
82

Translation Memory as a Robust Example-based Translation System

Hodász, Gábor**; Grőbler, Tamás*; Kis, Balázs*

* MorphoLogic, Budapest
{grobler,kis}@morphologic.hu

** Pázmány Péter Catholic University, Budapest
Department of Information Technology

hodasz@morphologic.hu

Abstract

This paper introduces a new approach to translation memories. The proposed translation technology uses linguistic
analysis (morphology and parsing) to determine similarity between two source-language segments, and attempts to
assemble a sensible transltion using translations of source-language chunks if the entire source segment was not
found. This is achieved by integrating a rule-based machine translation (RBMT) engine. The drawback of this ap-
proach is language-dependence; however, proper grammar acquisition methods are being developed to speed up
grammar preparation for further language pairs.

The paper discusses the basic processes of the proposed TM. Then the underlying machine translation engine is
described. This is followed by an outline of the inegrated translation support tool where the proposed TM architec-
ture is to become a core component.

We argue that both the recall and the precision of a language-aware translation memory is higher than those of
character-based systems. To this end, the paper introduces an evaluation scheme currently being prepared for use
for testing the TM, followed by some estimated figures, the latter providing arguments in favour of the proposed
TM scheme.

1. Introduction

Commercially available translation memories do not
involve linguistic knowledge. Instead, they deter-
mine similarity between translation units on the ba-
sis of pure mathematical distance calculations, with
the majority of the algorithms using fuzzy indexes.
Although most such systems recognize and handle
non-translatable passages (such as dates, numbers,
some abbreviations), and incorporate terminology
management modules as well, existing translation
memory systems do not systematically treat and
recognize morpho-syntactic or even syntactic simi-
larities, if the translation units themselves are too
different in terms of characters. This paper presents
a proposed system addressing these particular prob-
lems, one that attempts to assemble translations
from sub-sentence units stored in its database, both
in the source and the target languages.

The proposed language-aware translation mem-
ory program is being implemented as a language-
dependent translation support tool, first developed
for the English-Hungarian language pair. The devel-
opment process aims at surpassing the recall and
precision of existing systems, resulting in a tool that
offers translations more often, with the suggestions
being closer to the desired translation. In the first
version, the translation is assembled from stored
translations of noun phrases and the morpho-
syntactic skeleton of the source unit. The morpho-

syntactic skeleton is a sequence of lemmas and
morpho-syntactic parses of the words in the source
unit, with a symbolic NP slot at the place of each
noun phrase. This scheme may result ambiguities –
an undesired phenomenon in CAT systems –, but
the best translation will be a far closer approxima-
tion of the desired one than in existing systems.
Therefore, in the devised user interface, the user will
be able to select the best translation from multiple
suggestions. However, in the subsequent revision
phase – when the human translator transforms the
suggestion into the desired translation –, fewer cor-
rections will be necessary.

In order to exploit the advantages of rule-based
machine translation (RBMT), the system incorpo-
rates a parser/translator module, named MetaMor-
pho, developed by the authors’ team. Thus the sug-
gestions are produced from stored translations and
core linguistic patterns used by the MT module. If
the translation memory is used extensively, new
translation patterns will be created in the thousands
or the tens of thousands, which, given the close
connection between the TM engine and the MT
module, can be recycled to enhance the quality of
the MT part as well.

Section 2 of this paper discusses the basic proc-
esses of the proposed TM system, showing the char-
acteristics of the architecture and the mechanisms.
This section also describes the procedure of insert-

83

ing a new translation unit into the translation mem-
ory database.

Section 3 provides details on the linguistic
matching of source and target segments, as well as
incoming source segments and stored translation
units.

Section 4 describes the MetaMorpho translation
mechanism, which is an efficient blend of an exam-
ple-based and a transfer-based architecture.

Section 5 provides implementation-specific de-
tails of the development project, describing the inte-
gration of the proposed translation memory tool into
full-scale translation tools.

Section 6 concludes the paper by describing a
proposed evaluation scheme for the translation
memory, and providing arguments in favour of the
proposed translation memory scheme.

2. The basic processes of the proposed TM
scheme
Translation memory systems maintain a database of
existing translations. Such databases are practically
sentence-aligned but unannotated parallel corpora.
The success of a TM system depends entirely on the
lookup structure associated with the parallel corpus.
In commercial TM applications, the lookup struc-
ture is a fuzzy index, which helps the system find
source segments not entirely identical to the current
source segment (i.e. on which the translator is cur-
rently working). The similarity measure is based on
the character codes, and does not take into account
the linguistic properties of either the stored seg-
ments or the current segment.

Another problem of commercial TMs is that they
handle the translations on an ‘as-is’ basis: if a
source segment is found at whatever level of simi-
larity to the current one, the stored translation is in-
serted to the current target text, leaving it to the
translator to adjust the translation to the contents of
the current source segment. In this scheme, no
smaller unit than a single segment (usually a sen-
tence) can be looked for in the database.

2.1. Integration of RBMT
The proposed TM scheme is being built around a
rule-based machine translation module named
MetaMorpho. Provided the appropriate grammar
lexicon, the MetaMorpho module is able to deter-
mine the structure of the source segment, and pro-
duce an automatically generated translation. The key
benefit of this module – the one exploited in the
translation memory scheme – is that the atomic unit
of a grammar is a lexicalized syntactic pattern.
Therefore, the grammar does not consist of abstract
rules, but mainly syntactic patterns that hold the
properties of an idiomatic or otherwise lexically

constrained phrase. Thus collocations with a non-
compositional meaning or translation can still be
translated correctly, with all their necessary varia-
tions taken into account (Turcato et al., 1984;
Schäler, 2001).

The fundamental design of the proposed transla-
tion memory scheme assumes that there should be a
single lookup method for the TM database, namely,
the MetaMorpho translation engine (Prószéky,1996;
Prószéky–Tihanyi, 2002). This poses several special
requirements to translation memory operation, espe-
cially to the process of annotating new translation
units, explained in detail in Section 3. The TM sys-
tem thus incorporates the machine translation en-
gine: the core grammar lexicon is always available,
and matches can still be found, even with an empty
translation memory database.

The basic operation of the proposed TM engine
is described below. The atomic actions are:
(1) the attempt to translate a single source segment,

and
(2) adding a new translation unit (a pair of a source

and target segment) to the translation memory
once the human translator confirmed it. (See
Figure 1.)

2.2. Attempting to translate the source segment
The proposed TM system follows the following
protocol:
(1) Attempt to find an exact match. Skip all subse-

quent steps if found.
(2) Perform linguistic analysis (stemming, mor-

phological analysis and parsing) on the source
segment. Determine basic building blocks of the
segment, and attempt to find translation for the
smaller blocks. Assemble the translation ac-
cording to a sentence skeleton, adjusting mor-
pho-syntactic properties of certain words if nec-
essary. A sentence skeleton is a pattern that in-
cludes the smaller building blocks as single
symbols, and those parts of the sentence that
could not be part of those building blocks.

The latter is a recursive step: the smaller building
blocks undergo the same protocol. If this step is
successful – the system is managed to assemble a
translation using the building blocks and the skele-
ton –, skip all subsequent steps.

Note that some gaps may remain in the compos-
ite translation: the operation can still finish with
success. Experience with fully automatic translation
(see step 3) shows that a human translation even
with gaps could be more useful than a target seg-
ment translated in a fully automatic manner.

Also note that step (2) is performed entirely by
the machine translation module as there are no op-

84

erations outside the scope of its mechanisms. Both
the smaller building blocks and the sentence skele-
ton can be described as underspecified (or, from an-
other aspect, lexically constrained) grammar pat-
terns. However, the granularity of parsing is signifi-
cantly smaller here: we need to limit the number of
levels in a parse tree to minimize mismatches due to
parsing errors.

The discussion of building blocks becomes more
specific in Section 3, where we explain the pre-
defined sentence structure used in the TM enrich-
ment.

(3) If there is not an exact match, and the composi-
tion of a translation was unsuccessful, the last
resort of the system is to fall back to the ma-
chine translation mechanism: it attempts to
automatically translate the source segment in its
entirety, and provides the user with this result.
(See Section 5, where implementation-specific
details are also discussed.)

At this point, the user is offered one or more possi-
ble translations: they can now select the correct one,
and, if necessary, adjust it to correspond to the
source segment more closely.

2.3. Adding a new translation unit to the
translation memory

A translation unit is a pair of one source and one
target segment, assuming that the target segment is
the translation of the source segment.

In a sense, adding a new translation unit is en-
tirely independent from the translation of a source
segment. We cannot assume that the translation con-
firmed by the human translator is by any means re-
lated to composite or automatic translations previ-
ously offered by the TM engine. Though there are
methods to track the activity of the user, and deter-
mine which basic building blocks were retained
while adjusting the translation, it is more efficient to
assume that the confirmed translation unit is entirely
new.

Thus the TM system follows the procedure be-
low:
(1) Performs linguistic analysis of both the source

and the target segments, determining basic
building blocks and segment skeletons.

(2) Performs alignment of the basic building blocks.
This alignment process is similar to the one we
are using for sentence-level alignment (ex-
plained in section 5).

At this point, we have aligned pattern pairs from
both the segment skeletons and the aligned building
blocks, which have to be converted into the format
used by the machine translation engine. Each pair is
stored as a single translation rule (Carl, 2001; Ta-
keda, 1996).

Figure 1. The basic processes of MetaMorpho TM

Pattern Database

Translation
Memory

NP patterns

S-skeletons

MT patterns
Ranking of

NP-s

Non-
overlapping

NP-s?

POS
tagger

Fuzzy
search

NP and
skeleton

translations

Assembling
composite
translation

Source-
target seg-
ment pair

NPs un-
changed?

Pattern
insertion

Parse
results

Source-
language
segment

Y
N NPs

aligned?

NP and
skeleton pairs

Target-
language

morphology

Target-
language
parsing

NP
alignment

NP
checking

N

N

Source-
language
parsing

85

3. Linguistic matching
As there are many ways to parse a sentence, a lan-
guage-aware translation memory must use a parsing
scheme that meets the following requirements:
(1) Analysis results in comparable patterns.
(2) Smaller patterns are translated in good quality

even by automatic machine translation.
(3) Smaller patterns are relatively well exchange-

able within sentences, i.e. they can be repre-
sented as a closed sub-structure, which, if al-
tered, does not alter the larger structures within
the sentences.

We decided to use a three-level sentence structure,
deliberately skipping intermediate levels that would
eventually occur with deep parsing. The obvious
choices for these three levels were (1) words, (2)
noun phrases (NPs), (3) sentences.

3.1. Word-level analysis
After tokenization and segmentation, each word is
automatically lemmatized, and their morpho-
syntactic properties are determined – in both the
source and target segments. Stemming and mor-
phological analysis is performed by MorphoLogic’s
Humor module, with an optional disambiguating
POS-tagger integrated.

This step results in one or more ‘grammatical’
patterns consisting of the morpho-syntactic category
tag and the lemma of each word, the latter as a lexi-
cal constraint. Thus a basic translation pattern is
obtained. An example:

Input: The big dog saw two cats.

the[DET]
big[ADV],big[ADJ]
dog[ADV],dog[N],dog[V]
saw[N],saw[V],see[V][P

AST]
two[NUM]
cat[N][PL]+period[PUNC

T]

3.2. NP chunking
In most sentence structures, arguments in verbal
structures can be substituted with different phrases,
as long as they take the same grammatical role.
However, the wording and the internal structure of
such arguments can be entirely different.

Arguments in English verbal constructions usu-
ally take the form of a prepositional phrase, con-
sisting of a preposition and a noun phrase, with the

latter being a replaceable construction, and the for-
mer implementing the syntactic role for the NP spe-
cific to the position within the verbal construction.
Moreover, the MetaMorpho module provides fairly
high-quality translations for English NPs, while the
translation of larger structures can be problematic.

In Hungarian (as our primary language pair is
English-Hungarian), a ‘PP’ takes the form of a
casemarked or a post-positional NP. In the former
case, the casemarker is suffixed to the head noun of
the NP. The casemarked or post-positional NP is the
closest Hungarian correspondent to an English NP.

Here the difficulty lies with the task to separate
the ‘pure’ NP from the grammatical elements that
determine its role in the verbal or predicative con-
struction. This procedure – as implemented – is lan-
guage-dependent. However, a language-independent
framework must be implemented around this proc-
ess, by specifying the proper subset by using gram-
matical tags and features only – these are precisely
the data used by the MetaMorpho engine for each
node in the parse trees.

This task requires a high-precision NP chunker
for both the source and the target languages. This
chunker is in fact the NP-parsing mechanism inte-
grated into the machine translation engine. How-
ever, it does not preserve the internal structure of the
NPs. A shallow structure is retained only: it consists
of the sequence of morpho-syntactic tags, lemmas
and other features of word forms. Intermediate lev-
els are omitted because they are different for each
NP, therefore unsuitable for subsequent compari-
sons.

An example of NP chunking and TM-specific
NP structures (in the MetaMorpho formalism):

Input: The big dog saw two cats.

The longest NPs found:

EN.NP-FULL 50 (NP 47)
DET lex="the"
ADJ lex="big"
N lex="dog" num=SG

EN.NP-FULL 282 (NP
280)

NUM lex="two"
N lex="cat" num=PL

3.3. Sentence skeletons
Morphological analysis of an entire source and tar-
get segment results in a low-level sentence-level
pattern where the atomic symbols are lemmatized
word forms. Once NP boundaries are identified,
subsequences corresponding to NPs can be substi-

86

tuted with an NP symbol. In the example above, it
takes the following form:

EN.S-FULL 363
NP 47
V lex="see" form=F2
NP 280
PUNCT lex="period"

As a result, NP gaps will occur in the pattern where
virtually any other NP can be substituted. The sen-
tence skeleton is a pattern where functional con-
stituents like verbs, prepositions and other non-NP
words are retained as typeful lemmas, while the ac-
tual NPs are substituted with an NP gap.

With this step, the sentence skeleton and the sur-
face NPs are separated. If there are more than one
sentence skeletons and NPs, they can be combined
in any other way. The system can thus offer a com-
posite translation which never actually occurred in
the texts stored in the translation memory.

PPs, case marks and other elements that specify
the role of the NP within a verbal construction, must
be retained in the sentence skeleton as constraints,
while the appropriate symbols and features must be
marked within the NP so that they can be adjusted
when inserted into a skeleton in a specific role.

3.4. NP-level alignment
When adding a new translation unit to the transla-
tion memory, both the source and the target segment
must be analyzed. There could be an assumption
that an NP in the source segment must have a trans-
lation in the target segment – this is applied when a
translation is assembled by the TM engine. How-
ever, due to the nature of human translation – more
precisely, the semantics-based human transfer op-
erations – this must not be assumed when process-
ing a translation unit confirmed by a human trans-
lator.

There are a few heuristic methods to match
source NPs to target NPs: the surface features de-
termining the arguments’ roles can be matched to
each other (in the source and target languages), and
dictionary-based methods can be applied to content
words within the NP patterns.

It is not an absolute requirement to fully align all
NPs in a translation unit. Rather, we elected to add
successfully aligned source-target pairs only, dis-
carding NPs that could not be assigned a pair. Dis-
carded NPs must still be retained at least in an ac-
tivity log because they provide an important re-
source for subsequent evaluation.

4. The underlying machine translation sys-
tem

The proposed TM architecture – named Meta-
Morpho TM – relies on a rule-based machine trans-
lation engine: the latter is MetaMorpho itself, devel-
oped by the authors’ team (Prószéky–Tihanyi,
2002).

Within the MetaMorpho system, target-language
structures are created simultaneously with the proc-
ess of parsing a source segment. The operation fol-
lowing the parsing process is a simple walkthrough
of the target forest.

MetaMorpho combines the procedures of a trans-
fer-based MT engine – using generalized rules at a
high level of abstraction – and those of an example-
based one, working with very specific patterns at a
very low level of abstraction.

Generalized rules and highly specific patterns are
all fit into the same grammar formalism. MetaMor-
pho uses a grammar formalism resembling and sup-
posedly equivalent to PATR-II (Shieber et al.,
1983). There cannot be defined an exact dividing
line between rules and patterns. Every item of the
grammar can be a generalized rule from one aspect
and a specific pattern from another.

Rules – or patterns – consist of symbols with a
feature structure. Every rule or pattern contains con-
straints on specific features of the constituent sym-
bols. The more features constrained for a symbol,
the more specific the pattern is. A typical constraint
is where we specify a condition on the lemma (or
lexical stem) of one or more symbols in the rule or
pattern. This makes the system able to handle idio-
matic expressions or other collocations more effi-
ciently.

Typically, we designate an item of grammar a
‘pattern’ if one or more constituent symbols have a
lexical constraint; an item without lexical con-
straints (i.e., where no symbols have their lemmas
constrained) is rather thought of as a ‘rule’. How-
ever, the grammar of this system is entirely homo-
geneous: the parsing algorithm does not differentiate
between ‘patterns’ (specific rules from one aspect)
and ‘rules’ (generalized patterns from another as-
pect), and they are not stored in a different way.

Bearing in mind that all grammar items have a
source and the target component – because the tar-
get ‘tree’ is being built simultaneously with the
parse forest –, and there can be different constraints
on each constituent symbol within an item, we pro-
vide an example for a rule or pattern below:

*NX=approach+to:12
EN.NX[ct=COUNT] = N(lex=”approach”)
+ PPOBJ(lex=”to”)

87

HU.NX = PPOBJ[case=GEN] +
N[lex=”megközelítés”]
; example: This is a really nice
approach to religion.

The grammar (i.e. the pattern lexicon) may contain
multiple items – with very different constraints –
that are applicable to the same linguistic unit. With
this approach to parsing, ambiguity is an inevitable
but undesired phenomenon, and one must find an ef-
ficient method to curb it. The MetaMorpho MT
system is able to handle situations where one pattern
or rule overrides another.

Thus a hierarchy can be defined among patterns
applied to the same linguistic unit at the same
grammatical level. With a pattern, one can specify a
‘killer’ rule, i.e. a reference to another pattern. If
both patterns were applied to the same piece of the
input, the former pattern will override the latter one.
Overriding patterns must be manually specified;
however, it is a general rule of thumb among the
developers that more specific patterns should over-
ride generalized ones. Here is an example (now
omitting the target-language components):

;NP =NP+of+NX:121
EN.NP=NP + PREP(lex=”of”) + NX
HU.NP=...
; example: a cup of coffee

;NP=’a bottle of’+NX:122
EN.NP=DET(lex=”a”) +
NX(lex=”bottle”) + PREP(lex=”of”) +

NX(num=SG,ct=UNCOUNT)
HU.NP=...
!121
; example: a bottle of wine

The second pattern will override the first one. This
is specified by the ‘!121’ line after the second pat-
tern. One can also see that the general rule of thumb
was followed here: the second pattern is more spe-
cific because the first part (‘a bottle of’) is fixed.
When a sentence like ‘I asked for a bottle of wine.’
is parsed, only pattern 122 will be applied to the
phrase ‘a bottle of wine’.

Within a rule or pattern, a symbol is specified by
one compulsory syntactic or morpho-syntactic label
and, optionally, one or more feature constraints.
With regard to the analysis methods discussed in
Sections 2 and 3, one can see that both basic POS-
tagged sentence patterns and sentence skeletons
with NP gaps can be represented as a MetaMorpho-
compliant rule or pattern.

Thus the MetaMorpho TM translation memory
implements a model that can be viewed as a transi-
tion from the example-based and the rule-based ap-

proach to translation. The translation memory data-
base stores translation units in the same formalism
as the one used by the MetaMorpho MT engine.

5. Integration and implementation
The translation memory engine is only a core mod-
ule of a full-featured translation tool. Without a
proper database management layer, terminology
management, an aligner module and an intuitive
user interface, it can be used for little more than
corpus processing.

So far, the TM engine and the alignment module
have been implemented. The user interface is still
being worked on.

Translation units for the TM are stored in a rela-
tional database – similarly to many commercially
available TM systems. Terminology management is
built around the same database management
scheme. Domain or subject management is also in
place: both the translation memory and the termi-
nology database can be partitioned in an implicit
way, by assigning each translation unit one or more
position within a domain hierarchy. If the domain of
the source text is then specified, the system is able
to select the correct patterns (displaying domain-
specific characteristics of wording and style) for the
translation.

Success of the language-aware TM depends on
the quality of the NLP modules implemented for
both the source and the target language. The pro-
posed TM scheme is also designed for robustness:
should the linguistics-based process fail, it can fall
back to a ‘traditional’ TM procedure. To this end, a
traditional fuzzy index is also created. The fall-back
protocol is the following:

(1) Attempt exact match;
(2) Try to assemble a composite translation using

the TM database and the grammar of the MT
engine;

(3) Attempt fuzzy match (with a rather high thresh-
old);

(4) Attempt fully automatic translation.

If any of the above steps is successful, the transla-
tion procedure is finished. It is very important to
note that human-confirmed patterns always take
precedence over those in the grammar of the MT
engine.

The MetaMorpho TM scheme is enriched by a
proprietary alignment module, implementing a new
approach to parallel text alignment. It defines a hy-
brid method exploiting and unifying the advantages
of existing alignment strategies.

The above scheme is implemented as a closely
integrated suite of tools, sharing the same basic NLP

88

components and using well-defined processes.
Within each process, the input and the output of
each phase can be exported as XML. This applies to
the contents of the translation memory as well. In
addition, both the alignment module and the TM
engine are fully TMX-compliant.

The techniques described in this paper are lan-
guage-dependent. Though the NLP modules work-
ing in the scheme are entirely data-driven, a great
effort is required to produce the appropriate linguis-
tic databases. Thus developers needed to choose one
language pair to work with; with regard to Hun-
gary’s imminent accession to the EU, the proposed
TM system is first developed for the English-
Hungarian language pair.

6. Methods of evaluation
The proposed approach attempts at providing sig-
nificantly higher quality in a translation memory
than achieved by commercially available products.
Evaluation must thus provide evidence for the hy-
pothesis that linguistic annotation and an RBMT
engine can provide quality improvement.

Because we state that linguistic modules will
provide the desired quality improvement, we must
asses the linguistic operations performed during
translation and inserting of translation units:

(1) POS tagging (or morphological analysis, in the
simpler case)

(2) NP chunking,
(3) NP alignment.

These operations must be assessed by comparing
their results to reference values.

On a larger scale, the recall and the precision of
the translation memory itself must be measured. It
presents a challenge as there is little information
available on measurements of existing translation
memories.

The recall of a translation memory is a vague
concept: when compared to the source text, it al-
ways depends on the size and contents of the TM
database, which in turn depends on the individual
user. It is more useful to compare the hits to the
contents of the TM database: the recall of a TM
system can be measured by assessing how many of
the stored translation units have a chance greater
than 50% being retrieved, when testing it on a suffi-
ciently large corpus.

If we are measuring recall this way, there is an
argument in favour of the language-aware TM en-
gine: by common sense, the shorter the source seg-
ment, the more probable it is to be eventually found.
It is obvious that the language-aware translation
memory stores shorter segments: on the one hand, it

stores substrings of the input segment, on the other
hand, it stores simplified patterns such as sentence
skeleton where the full variability of NPs is col-
lapsed into a single NP gap.

The precision of a translation memory can be
measured by the time the user has to spend with cor-
recting translations offered by the system. There
were no end user tests conducted as of the time of
writing, however, we can again provide an argu-
ment. It is inherent to the language-aware TM to
provide combined translations where the transla-
tions offered are adapted to the source segment in-
stead of offering an entire target segment un-
changed.

The process of evaluating the proposed system
has only begun. It is being tested on a sample Eng-
lish-Hungarian parallel corpus of texts on comput-
ing, with a size of approx. 1.2 million words per
language, 2.5 million words altogether.

7. Conclusion
This paper presented a language-aware translation
memory scheme, with a detailed description basic
processes implemented in the proposed scheme, and
providing an overview of integration of the TM into
a larger context.

The paper states that the only way to achieve
substantial improvement in translation memory
quality is the integration of language-aware meth-
ods. The present development is an example of the
latter approach.

The proposed scheme is an unconventional use
of otherwise well-known techniques. The paper
provides solid arguments in favour of the approach
– with the caveat that evaluation is still in progress.

References
Carl, M. (2001): ‘Inducing Translation Grammars from

Bracketed Alignments.’ Proceedings of the Workshop
on Example-Based Machine Translation
[http://www.eamt.org/summitVIII/ workshop-
papers.html]

Prószéky (1996): ‘Syntax As Meta-morphology’, Pro-
ceedings of COLING-96, Vol.2, 1123–1126. Copen-
hagen, Denmark.

Prószéky, G. and L. Tihanyi, (2002): ‘MetaMorpho: A
Pattern-Based Machine Translation Project’. Trans-
lating and the Computer 24, ASLIB, London.

Schäler, R. (2001): ’Beyond Translation Memories.’ Pro-
ceedings of the Workshop on Example-Based Ma-
chine Translation [http://www.eamt.org/ summit-
VIII/workshop-papers.html]

Shieber, S. M., H. Uszkoreit, F. C. Pereira, J. Robinson,
and M. Tyson (1983). The formalism and implemen-
tation of PATR-II. In J. Bresnan, editor, 23 Research

89

on Interactive Acquisition and Use of Knowledge. SRI
International, Artificial Intelligence Center, Menlo
Park, California, USA.

Takeda, Koichi (1996): ‘Pattern-Based Context-Free
Grammars for Machine Translation’, Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics. Santa Cruz, USA.

Turcato, D. & F. Popowich (2001): ‘What is Example-
Based MT?’ Proceedings of the Workshop on Exam-
ple-Based Machine Translation
[http://www.eamt.org/summitVIII/ workshop-
papers.html]

