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Abstract

Mixture modelling is a standard pattern classification technique. However,
in statistical machine translation, the use of mixture modelling is still un-
explored. Two main advantages of the mixture approach are first, its flex-
ibility to find an appropriate tradeoff between model complexity and the
amount of training data available and second, its capability to learn specific
probability distributions that better fit subsets of the training dataset. This
latter advantage is even more important in statistical machine translation,
since it is well known that most of the current translation models proposed
have limited application to restricted semantic domains. In this paper, we
describe a mixture extension of the IBM model 2 along with the maximum
likelihood estimation of its parameters through the EM algorithm and a
dynamic-programming decoding algorithm for this mixture model. Prelim-
inary experiments carried out on the Tourist task show that the mixture
extension conveys a decrease in word-error rate of up to 15%.

1 Introduction

Mixture modelling is a popular approach
for density estimation in many scientific ar-
eas (McLachlan & Peel, 2000). On the one
hand, mixtures are flexible enough for find-
ing an appropriate tradeoff between model
complexity and the amount of training data
available. Usually, model complexity is con-
trolled by varying the number of mixture
components while keeping the same para-
metric form for all components. On the
other hand, maximum likelihood estimation
of mixture parameters can be reliably ac-
complished by the well-known Expectation-
Maximisation (EM) algorithm.

The application of mixture modelling to
translation models is still an unexplored
field. One of the most interesting proper-
ties of mixture modelling is its capability to
learn a specific probability distribution in a
multimodal dataset that better explains the
general data generation process. In machine
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translation, these multimodal datasets are
not an exception, but the general case. In-
deed, it is easy to find corpora from which
several topics could be drawn. These top-
ics usually define sets of topic-specific lexi-
cons that need to be translated taking into
the sematic context in which they are found.
This semantic ambiguity problem could be
overcome by learning topic-dependent trans-
lation models that capture together the se-
mantic context and the translation process.

In this paper, we describe a mixture ex-
tension of the IBM model 2 (Brown et al.,
1990) along with ts corresponding EM pa-
rameter estimation. Furthermore, it was
necessary to develop a specific search al-
gorithm that finds the best translation
for a given source sentence as defined by
the IBM2 mixture model. A dynamic-
programming search algorithm was imple-
mented for this purpose as a mixture ex-
tension of that presented in (Garćıa-Varea,
Casacuberta, & Ney, 1998; Garćıa-Varea &
Casacuberta, 2001).

This paper is structured as follows. Next
section reviews the IBM Model 2. Section 3



describes the IBM2 mixture model along
with its EM parameter estimation. In Sec-
tion 4, a dynamic-programming decoding al-
gorithm for the IBM2 mixture model is pre-
sented. Finally, Section 5 will be devoted to
experimental results and Section 6 will dis-
cuss some conclusions and future work.

2 IBM alignment model 2

Let (x, y) be a pair of input-output sen-
tences; i.e. x is a sentence in a certain input
(source) language and y is its correspond-
ing translation in a different output (target)
language. Let X and Y denote the input
and output vocabularies, respectively. The
IBM aligment models (1 to 5) are paramet-
ric models for the translation probability
P (x | y); i.e., the probability that x is the
source sentence from which we get a given
translation y.

Without loss of generality, the IBM align-
ment models assume that each source word
is connected to exactly one target word.
Also, it is assumed that the target sentence
has an initial “null” word to which source
words with no direct translation are con-
nected. Formally, a hidden variable a =
a1a2 · · · a|x| is introduced to reveal, for each
source word position j, the target word po-
sition aj ∈ {0, 1, . . . , |y|} to which it is con-
nected. Thus,

P (x | y) =
∑

a∈A(x,y)

P (x, a | y) (1)

where A(x, y) denotes the set of all pos-
sible alignments between x and y. The
alignment-completed probability P (x, a | y)
can be decomposed in terms of individual,
source position-dependent probabilities as:

P (x, a | y)=

|x|∏

j=1

P (xj , aj | a
j−1
1 , x

j−1
1 , y) (2)

In the case of the IBM alignment model 2
(IBM2), it is assumed that aj only depends
on j and |y|, and that xj only depends on
the target word to which it is connected, yaj

.
Hence,

P (xj , aj |a
j−1
1 , x

j−1
1 , y)

4
=p(aj |j, |y|) p(xj |yaj

)
(3)

and the set of unknown parameters com-
prises the alignment parameters, p(i|j, |y|),
for all i ∈ {0, 1, . . . , |y|}, j ∈ {1, . . . , |x|} and
|y|; and the statistical dictionary, p(v|w), for
all v ∈ X and w ∈ Y. Note that the align-
ment parameters defined here are slightly
different from those defined in the origi-
nal parameterisation (Brown et al., 1990),
which also depend on |x|, p(i|j, |x|, |y|).

Putting (1), (2) and (3) together, we may
write the IBM2 model as follows:

p(x | y) =
∑

a

|x|∏

j=1

p(aj |j, |y|) p(xj |yaj
) (4)

=

|x|∏

j=1

|y|∑

i=0

p(i|j, |y|) p(xj |yi) (5)

by some straightforward manipulations.

It is not difficult to derive an EM algo-
rithm to perform maximum likelihood esti-
mation of these parameters with respect to
a collection of training samples (X, Y ) =
{(x1, y1), . . . , (xN , yN )}. The (incomplete)
log-likelihood function is:

L(Θ) =
N∑

n=1

log
∑

an

p(xn, an|yn) (6)

with

p(xn, an|yn)=

|xn|∏

j=1

p(anj |j, |yn|) p(xnj |ynanj
)

=

|xn|∏

j=1

|yn|∏

i=0

[p(i|j,|yn|)p(xnj |yni)]
anji (7)

where, for convenience, the alignment vari-
able, anj ∈ {0, 1, . . . , |yn|}, has been rewrit-
ten as an indicator vector in (7), anj =
(anj0,. . . ,anj|yn|), with 1 in position anji and
zeros elsewhere.

The so-called complete version of the log-
likelihood function (6) assumes that the hid-
den (missing) alignments a1, . . . , aN are also
known:

L(Θ) =
N∑

n=1

log p(xn, an|yn) (8)

The EM algorithm maximises (6) itera-
tively, through the application of two basic



steps in each iteration: the E(xpectation)
step and the M(aximisation) step. At iter-
ation k, the E step computes the expected
value of (8) given the observed (incomplete)
data, (X, Y ), and a current maximum like-
hood estimate of the parameters, Θ

k. This
reduces to the computation of the expected
value of anji:

ak
nji = p(anji = 1 |xn, yn)k

=
p(i | j, |yn|)

k p(xnj | yni)
k

|yn|∑
i′=0

p(i′ | j, |yn|)k p(xnj | yni′)k

(9)

Then, the M step finds a new estimate of Θ,
Θ

k+1, by maximising (8), using (9) instead
of the missing anji. This results in:

p(i|j, |y|)k+1 =

N∑
n=1

j≤|xn|
|yn|=|y|

ak
nji

|y|∑
i′=0

N∑
n=1

j≤|xn|
|yn|=|y|

ak
nji′

(10)

for all i, j and |y|; and

p(v|w)k+1 =

N∑
n=1

|xn|∑
j=1

xnj=v

|yn|∑
i=0

yni=w

ak
nji

∑
v′

N∑
n=1

|xn|∑
j=1

xnj=v′

|yn|∑
i=0

yni=w

ak
nji

(11)

for all v ∈ X and w ∈ Y.
An initial estimate for Θ, Θ

0, is required
for the EM algorithm to start. This is usu-
ally done by using the solution given by the
IBM alignment model 1, which is the par-
ticular case of IBM2 in which the alignment
probabilities are uniformly distributed; i.e.,

p(i|j, |y|)k+1 =
1

|y| + 1
(12)

for all i, j and |y|.

3 IBM2 mixture models

A finite mixture model is a probability (den-
sity) function of the form:

p(z) =
C∑

c=1

p(c) p(z | c) (13)

where C is the number of mixture com-
ponents and, for each component c,
p(c) ∈ [0, 1] is its prior or coefficient and
p(z | c) is its component-conditional probabil-
ity (density) function. It can be seen as a
generative model that first selects the cth
component with probability p(c) and then
generates z in accordance with p(z | c). It
is clear that finite mixture modelling al-
lows generalisation of any given probabilistic
model by simply using more than one com-
ponent.

In this work, we are interested in mod-
elling the translation probability P (x | y) us-
ing a C-component, y-conditional mixture of
IBM2 models:

p(x | y) =
C∑

c=1

p(c) p(x | y, c) (14)

where

p(x|y, c)=

|x|∏

j=1

|y|∑

i=0

p(i|j, |y|, c) p(xj |yi, c) (15)

Note that we could have made p(c) to
depend on y in Eq. 14 but, for simplic-
ity, this is left for future work. Also
note that each component c has its own,
component-conditional independent set of
alignment parameters and statistical dictio-
nary, say Θc = ({p(i|j, |y|, c)}, {p(v|w, c)}).
Now, the entire set of unknown pa-
rameters, Θ, includes both the compo-
nent coefficients p(1), . . . , p(C), and the
component-conditional IBM2 model param-
eters Θ1, . . . ,ΘC .

It is easy to extend the EM algorithm de-
veloped in the previous section to the more
general case of IBM2 mixtures. The log-
likelihood function of Θ with respect to N

training samples is:

L(Θ)=
N∑

n=1

log
∑

zn

∑

an

p(xn, zn, an|yn) (16)

where zn = (zn1, . . . , znC) is an indicator
vector for the component generating xn, and

p(xn,zn,an|yn)=
C∏

c=1

[p(c) p(xn,an|yn,c)]znc

(17)



with

p(xn,an|yn,c)=

|xn|∏

j=1

|yn|∏

i=0

[p(i|j,|yn|,c)p(xnj |yni,c)]
anji

where, as in the previous section, anji =
1 means that the nth training pair has
its source position j connected to tar-
get position i. Note that data comple-
tion in the mixture case includes the align-
ments a1, . . . , aN and the component labels
z1, . . . , zN as well. Thus, the complete ver-
sion of the log-likehood function (16) can
be obtained by simply eliminating the sums
over zn and an.

At iteration k, the E step for the mix-
ture case involves the computation of the
expected value of znc,

zk
nc = p(znc = 1 |xn, yn)k

=
p(c)k p(xn | yn, c)k

C∑
c′=1

p(c′)k p(xn | yn, c′)k

(18)

with

p(xn|yn,c)k=

|xn|∏

j=1

|yn|∑

i=0

p(i|j,|yn|,c)
kp(xnj |yni,c)

k

and the expected value of znc anji,

(znc anji)
k = p(znc = 1, anji = 1 |xn, yn)k

= zk
nc ak

njic (19)

with

ak
njic =p(anji = 1 |xn, yn,c)k

=
p(i|j, |yn|, c)

k p(xnj |yni, c)
k

|yn|∑
i′=0

p(i′|j, |yn|, c)k p(xnj |yni′ , c)k

(20)

Note that (20) is just a component-
conditional version of (9).

The M step now includes an updating rule
for the mixture coefficients,

p(c)k+1 =
1

N

N∑

n=1

zk
nc (21)

for all c = 1, . . . , C; and component-
conditional versions of (10) and (11):

p(i|j, |y|, c)k+1 =

N∑
n=1

j≤|xn|
|yn|=|y|

zk
nca

k
njic

|y|∑
i′=0

N∑
n=1

j≤|xn|
|yn|=|y|

zk
nca

k
nji′c

(22)

for all c, i, j and |y|; and

p(v|w, c)k+1 =

N∑
n=1

|xn|∑
j=1

xnj=v

|yn|∑
i=0

yni=w

zk
nca

k
njic

∑
v′

N∑
n=1

|xn|∑
j=1

xnj=v′

|yn|∑
i=0

yni=w

zk
nca

k
njic

(23)

for all c, v and w.
The initialisation technique for the IBM2

model can be easily extended to the mixture
case; i.e. by using a solution from a simpler
mixture of IBM1 models.

4 Decoding algorithm

In statistical machine translation, the aim
of the decoding algorithm is to search for a
target sentence ŷ that maximises:

ŷ = argmax
y

p(y) p(x | y) (24)

This search is known to be an NP-hard
problem (Knight, 1999). However, sev-
eral search algorithms have been pro-
posed in the literature to solve this ill-
posed problem efficiently: A∗ (Brown
et al., 1990), stack-decoding (Wang &
Waibel, 1997; Al-Onaizan et al., 1999),
integer-programming (Germann et al., 2001)
and dynamic-programming (Garćıa-Varea &
Casacuberta, 2001; Tillmann & Ney, 2003).

In (Garćıa-Varea & Casacuberta, 2001;
Garćıa-Varea et al., 1998), a dynamic-
programming search algorithm for the IBM2
model is proposed, along with some refine-
ments for speedup. We have extended this
algorithm to the case of IBM2 mixture mod-
els. The extension considers an extra dimen-
sion in the search trellis to store the trans-
lation score for each component in the mix-
ture independently. To be more precise, the



translation model p(x | y) in (24) is instan-
tiated as the IBM2 mixture model (14) and
p(y), for the sake of simplicity in the no-
tation, is assumed to be a bigram language
model. Thus, the best translation associated
to (24), given the source sentence x and the
target-sentence length |y|, is computed as:

ŷ
|y|
1 = argmax

y
|y|
1




|y|∏

i=1

p(yi|yi−1)


×

×
C∑

c=1

p(c)

|x|∏

j=1

|y|∑

i=0

p(i | j, |y|, c) p(xj | yi, c)

(25)

The expression in (25) can be reformu-
lated in terms of two recursive functions T

and Q:

ŷ
|y|
1 = argmax

y
|y|
1

T (y|y|, |y|)×

×
C∑

c=1

p(c)

|x|∏

j=1

Q(y|y|, |y|, j) (26)

The definition of the recursive functions T

and Q for any partial hypothesis yi
1, being

i = 1, . . . , |y| and yi = w, is:

T (w, i) = T (ŵ(w, i), i−1)×

× p(w|ŵ(w, i)) (27)

Q(w, i, j, c) = Q(ŵ(w, i), i − 1, j, c) +

+ p(i | j, |y|, c) p(xj |w, c) (28)

where the function ŵ(w, i) returns the best
previous word w′ given that w is going to ap-
pear next in the target sentence at position
i:

ŵ(w, i)) = argmax
w′

(
T (w′(w, i), i − 1)×

× p(w|w′)×

×
C∑

c=1

p(c)

|x|∏

j=1

[
Q(w′, i − 1, j, c) +

+ p(i | j, |y|, c) p(xj |w, c) +

+ R(j, i + 1, c)
])

(29)

being R, a function that estimates the cost
of translating from position i + 1 to the end
of the target sentence,

R(j, i, c)=

|y|∑

k=i

p(k | j, |y|, c) p(xj | yk, c) (30)

where y
|y|
1 is an estimation of the best trans-

lation for x.

The base case of the recursion for func-
tions T and Q is:

T (w, 1) = p(w|$)

Q(w, 1, j, c) = p(0 | j, |y|, c) p(xj | ∅, c) +

+ p(1 | j, |y|, c) p(xj |w, c) (31)

for all w and j = 1, . . . , |x| and where ∅ rep-
resents the NULL word.

The estimation of the function R poses
a problem when the target sentence is un-
known. A mixture extension of the ini-
tial optimistic estimation of R, proposed
in (Garćıa-Varea, 2003), can be calculated
as:

R(j, i, c)=

|y|∑

k=i

max
w

p(k|j, |y|, c) p(xj |w, c)

(32)

Once an initial translation has been com-
puted, function R is reestimated using this
translation and the complete search process
is repeated. This way of proceeding defines
an iterative refinement process that updates
R in each iteration. This iterative transla-
tion process runs until convergence (function
R remains the same between two consecu-
tive iterations) or for a maximum number
of rounds.

4.1 Decoding parameters

Furthermore, there are several parameters
that need to be tuned in order, on the one
hand not to eliminate the benefits of us-
ing more components in the IBM2 mixture
model, and on the other hand to obtain re-
sults in a reasonable period of time. The fol-
lowing parameters were defined in order to
control the trade-off between accuracy and
response time:

• Number of translations W for each
word in the source sentence, in order to
constitute a translation bag-of-words to
be considered during the search process.

The definition of this bag-of-words is
performed according to the inverse
translation probability (Al-Onaizan
et al., 1999) in order to select the most



probable translation for each source
word:

p−1(w |wx) =
p(wx |w) p(w)∑

w′
x

p(w′
x |w) p(w)

≈

≈

C∑
c=1

[p(wx |w, c) p(c)] p(w)

∑
w′

x

C∑
c=1

[p(w′
x |w, c) p(c)] p(w)

(33)

where p(w) is a unigram language
model learnt on the training partition.

• Number of “zero-fertility” words WZ to
be included in the translation bag-of-
words. This set of words is defined as
those target words that are least aligned
to any source word in the training set
according to the Viterbi alignment for
the IBM2 mixture model. It is neces-
sary to take those words into account
since they are rarely included as possi-
ble direct translations of words in the
source sentence, therefore they would
not appear in a translation.

A possible approximation to the Viterbi
alignment for the IBM2 mixture model
is:

â = argmax
a

C∑

c=1

p(c)×

×

|x|∏

j=1

|y|∏

aj=0

p(aj | j, |y|, c) p(xj | yaj
, c)

(34)

≈ argmax
a

max
c=1,...,C

p(c)×

×

|x|∏

j=1

|y|∏

aj=0

p(aj | j, |y|, c) p(xj | yaj
, c)

(35)

• Beam-search coefficient B to prune
those hypotheses whose score was lower
than the best score multiplied by this
coefficient.

• Target-sentence length range L to be
explored when translating a source sen-
tence. The algorithm presented in Sec-
tion 4 assumes that we know a priori

the length of the translation. In prac-
tice, this is not true, so it is necessary
to search for translations in a range of
sentence lengths.

The adopted solution considers a
gaussian distribution over the target-
sentence length depending on the
source-sentence length. So, the range
mentioned goes from |y||x|−L to |y||x|+

L, where |y||x| is the average length of
the target sentence given the length of
source sentence to be translated.

• Maximum number of search rounds D,
that defines the number of times the
same source sentence is going to be
translated for a fixed target-sentence
length while the function R needs to be
recomputed.

The interested reader is referred
to (Garćıa-Varea et al., 1998; Garćıa-
Varea & Casacuberta, 2001) for further
details on this decoding algorithm.

5 Experimental results

The Spanish-English Tourist task (Amen-
gual et al., 1996) was selected to assess the
IBM2 mixture model proposed in this pa-
per. In the following subsections, first, the
Tourist task is described. Then, the ex-
perimental setting is defined together with
the evaluation error measures, and finally,
the experimental results are presented.

5.1 Corpus

The Spanish-English Tourist task (Amen-
gual et al., 1996) is composed of sentence
pairs corresponding to human-to-human
communication situations at the front-desk
of a hotel which were semi-automatically
produced using a small seed corpus com-
piled by four people from travel guide book-
lets dealing with different topics. A corpus
of 10, 000 random sentences pairs was se-
lected for training purposes and a test par-
tition was defined using 2, 996 random sen-
tence pairs generated independently from
the training partition. The basic statistics
of this corpus are shown in Table 1.



Table 1: Basic statistics of the Spanish-English
Tourist task.

Training Set Test Set
Sp En Sp En

num. sents 10.000 2.996
avg. length 9 9 11 11
vocabulary 686 513 611 468
singletons 10 8 63 49
run. words 97K 99K 35K 36K
perplexity - - - 3.95

This multimodal corpus defines an excel-
lent test-bed to experiment with the IBM2
mixture model, since its simplicity will bring
about the pros and cons of this model.

5.2 Evaluation error measures

Two error measures were proposed in order
to evaluate the IBM2 mixture model:

• Word Error Rate (WER): the mini-
mum number of substitution, insertion
and deletion operations needed to con-
vert the hypothesized translation into a
given single reference translation.

• BiLingual Evaluation Understudy
(BLEU): it is based on the n-grams
of the hypothesized translation that
occur in the reference translations. The
BLEU metric ranges from 0.0 (worst
score) to 1.0 (best score) (Papineni
et al., 2002).

The reason to use the WER measure in
the evaluation was to compare our results
to previous works on the same corpus. Con-
versely, the BLEU score has become a ref-
erence error measure for the evaluation of
translation quality in MT systems.

5.3 Experimental setting

Several experiments were carried out with
the Spanish-English Tourist task to anal-
yse the evolution of the error rate as a func-
tion of the number of mixture components
(C ∈ {1, 2, 5, 10, 20}).

The training process starts by iterating
with the IBM1 mixture model from a ran-
dom initialisation until convergence. Then,

the parameters learnt in the IBM1 mixture
model are transfered to the IBM2 mixture
model that is also trained until convergence.
This 2-step procedure favours smooth pa-
rameter learning from a simpler model to a
more complex model leading to better trans-
lation results.

We are aware that IBM models are usu-
ally trained for a few iterations, instead of
until convergence. This way of proceeding
would lead to an interesting set of experi-
ments, which we plan to carry out as a fu-
ture work, in order to study the behaviour
of this model as a function of the number of
EM iterations.

The search parameters were fixed in order
to not interfere in the study of the transla-
tion model itself, so that a large number of
hypotheses were explored. The values of the
search parameters, determined empirically,
were the following:

• W = 12

• WZ = 24

• B = 5000

• L = 4

• D = 3

The language models used in these exper-
iments were smooth bigrams and trigrams
based on back-off with Witten-Bell discount-
ing (Witten & Bell, 1991).

5.4 Experimental results

Figure 1 shows the evolution of the WER
(left y axis) and BLEU score (right y axis),
on the test partition of the Tourist task,
for an increasing number of mixture compo-
nents (x axis). Each curve represents the
progress of an evaluation measure, WER
(W) or BLEU (B), when using a smooth bi-
gram (2g) or trigram (3g) language model.
Each plotted point is an average over values
obtained from 10 randomised trials.

As a reference, the single-component ver-
sion of these results are tightly correlated
with those obtained in (Garćıa-Varea &
Casacuberta, 2000). Although in that work,
the translation training schema was differ-
ent: 15H53545, that is, 5 iterations for IBM1
model, 5 iterations for the HMM model, 5
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Figure 1: WER (W) and BLEU (B) curves in
the test partition as a function of the number
of mixture components using smooth bigram(2g)
and trigram (3g) language models.

iterations for the IBM4 and 5 iterations for
the IBM5. Another difference is the employ-
ment of Good-Turing discount for the lan-
guage model. However, the search algorithm
is based on the IBM2 model parameters.

When analysing the results in Figure 1, it
is observed a systematic decrease in WER
(increase in BLEU) as more components are
added to the IBM2 mixture model. This
positive trend reverts at different parameter
settings depending on the language model
we are using. In the case of bigrams that
happens when the model incorporates 20
components into the mixture, while in tri-
grams this trend reverts when using 10 com-
ponents. The reason behind this behaviour
is mainly due to the fact that a trigram lan-
guage model leaves less space for improve-
ment than a simple bigram language model.
So, the refinement of the translation model
through the incorporation of more compo-
nents produces greater benefit in a simpler
bigram model, than in an already sophisti-
cated trigram model.

A summary of baseline and best mix-
ture results for bigram and trigram language
models is shown in Table 2. These figures re-
flects that the IBM2 mixture model provides
an average relative improvement in WER of
15% for the bigram language model and 11%
for the trigram language model, with respect
to the single-component IBM2 model.

However, we are aware that the results re-

Table 2: Baseline and best mixture results on
the Spanish-English Tourist task. The n-
column indicates the n-gram order of the lan-
guage model, while the C-column denotes the
number of components in the IBM2 mixture
model.

n C WER BLEU

2
1 21.33 0.6773

10 18.00 0.7280

3
1 14.24 0.7813
5 12.63 0.8001

ported in this work are far from those ob-
tained in the same corpus with state-of-the-
art phrase-based models, specifically Align-
ment Templates (Och, 1999). However, we
are mostly interested in presenting new ideas
that could be extended to other transla-
tion models, like phrase-models, in order
to train topic-specific translation models in
large corpora.

6 Conclusions and future

work

In this paper a mixture extension of the
IBM2 model was presented together with
its maximum likelihood parameter estima-
tion and a specific decoding algorithm.

The experiments conducted clearly indi-
cate the benefits of the mixture approach
over the single-component IBM2 model,
even though these results are not compet-
itive enough compared to those obtained by
state-of-the-art phrase-based models. How-
ever, the reader should bear in mind that the
work presented in this paper is a first step to-
wards the application of mixture modelling
to other translation models. Mixture mod-
elling aims at dealing with multimodal data,
which is an interesting open problem requir-
ing further investigation in statistical ma-
chine translation.

Nevertheless, there are several challenges
still ahead in the application of mixture
modelling in statistical machine translation.
The main problem is the increasing number
of parameters to be learnt as more compo-
nents are added to the model. This prob-
lem appears in the training and the decoding



process. Nonetheless, an appealing property
of mixture modelling is this possibility to
control the complexity of the model through
the selection of an adequate number of com-
ponents depending on the data available.

All in all, there are other alternative so-
lutions to deal with the relative complexity
of mixture models, both in training and de-
coding. The incorporation of monolingual
and bilingual classes (Och, 1999) is an inter-
esting approach to control model complex-
ity, specifically the number of parameters in
modelling component-dependent statistical
dictionaries, by choosing the right number of
word classes. In the decoding, there are dif-
ferent ways to accelerate the search process,
for example, with the application of power-
ful heuristics as proposed in (Och, Ueffing,
& Ney, 2001).
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