
Grammatical Framework (GF)

for MT in sublanguage domains

Janna Khegai

Department of Computer Science,

Chalmers University of Technology,

SE-41296, Gothenburg, Sweden

janna@cs.chalmers.se

Abstract

Grammatical Framework (GF) is a meta-language for multilingual linguis-
tic descriptions, which can be used to build rule-based interlingua MT ap-
plications in natural sublanguage domains. The GF open-source package
contains linguistic and computational resources to facilitate language en-
gineering including: a resource grammar library for ten languages, a user
interface for multilingual authoring and a grammar development environ-
ment.

1 Introduction

Grammatical Framework (GF) is a grammar
formalism that can be used to build rule-
based interlingua MT applications in natu-
ral sublanguage domains (Burke & Johan-
nisson, 2005; Bringert, Cooper, Ljunglöf, &
Ranta, 2005; Caprotti, 2006). The GF im-
plementation takes functional programming
approach using a semantic model that could
be described in Type Theory (Ranta, 2004).
GF provides a powerful meta-language suit-
able for describing both natural and formal
languages (Ljunglöf, 2004).

The core of a GF grammar is a language-
independent interlingua, called abstract

syntax. It models a domain by declar-
ing categories and relations over them using
the notation of functional programming lan-
guages. Abstract syntax is the most crucial
and difficult part of grammar writing. An-
other part, called concrete syntax, maps
abstract syntax into strings of natural lan-
guage. Every language has its own defini-
tion for the given function, called lineariza-

tion. Values returned by linearization could
be not only strings, but also records and
tables, see section 5.2 for some examples.
This is especially important for expressing
such language-specific features like inflec-

tions, morphological parameters and discon-
tinuous constituents without affecting the
abstract part.

Speaking of language-specific lower-level
details we want to point out that it would
be unreasonably tedious to descend to such
details every time we write a GF gram-
mar. To address the problem a standard li-
brary for the GF language, called resource

grammar library, is provided. It decreases
grammar development cost by code reuse,
guaranteed grammaticality and raising the
abstraction level of the task. Resource
grammars are now implemented for ten lan-
guages: Danish, English, Finnish, French,
German, Italian, Norwegian, Russian, Span-
ish and Swedish, see Fig. 1. They have
been developed in parallel and share the
same interface for common rules and cate-
gories, which makes implementation of both
resource and application grammars easier
(Ranta, to appear, 2005).

A resource grammar describes a language
in general: the basic morphological and
syntactical rules applicable to any domain.
An application grammar, on the other
hand, describes a particular sublanguage do-
main, for example, a set of math problems
(Caprotti, 2006) or a local transport net-
work (Bringert et al., 2005). To write an ap-



Figure 1: GF performs MT of interlingua type.
Ten languages have general-purpose resource
grammars that conform to a common interface.

plication grammar using the resource library
one need to be a domain-expert, but from
the linguistics point of view, it is enough to
be a fluent speaker of a language. Thus, re-
source grammars take care of grammatical
issues allowing the application grammarian
to concentrate on the semantics of the de-
scribed domain. Ideally, resource and appli-
cation grammars should be separated on all
possible levels, see Fig. 2. In our experience
linguistic knowledge usually dominates the
size of the grammar, which makes resource
grammar library crucial for efficient gram-
mar development.

Even with the resource library, writing
grammars entirely by hand can be time-
consuming because it still requires a fair
knowledge of the resources. To speed up the
process one can use Integrated Development
Environment (GF IDE) (Khegai, 2005), in-
cluded in the GF package – a grammar ed-
itor that can automatically suggest appro-
priate resource functions or even pre-fill the
definition by parsing example strings with
resource library. Manual post modification
may be needed afterwards, but still it is use-
ful if the system can at least partially fill-in
the definition.

In the next sections we will outline how to
write a demo application in GF. The source
code and the executable are explained in sec-
tions 2 and 3 respectively. Section 4 contains
notes on the expressiveness of the GF gram-
mar formalism. Section 5 discusses some re-
lated work.

Figure 2: The table shows the ideal division of
labor between resource and application gram-
mars. A resource grammar is a general-purpose
grammar that covers morphological and syntac-
tical rules of a language. An application gram-
mar is built on the top of the resource grammar
and concentrates on the language-independent
semantic description of a particular sublanguage
domain.

2 Sample GF Grammar

We present a small example from the ap-
plication grammar Health written using
the resource grammar library in English,
French, Swedish and Russian. We start by
looking at the fragment of the language-
independent (although the English names
are used) abstract syntax:

cat

Patient; Medicine; Prop;

fun

ShePatient : Patient;

PainKiller : Medicine;

NeedMedicine : Patient ->

Medicine -> Prop;

The categories Patient, Medicine and
Prop denote a patient, a medication and
a proposition respectively. ShePatient

and PainKiller are constants of the types
Patient and Medicine. The function
NeedMedicine takes two arguments of the
types Patient and Medicine and returns
the result of the type Prop – a proposition
expressing that a patient is in the need of a
medication. NeedMedicine is used to form
phrases like she needs a painkiller where pa-
tients and medications can vary. Thus, we
get a generic function for forming this kind
of propositions provided that a representa-
tive amount of possible arguments (various
patients and medications) are covered by the
grammar. The semantic tree (interlingua) of
the phrase she needs a painkiller is a combi-
nation of the functions above:



NeedMedicine ShePatient PainKiller

where the constants ShePatient and
PainKiller are used as arguments to the
function NeedMedicine.

Given the abstract syntax now we need
a corresponding concrete syntax in order
to translate interlingua trees into strings of
natural language. While the abstract syn-
tax is shared among all the languages, each
language has its own concrete syntax. Let
us start with the linearization definitions,
which happen to be the same for all five lan-
guages. This fragment is written using the
language-independent part of the resource
grammar library:

lincat

Patient = NP;

Medicine = NP;

Prop = S;

lin

ShePatient = She;

The first three definitions indicate that
Patient, Medicine and Prop categories will
be expressed by noun phrase (NP) and sen-
tence (S) categories. Noun phrases and sen-
tences in different languages are already de-
fined in the resource grammar, so we can
just reuse them. The function ShePatient

is basically a pronoun corresponding to the
English pronoun she, which is also already
defined in the resource grammar (She). No-
tice, that the function She bears the partial
semantics of the pronoun she. Thus, some
widely applicable semantic notions like pro-
noun references can be part of the resource
grammar library, although, in general se-
mantics is left for application grammars.

The definitions above are the same for all
languages, which makes the porting trivial.
In the remaining functions we see bigger dif-
ferences:

-- English:

PainKiller =

mkNP (nReg "painkiller");

-- French:

PainKiller =

mkNP (nReg "calmant" masculine));

-- Swedish: PainKiller =

mkNP (nIngenBöjning "smärtstillande");

-- Russian:

PainKiller =

mkNP (nNeut ee "obezboliva�w");

Painkiller is defined by using the inflection
paradigms nReg (pattern for Regular nouns
in English and French, see more details in
section 5.2), nIngenBöjning (indeclinable
nouns in Swedish) and nNeut ee (neuter
gender nouns ending with -ee in Russian)
from the resource library, which take cor-
responding word stems (in quotes) as argu-
ments. In French we also specify the gender
(masculine) of a noun. The type-casting
operation mkNP converts a noun into a noun
phrase.

A linearization for NeedMedicine is de-
fined as follows:

-- English:

NeedMedicine =

predV2 (mkDirectVerb verbNeed);

-- Swedish: NeedMedicine =

predV2 (mkDirectVerb verbBehöva);

-- French:

NeedMedicine patient medic =

PredVP patient (avoirBesoin medic);

-- Russian:

NeedMedicine = predNeedAdjective;

The phrase she needs a painkiller is a transi-
tive verb predication together with comple-
mentation in English and Swedish (predV2,
see the function type signature below). In
French the idiomatic expression avoir be-
soin (avoirBesoin) is used and, there-
fore, the more basic predication rule PredVP
(the classic NP V P → S rule) is ap-
plied. Russian requires the rule for adjec-
tive predication (predNeedAdjective). All
the functions are taken from the resource li-
brary. The function mkDirectVerb converts
the lexicon entries verbNeed (English verb
to need) and verbBehöva (Swedish verb
behöver) into direct verb type. The argu-
ments patient and medic of the function
NeedMedicine denote a patient and a med-
ication respectively.



Notice, that to use, for example, the func-
tion predV2 it is enough to know its type
signature (implementation is hidden):

predV2 : TV -> NP -> NP -> S;

-- e.g. John loves Mary

The type signature indicates that predV2

forms a sentence (S) combining a transitive
verb (TV), a subject and an object (both ex-
pressed by noun phrases NP), like in John
loves Mary. One just needs to recognize that
the same pattern is used in the phrase she
needs a painkiller. To define NeedMedicine

we only have to supply the first verb argu-
ment – a transitive verb (in parenthesis in
English and Swedish versions). The func-
tion predV2 takes care of the rest including
agreement, word order etc. We can even
suppress both NP arguments in the nota-
tion, since they will be automatically re-
stored from predV2’s type signature.

Having both abstract and concrete syn-
taxes for four languages we are now able to
translate the sentence she needs a painkiller
from one language into another via interlin-
gua. In a similar manner we need to de-
scribe all utterances from the domain to be
covered by the grammar. This requires a
lot of work. The main part is abstract syn-
tax – designing categories and functions to
model the domain. All supported languages
have to be taken into account in the inter-
lingua representation, see section 3 (partic-
ulary Fig. 8) for an example. Sometimes,
it is not possible to think of all the details
from the start. Then, several iterations are
needed along the way.

If a model conforms well to a language,
writing a concrete syntax should be more or
less straightforward using the GF IDE gram-
mar editing tool. Its menu-driven mode
helps to navigate through the resource li-
brary. Its example-based mode automat-
ically pre-fills the linearization rules using
parsing with resource grammars. For in-
stance, to linearize NeedMedicine in English
it is enough to provide an example like you
need vitamins in GF IDE and the system
will parse the string into a syntactic tree,
which then can be modified into a lineariza-
tion rule by replacing syntactic structures
(e.g. you and vitamins) with corresponding

Figure 3: GF syntax editor looks like a text-
editor. Just type some text, for example, she

has a headache.

Figure 4: The sentence is translated via interlin-
gua into French, Russian and Swedish.

semantic components (patient and medic

arguments respectively).

3 Application example

We use the GF syntax editor (Khegai, Nord-
ström, & Ranta, 2003) as a user interface
to demonstrate the outcome of Health as
a computer phrase-book, which is able to
translate simple phrases on medical topics
between four languages. One can start with
typing something like she has a headache,
see Fig. 3. The system parses the input into
an interlingua representation, which is then
linearized into strings in other languages, see
Fig. 4.

One can proceed in any of the represented
languages. For example, in Russian we can
change the hurting body part from golova

(head) to noga (leg), see Fig. 5. Of course,
one cannot just type anything, since the sys-
tem can only process a limited sublanguage.
If in doubt, by right-clicking the mouse you
can invoke context-dependent pop-up menu
generated from the grammar, see Fig. 6. No-
tice, that the menu can be displayed not
only in English, but also in all the other lan-



Figure 5: Editing text in Russian: a middle-click
on a chosen word pop-ups a text filed, which can
be used for replacing the current body part –
golova (head) by a new one – noga (leg).

Figure 6: An editing menu in English is invoked
by right-clicking on a placeholder (denoted by a
question mark) in the sentence in English. The
menu is generated automatically from the gram-
mar.

guages, for example, in French, see Fig. 7.
So it is enough for the user to know only
one of the languages.

Given a phrase in one language the sys-
tem guarantees the correct translations into
other languages. The translation is not only
grammatically (agreement, word order etc.)
but also stylistically correct. For example,
she has a headache in English corresponds
to she has pain in the head in Swedish and
French, while in Russian it sounds more like
at her hurts head. GF grammars allows us
to enjoy high-quality translation by choos-
ing the most appropriate form for the lan-
guage, which, nonetheless, still conforms to
the same underlying language-independent
interlingua.

Interlingua approach has some inherent
drawbacks. For example, the phrase I have
a headache is considered ambiguous by the
system, see Fig. 8. The reason is that the
gender of the pronoun I used as a subject

Figure 7: To get a context-dependent editing
menu in French just right-click on the word in
the French version.

Figure 8: In case of ambiguity the system asks to
choose among the available options. Here, after
typing I have a headache the gender of the sen-
tence’s subject is required. In English the gender
of the subject is not important for forming a cor-
rect sentence. However, the gender distinction
is kept in the interlingua semantic representa-
tion for the sake of compatibility with other lan-
guages where gender is needed for subject-verb
agreement.

is not specified. The gender information
is usually necessary for subject-verb agree-
ment in, for example, Russian. So the sys-
tem has to know the gender in order to po-
tentially translate the statements into Rus-
sian. Notice, that Russian (or any other lan-
guage) can be switched-off during the edit-
ing session, but it still affects the underlying
semantic model.

4 On GF Expressiveness

The GF grammar formalism is stronger than
context-free grammars. Parsing in GF con-
sists of two steps:

• context-free parsing (a number of



parsers is implemented including basic
top-down, Earley, chart)

• post-processing phase

The result produced by a context-free parser
is further transformed by post-processing,
which mainly consists of argument rear-
rangements and consistency checking for du-
plicated arguments. Consequently, a GF
grammar needs to be translated into a
context-free grammar, before feeding into a
context-free parser. After such translation
each GF rule is represented by a context-
free rule annotated with so called profile

that contains non-context-free information
used by the post-processor. Profile de-
scribes the mapping from the position of
a rule argument in the syntactic tree (af-
ter post-processing) to the position in the
string (parsed text). Possible argument re-
combinations are:

• Permutation

• Suppression

• Reduplication

These operations are important for describ-
ing multilingual grammars sharing the same
interlingua model (abstract syntax). For
instance, permutation is used for transla-
tion of adjective modifiers from English into
French: even number corresponds to nom-
bre pair. Suppression is needed, for exam-
ple, in translation from English into Rus-
sian, where the first language uses noun ar-
ticles, but the second does not. In collo-
quial Russian reduplication of adjectives has
an intensifying function like in bely�-bely�

sneg (very white snow). In some languages
reduplication is used to form plural form
(Lindström, 1995). The expressive power
of the GF grammar formalism permits to
handle these phenomena known to be non-
context-free (Jurafsky & Martin, 2000).

To give an example of a profile annotation
let us look at the GF function f for Finnish
grammar that linearize strings like ”Every
woman is pretty”:

fun

f: A -> B -> C -> D;

f x y z =

y ++ "kuin" ++ y ++ "on" ++ z;

where x, y and z are the arguments of the
type A, B and C respectively. We assume
that all four types are linearized as strings.
Function f corresponds to the context free
rule:

f ::= B "kuin" B "on" C

with profile:

[[], [1,2], [3]],

where each element in the list contains oc-
currences of the corresponding argument of
the function. Positions are numbered ac-
cording to the order in the right part of the
resulting context-free rule. Thus, the first
argument is suppressed, the second repeated
twice on the first and second place in the
rule. The third argument appears once at
the third position.

Having at disposition the mechanisms for
permutation, suppression and reduplication,
we can easily describe the notorious non-
context-free language:

{anbncn|n = 1, 2, ...}

The corresponding GF grammar is the fol-
lowing:

cat

S; Aux;

fun

exp : Aux -> S;

first: Aux;

next : Aux -> Aux;

lincat

Aux = {s1: Str; s2: Str;

s3: Str};

lin

exp x = {s = x.s1 ++ x.s2 ++ x.s3};

first = {s1 = "a"; s2 = "b";

s3 = "c"};

next x = {s1 = "a" ++ x.s1; s2 =

"b" ++ x.s2; s3 = "c" ++ x.s3};



The idea is to build an expression in two
steps: first, accumulate each letter sepa-
rately and second, glue the resulting strings
together. For the first step we use an in-
ductive definition parameterized by the vari-
able n, namely: The function first forms a
record containing just one of each letters a,
b and c, describing the case when n equals
one. The function next derives the n+1-case
from the n-case. At the second step exp

concatenates all the letters. S is a termi-
nal string category, while Aux is an inter-
mediate record category that contains three
string fields – one for each letter. The syntax
tree for aaabbbccc looks like:

exp (next(next first))

For a more systematic description of GF
expressiveness and complexity we refer to
(Ranta, 2004; Ljunglöf, 2004).

5 Related Work

GF is related to several well-established mul-
tilingual frameworks successfully used for
MT applications such as Core Language
Engine (CLE) (Rayner, Carter, Bouillon,
Digalakis, & Wirén, 2000), Head-Driven
Phrase Structure Grammar (HPSG) (Pol-
lard & Sag, 1994) and Lexical-Functional
Grammar (LFG) (Butt, King, no, & Segond,
1999). Unlike GF, which takes type-
theoretical approach close to logical frame-
works, they come from computational lin-
guistics: feature-structured, unification-
based and more focused on parsing.

5.1 Grammar Engineering Tools

The grammar engineering environments
XLE (Xerox Linguistics Environment –
LFG) (Crouch et al., 2005) and LKB (Lexi-
cal Knowledge Base – HPSG) (Copestake &
Flickinger, 2000) have been used for build-
ing large scale multilingual grammars. Like
LKB, GF is an open-source project, while
XLE is not publicly available.

Both XLE and LKB have some Graph-
ical User Interface (GUI), but mostly in-
tended for running different commands from
the command-line for processing the ready

grammar files. Not much support is avail-
able for grammar writing itself. Grammars
are written entirely by hand in an ordinary
text editor like Emacs. GF IDE, on the
other hand, is specially designed to meet the
needs of grammar writers. The pluses com-
paring to common text editors are:

• Systematic treatment of ”exotic” lan-
guages. UTF8 encoding is used for lan-
guages with non-latin alphabets. The
system recognizes and properly displays
non-latin characters automatically.

• Example-based, menu-driven grammar
development.

• Lexicon extension on-the-fly, i.e. when
an unknown word is encountered during
example parsing the systems suggests
to add the word to the resource lexicon
and then repeats parsing attempt.

GF IDE saves time for scrolling the re-
source library files by hand and helps avoid-
ing small syntactic mistakes and type-errors
that can be automatically detected. It can
also save efforts in learning the non-trivial
grammar formalism, since otherwise sub-
stantial training is needed even for simple
grammar writing.

5.2 CLE and GF Resource Gram-
mar Library

GF resource grammar library is related to
the proprietary CLE grammars used for
Spoken Language Translator (SLT) system
for Air Travel Information System (ATIS)
domain. In the SLT system there are
three main languages: English (coded first),
Swedish and French (adapted from the En-
glish version). Spanish and Danish are also
present in the CLE project.

Quasi (scope-neutral) Logical Form
(QLF) – a feature-based formalism is used
for representing language structures. Since
the SLT uses a transfer approach two kinds
of rules are needed:

• monolingual (to and from QLF-form)
rules that are used for both parsing and
generation.

• bilingual transfer rules.



Both sets are specified in (Rayner et al.,
2000) using a unification grammars notation
built on top of Prolog syntax (based on Def-
inite Clause Grammars with features).

Both GF and CLE describe their gram-
mars declaratively. Record fields in the GF
type description roughly correspond to fea-
tures in the CLE. Linearization (interlingua)
rules in GF map to monolingual unification
rules in CLE. However, no part of the GF is
similar to the transfer rules set (more than
one thousand rules for each language pair),
since GF is essentially an interlingua system,
although transfer components and statisti-
cal methods can be introduced.

The syntax coverage of the GF resource
grammars is comparable with that of the
CLE grammars (about one hundred rules
per language in both cases), although, the
same phenomena are not treated in the same
way. For example, verb phrase discontinu-
ous constituents are handled by combining
the record fields in GF (in a manner simi-
lar to the one used in exp-rule in section 4),
while there is a special set of ”movement”
rules responsible for word order in the CLE.
By having a structure inside a verb phrase,
GF avoids introducing special rules for ev-
ery word order, so the rules for forming verb
phrases do not care about the word order in
the final sentence. It is only on the very top
sentence level, where the word order prob-
lem arises and is resolved by using the dis-
continuous constituents of a verb phrase.

Morphological rules in GF use tables
while the corresponding CLE rules use fea-
tures. In CLE we need to apply rules to the
basic word form in order to get other forms.
In GF the whole inflection pattern of a word
(according to several parameters) is put in
one table, see Fig 9. Therefore, we can just
select a form from the table by specifying all
the parameters at once, for example, to get
the string painkillers’, we use the expression:

PainKiller.s ! Pl ! Gen

where PainKiller is the lexicon entry, the
dot-operation gets access to the record field
containing inflection table strings (.s), the
exclamation-sign-operation (!) selects the
corresponding form (plural, genitive) from

Figure 9: The GF IDE dialog window for adding
lexicon entries. As indicated by the window cap-
tion, the inflection table has been generated from
the stem string painkiller by using the nReg

(Regular noun) inflection pattern. We can see
that all declension forms (by number: Sg, Pl

and case: Nom,Gen) are kept together in one ta-
ble. The inherent parameter Gender is also kept
as a record field in the noun category.

the table. Several independent rules are
needed to express a similar pattern in CLE,
since one rule can only take care of one pa-
rameter at a time. A possible explanation
for such differences in lexicon construction is
that CLE is more parsing-oriented, so keep-
ing all the forms in one entity is not cru-
cial, while GF is more generation-oriented
and storing all the forms together is more
convenient during generation, especially for
languages with rich inflectional systems.

Thus, the differences are partly due to
design decisions, partly hereditary to for-
malisms’ expressive means. However, the
general structure of the GF resource library
and the CLE monolingual rule set match a
lot, which is only natural, since they both re-
flect the structure of the modelled language.

5.3 Multilingual Authoring

The GF syntax editor from section 3 orig-
inates from proof editors like Alf (Magnus-
son & Nordström, 1994) used for interactive
theorem proving and pretty-printing of the
proofs. Constructing a proof in a proof edi-
tor corresponds to constructing an abstract



syntax tree in GF. The concrete part is, how-
ever, missing from the proof editors, since
the proofs are usually expressed in a sym-
bolic language of mathematics.

Menu-driven multilingual authoring pro-
cedure is similar to the WYSIWYM tool
(Power, Scott, & Evans, 1998), where Multi-
lingual Natural Language Generation from a
semantic knowledge base expressed in a for-
mal language (non-linguistic source) is op-
posed to MT (linguistic source). However,
there are two important differences. First,
GF grammars are not hard-wired and can
be extended and changed. This makes GF
more generic compared to WYSIWYM. Sec-
ond, GF grammar is bidirectional, so for ev-
ery grammar not only the generator is pro-
duced, but also a parser. Thus, the author
is allowed to type his input provided that it
conforms to the grammar, which is useful for
multilingual authoring applications because
typing can speed up tedious menu editing.
GF syntax editor is also capable of handling
ambiguous input.

The language-independent ontology (do-
main model, terminology) in the WYSI-
WYM corresponds to abstract syntax in
GF. Respectively, building a knowledge dia-
gram in the WYSIWYM corresponds to the
construction of an abstract syntax tree in
GF. In both systems a feedback text, gen-
erated from the current object in several
languages (English, French and Italian for
WYSIWYM) is shown to the user while edit-
ing.

Even the architecture of the WYSISYM
implementations DRAFTER-II is similar to
GF in a way that the GUI part is separated
from the processing engine. In WYSIWYM,
Prolog is used for both ontology descrip-
tion and generation while GUI is written in
CLIM (Common Lisp Interface Manager).
In GF, the computational core is written in
a functional programming language Haskell,
while GUI is a Java program.

GF was one of the sources of inspira-
tion for an XML-based multilingual doc-
ument authoring application for pharma-
ceutical domain developed at Xerox Re-
search Center Europe (XRCE) (Dymetman,
Lux, & Ranta, 2000). Its grammar for-
malism called Interaction Grammars (IG)

also has a separation between the language-
independent interlingua (abstract syntax in
GF) and parallel realization grammars (con-
crete syntax in GF) for different languages
(English and French). As GF the IG also
uses the notions of typing and dependent
types and is suitable for both parsing and
generation. But unlike GF the IG comes
from the logic programming tradition. Like
CLE grammars (see subsection 5.2) it is
based on the Definite Clause Grammars –
a unification-based extension of context-free
grammars, which has a build-in implemen-
tation in Prolog.

6 Conclusion

GF is an open-source platform for building
rule-based MT applications of interlingua
type. It has two-level organization: abstract
syntax for semantic definitions (interlingua)
projected onto the concrete syntaxes in ev-
ery supported language. The division be-
tween abstract and concrete syntax allows
grammar writers to focus on the semantic
level, abstracting from the structural differ-
ences between languages.

The division between general-purpose re-
source grammars and domain-specific appli-
cation grammars allows for mapping inter-
lingua into surface syntactic representations
without descending to low-level language-
specific linguistic details. The mapping can
be even performed semi-automatically using
example-based menu-driven grammar devel-
opment interface (GF IDE).

Designed for generation rather than pars-
ing, GF works best for well-formalized sub-
language domains like software specifica-
tions (Burke & Johannisson, 2005), mathe-
matical language (Caprotti, 2006) or trans-
port networks (Bringert et al., 2005). The
end-user applications so far comprise mul-
tilingual authoring tools (Hähnle, Johan-
nisson, & Ranta, 2002; Caprotti, 2006)
and multimodal dialog systems (Cooper &
Ranta, 2004; Bringert et al., 2005). The GF
language processor including several gram-
mar engineering tools is available at GF’s
homepage (Ranta, 2006).



References

Bringert, B., Cooper, R., Ljunglöf, P.,
& Ranta, A. (2005). Multimodal Dia-
logue System Grammars. In DIALOR’05,
Ninth Workshop on the Semantics and
Pragmatics of Dialogue, Nancy, France.

Burke, D., & Johannisson, K. (2005).
Translating Formal Software Specifica-
tions to Natural Language / A Grammar-
Based Approach. In J. B. P. Blace,
E. Stabler & R. Moot (Eds.), Logi-
cal Aspects of Computational Linguistics
(LACL 2005) (Vol. 3402, pp. 51–66).
Springer.

Butt, M., King, T. H., no, M.-E. N., &
Segond, F. (Eds.). (1999). A grammar
writer’s cookbook. Stanford: CSLI Publi-
cations.

Caprotti, O. (2006). WebALT! De-
liver Mathematics Everywhere.
In SITE 2006, Orlando, USA.
(webalt.math.helsinki.fi/content/
e16/e301/e512/PosterDemoWebALT.pdf)

Cooper, R., & Ranta, A. (2004). Dialogue
systems as proof editors. The Jornal of
Logic, Language and Information.

Copestake, A., & Flickinger, D. (2000).
An open-source grammar development
environment and broad-coverage english
grammar using hpsg. In Second confer-
ence on Language Resources and Evalua-
tion (LREC-2000), Athens, Greece.

Crouch, D., Dalrymple, M., Kaplan, R.,
King, T., Maxwell, J., & Newman,
P. (2005). XLE documentation. (URL:
www2.parc.com/istl/groups/nltt/xle)

Dymetman, M., Lux, V., & Ranta, A.
(2000). XML and multilingual document
authoring: Convergent trends. In COL-
ING, Saarbrücken, Germany (pp. 243–
249).

Hähnle, R., Johannisson, K., & Ranta,
A. (2002). An authoring tool for in-
formal and formal requirements specifi-
cations. In R.-D. Kutsche & H. Weber
(Eds.), Fundamental Approaches to Soft-
ware Engineering (Vol. 2306, pp. 233–
248). Springer.

Jurafsky, D., & Martin, J. (2000). Speech

and language processing. Prentice Hall.

Khegai, J. (2005). GF IDE for GF 2.1.
www.cs.chalmers.se/~aarne/GF2.0/

GF-Doc/GF_IDE_manual/index.htm.

Khegai, J., Nordström, B., & Ranta, A.
(2003). Multilingual syntax editing in
GF. In A. Gelbukh (Ed.), CICLing-
2003, Mexico City, Mexico (pp. 453–464).
Springer.

Lindström, J. (1995). Summary on redupli-
cation. LINGUIST List: Vol-6-52.

Ljunglöf, P. (2004). Expressiv-
ity and Complexity of the Gram-
matical Framework. (URL:
www.cs.chalmers.se/~peb/pubs/p04-

PhD-thesis.pdf)

Magnusson, L., & Nordström, B. (1994).
The ALF proof editor and its proof en-
gine. In Types for Proofs and Programs
(pp. 213–237). Springer.

Pollard, C., & Sag, I. (1994). Head-Driven
Phrase Structure Grammar. University of
Chicago Press.

Power, R., Scott, D., & Evans, R. (1998).
Generation as a solution to its own prob-
lem. In Inlg’98. Niagara-on-the-Lake,
Canada.

Ranta, A. (2004). Grammatical Frame-
work: A Type-theoretical Grammar For-
malism. The Journal of Functional Pro-
gramming, 14 (2), 145–189.

Ranta, A. (2006). GF Homepage.
(www.cs.chalmers.se/~aarne/GF/)

Ranta, A. (to appear, 2005). Modular
Grammar Engineering in GF. Re-
search in Language and Computation.
(URL: www.cs.chalmers.se/~aarne/

articles/ar-multieng.pdf)

Rayner, M., Carter, D., Bouillon, P., Di-
galakis, V., & Wirén, M. (2000). The
spoken language translator. Cambridge
University Press.


