilingual Input

Multilingual cases are the traditional realm of
multi-source translation. We no longer have di-
rectly comparable translation models; instead each
input language has a separate set of rules for trans-
lating to the output language. However, the avail-
ability of (and demand for) multi-parallel corpora
makes this form of multi-source translation of
great practical use.

4.1 Lattice Inputs

As described in Section 2.3, lattices can be used
to provide a compact format for translating multi-
lingual inputs to a multi-source translation system.
We trim all non-skeleton node paths to a maximum
length of four to reduce complexity when decod-
ing. Such long paths are mostly a result of errors in
the original word alignments, and therefore prun-
ing these links is largely innocuous.

We train on the Europarl corpus and use the

FR SV ES DA PT IT EL NL DE FI
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Figure 6: Performance for multilingual multi-
source translation (test2005) as each language in-
put is added, showing Oracle target selection,
MAX score, or just a single language input (Solo).

in-domain test sets provided for previous years’
Workshops on Statistical Machine Translation.
Because of the computational complexity of deal-
ing with so many models, we train on only the first
100,000 sentences of each parallel corpus. Sin-
gle system baseline scores for each language are
shown in Table 5.

Besides comparing the different multi-source
translation methods discussed above, in this task
we also want to examine what happens when we
use different numbers of input languages. To de-
termine the best order to add languages, we per-
formed a greedy search over oracle BLEU scores
for test set test2005. We started with the best scor-
ing single system, French to English, and in each
iteration picked one additional system that would
maximise BLEU if we always selected the trans-
lation system output closest to the reference. The
results are shown in Figure 6.

The oracle selection order differs from the or-
der of the best performing systems, which could
be due to the high scoring systems having very
similar output while lower scoring systems exhibit
greater diversity. Interestingly, the order of the
languages chosen iterates between the Roman and
Germanic language families and includes Greek
early on. This supports our claim that diversity
is important. Note though that Finnish, which is
also in a separate language family, is selected last,
most likely due to difficulties in word alignment
and translation stemming from its morphological
complexity (Birch et al., 2008). This finding might
also carry over to phrase-table triangulation (Cohn
and Lapata, 2007), where multi-parallel data is
used in training to augment a standard translation
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Approach test2006 test2007
French Only 29.72 30.21

French + Swedish
MAX 29.86 30.13
LATTICE 29.33 29.97
MULTILATTICE 29.55 29.88
SYSCOMB 31.32 31.77

French + Swedish + Spanish
MAX 30.18 30.33
LATTICE 29.98 30.45
MULTILATTICE 30.50 30.50
SYSCOMB 33.77 33.87

6 Languages
MAX 28.37 28.33
LATTICE 30.22 30.91
MULTILATTICE 30.59 30.59
SYSCOMB 35.47 36.03

Table 6: BLEU scores for multi-source translation
systems into English trained on Europarl. Single
source French decoding is shown as a baseline.

system.

We choose to evaluate translation perfor-
mance at three combination levels: two lan-
guages (French and Swedish), three languages
(+Spanish), and six languages (+Danish, Por-
tuguese, Italian). For each combination we ap-
ply MAX, SYSCOMB, French skeleton lattice in-
put translation LATTICE, and monotone decoding
over multiple skeleton lattices, MULTILATTICE.
Results are shown in Table 6.

To enable the decoder used in LATTICE and
MULTILATTICE to learn weights for different
sources, we add a feature to the phrase table for
each of the languages being translated. This fea-
ture takes as its value the number of words on the
source side of the phrase. By weighting this fea-
ture up or down for each language, the decoder can
prefer word links from specific languages.

As seen in previous work in multi-source trans-
lation, MAX output selection performs well with
two or three languages but degrades as more lan-
guages are added to the input. Conversely, our
lattice input method shows upward trends: LAT-
TICE is comparable with MAX on three inputs and
scores increase in the six language case.

Given the higher scores for output combination
over input combination, what differences can we
observe between the systems? Both systems have

features that indicate the contributions of each in-
put language to the final output. With input com-
bination, we are forced by the decoder to take the
maximum scoring path through the lattice, but in
output combination we have the aggregate vote of
word confidences generated by each system. If we
could combine word arc scores across inputs, as in
output combination, we might get a more robust
solution for taking advantage of the available sim-
ilarities on the target side of the translation. This
points to a direction for future research.

Other differences between the systems may ex-
plain the score gap between our input and output
combination approaches. Consensus decoding al-
lows you to mix and match fragments that aren’t
necessarily stored as fragments in the phrase table.
Another difference is the richer space of reorder-
ings in TER-based lattices, due to the ability of the
metric to handle long-distance alignments.

5 Conclusion

We analyzed three approaches for dealing with
multi-source translation. While MAX is mostly a
poor performer, the upper bound of output selec-
tion is stunning. The very positive results for out-
put system combination across all data conditions
are quite promising. Output combination achieves
these results while the using the limited expres-
sive power of n-best inputs. The potential of using
a more expressive format – such as lattices that
represent the joint search space of multiple mod-
els – is high. Our first attempts at adapting lattices
to multi-source translation input show promise for
future development. We have only scratched the
surface of methods for constructing input lattices,
and plan to actively continue research into improv-
ing these methods.
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Mario, and Rafael E. Banchs. 2007. Ngram-based
statistical machine translation enhanced with mul-
tiple weighted reordering hypotheses. In Proceed-
ings of the Second Workshop on Statistical Machine
Translation, pages 167–170, Prague, Czech Repub-
lic, June.

Christopher J. Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice transla-
tion. In Proceedings of ACL: HLT, pages 1012–
1020, Columbus, Ohio, USA, June.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Christopher J. Dyer, Ondřej Bojar,
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