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Abstract

This paper presents an extension for
a bilingual n-gram statistical machine
translation (SMT) system based on al-
lowing translation units with gaps. Our
gappy translation units can be seen as
a first step towards introducing hierar-
chical units similar to those employed
in hierarchical MT systems. Our goal
is double. On the one hand we aim
at capturing the benefits of the higher
generalization power shown by hierar-
chical systems. On the other hand, we
want to avoid the computational bur-
den of decoding based on parsing tech-
niques, which among other drawbacks,
make difficult the introduction of the
required target language model costs.

Our experiments show slight but con-
sistent improvements for Chinese-to-
English machine translation. Accu-
racy results are competitive with those
achieved by a state-of-the-art phrase-
based system.

1 Introduction

Work in SMT has evolved from the traditional
word-based (Brown et al., 1993) to the cur-
rent phrase-based (Och et al., 1999; Zens et
al., 2002; Koehn et al., 2003) and hierarchical-
based (Melamed, 2004; Chiang, 2007) trans-
lation models. Phrase-based and hierarchical
systems are also characterized by the underly-
ing formal device employed to produce transla-
tions (Knight, 2008): finite-state transducers
(FST) on the one hand, and tree transducers
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(TT) on the other hand, specified respectively
by rational and context-free grammars, thus
implying clear differences in generative power.

A thorough comparison between phrase-
based and hierarchical MT can be read
in (Zollmann et al., 2008), concluding
that hierarchical models slightly outperform
phrase-based models under “sufficiently non-
monotonic language pairs”. One of the reasons
for the gap in performance seems to be the abil-
ity to generalize using non-terminal categories
beyond the strictly lexicalized knowledge rep-
resented in phrase-based models.

An illustrative example is given below. It
consist of the translation from English to
French of negative verb phrases, which yields
the alignment of don’t X ; ne X pas, where X
could be replaced by almost any finite verb. In
this example, the English token don’t is trans-
lated into the French non-contiguous words ne
and pas 1.

The right translation can only be achieved
under phrase-based systems, if X (say want)
has been seen in training next to don’t, yielding
the translation unit:

don′t want : ne veux pas

In contrast, under hierarchical systems, it
is possible to obtain the right generalization,
decomposing the previous pattern as:

X → don′t Y : ne Y pas

Y → want : veux
1This example is only used for illustrative purposes.
The contracted form don’t is not a real issue as most
tokenizers split the form as do not, thus solving the
alignment problem.
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This ability to capture better generalization
comes at a double price: translation as pars-
ing is typically cubic with respect to the source
sentence length; furthermore, in this formal-
ism, target constituent are no longer produced
monotonically from left-to-right, thus render-
ing the application of the language model score
difficult (Chiang, 2007).

This example also suggests that hierarchi-
cal rules tend to be less sparse, given that the
holistic unit in the phrase-based (PB) model is
divided into two smaller, more reusable, rules.
Notice that, in this specific case, the rich mor-
phology of French verbs increases the sparse-
ness problem of phrase-based translation units.
Finally, by using discontinuous patterns, hier-
archical translation models can capture large
span (bilingual) dependencies.

Other than modeling discontinuous con-
stituents, a major difference between FST- and
CFG-based approaches to translation, has to
do with the size of the search space, or more
precisely with the kind of pruning that takes
place to make the search feasible.

As previously outlined, when considering the
use of translation units with gaps under the
left-to-right decoding approach, the main dif-
ficulty arises motivated by the appearance of
discontinuities in the output side. In this work,
we make use of an input word lattice to natu-
rally avoid this problem, allowing to monoton-
ically compose translation.

Related Work

We follow the work in (Simard et al., 2005),
which, to the best of our knowledge is the first
MT system that within a left-to-right decoding
approach, introduces the idea of phrases with
gaps. A main limitation of their work arised
from the difficulties of left-to-right decoders to
handle gaps in the target side, again because
of the non-monotonic generation of the target.
Such gaps are to be filled in further steps of
the search, thus, increasing the complexity of
decoding and at the same time that hindering
the use of the target language model.

Such translation units are more naturally
used under systems employing parsing tech-
niques to perform the search (hierarchical
MT). Different kind of hierarchical transla-
tion units have been proposed, which mostly
differ from the level of syntactical informa-

tion they use. We mainly differentiate here
between translation units that are formally
syntax-based, like those appearing in (Chi-
ang, 2007), which employ non-terminal cate-
gories without linguistic motivation, working
as placeholders to be filled by words in further
translation steps; and hierarchical units that
are more linguistically motivated, as in (Zoll-
mann and Venugopal, 2006).

More recently, (Watanabe et al., 2006)
presents a hierarchical system in which the tar-
get sentence is generated in left-to-right order,
thus enabling a straightforward integration of
the n-gram language models during search.
The authors employ a top-down strategy to
parse the foreign language side, using a syn-
chronous grammar having a GNF2-like struc-
ture. This means that the target side body of
each translation rule takes the form bβ, where b

is a string of terminal symbols and β a (possi-
bly empty) string of non-terminals. This en-
sures that the target is built monotonously.
(Venugopal et al., 2007) present a hierarchical
system that derives translations in two steps,
so as to mitigate the computational impact re-
sulting from the intersection of a probabilis-
tic synchronous CFG and and the n-gram lan-
guage model. Firstly, a CYK-style decoding
considering first-best chart item approxima-
tions is used to generate an hypergraph of tar-
get language derivations. In the second step,
a detailed exploration of the previous hyper-
graph is performed. The language model is
used to drive the second step search process
and to recover from search errors made during
the first step.

Our work differs from theirs crucially in that
our system employs a different set of trans-
lation structures (units), and because our de-
coder follows strictly the FST-based approach.

The remaining of this paper is organized as
follows. In Section 2, we outline the n-gram-
based approach used in the rest of this work.
Sections 3 and 3.2 detail the use of transla-
tion units with gaps in a left-to-right decoding
approach. Translation accuracy results are re-
ported for the Chinese-English language pair
in section 4. Finally, in section 5, we draw
conclusions and outline further work.

2Greibach Normal Form
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2 N-gram-based SMT

The baseline translation system described in
this paper implements a log-linear combina-
tion of several models. In contrast to stan-
dard phrase-based approaches (Koehn et al.,
2003), the translation model is expressed in tu-
ples (instead of phrases), and is estimated as
an N -gram language model over such units. It
actually defines a joint probability between the
language pairs under consideration (Mariño et
al., 2006).

We have reimplemented the decoder de-
scribed in (Crego and Mariño, 2007a), that we
have extended to decode input lattices. At de-
coding time, only those reordering hypotheses
encoded in the word lattice are to be exam-
ined. Reordering hypotheses are introduced
following a set of reordering rules automati-
cally learned from the bi-text corpus word-to-
word alignments. Hence, reordering rules are
applied on top of the source sentences to be
translated.

More formally, given a source sentence, f , in
the form of a linear word automaton, and N

optional reordering rules to be applied on the
given sentence in the form of string transducers
(τi), the resulting lattice containing reordering
hypotheses, f∗, is obtained by the sequential
composition of FSTs, as:

f∗ = τN ◦ τN−1 · · · ◦ · · · τ1 ◦ f

where ◦ denotes the composition operation.
Note that the sequence of FSTs (reordering

rules) is sorted according to the length of the
left-hand side (LHS) of the rule. More specific
rules, having a larger LHS, are applied (com-
posed) first, in order to ensure the recursive
application of the rules. Hence, some paths are
obtained by applying reordering on top of al-
ready reordered paths. Figure 1 illustrates an
example where two reordering rules: abc ; cab

(τ1) and ab ; ba (τ2) are applied on top of the
sentence abcd (s). As it can be seen, the re-
sulting word lattice contains the path of the
original sentence s : abcd, as well as the ad-
ditional paths appeared by the composition of
reordering rules: τ1(s) : cab, τ2(s) : ba and
τ2(τ1(s)) : cba.

Part-of-speech (POS) and syntactic informa-
tion are used to increase the generalization

power of our rules. Hence, instead of raw
words, the LHS of the reordering rules typi-
cally make reference to POS-tags patterns, or
to dependency sub-trees.

For instance, the rule NN JJ ; JJ NN

is defined in terms of POS-tags, and produces
the swap of the sequence noun adjective that is
observed for the pair French-to-English. Addi-
tional details regarding the syntax-based rules
are given in section 3.

a:b

b:a* : *

a:c b:a

c:b* : *

a b c d

b a

c b

a a
b

a b c d

Figure 1: Initial linear automaton (top). Re-
ordering rules in the form of string transducers
(middle) and final word lattice after rule com-
position.

For the experiments reported in this paper,
we consider that all paths in the input lattice
are equally likely, a simplification we may wish
to remove in further research.

3 Translation units with gaps

In this section we give details of the gappy
translation units introduced in this work.

3.1 Split rules and reordering

Some phrase-based systems have been able
to introduce some levels of syntactical infor-
mation. In (Habash, 2007) the author em-
ploys automatically learned syntactic reorder-
ing rules to preprocess the input, aiming at
solving the reordering problem, before passing
the reordered input to a phrase-based decoder
for Arabic-English translation. However, this
kind of systems cannot produce the translation
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needed in our original English-to-French exam-
ple because of the left-to-right decoding ap-
proach used in the underlying system. Transla-
tion is sequentially composed from left to right,
and none of the word orderings of the source
sentence, don’t + want and want + don’t, pro-
duces the desired translation. Instead, they
produce respectively: ne pas + veux and veux
+ ne pas.

We propose a method that allows phrase-
based systems to introduce gappy units similar
to those typically employed in hierarchical sys-
tems, while keeping the left-to-right decoding
approach.

To collect gappy units, we analyze the (sym-
metric) word alignments of the training corpus.
The method basically consists of identifying, in
the source sentence, single tokens translated
into multiple (n > 1) non-contiguous target
tokens. Figure 2 shows an example.

don’t want

ne veux pas

don’t1 want

ne veux pas

don’t2

don’t1 want

ne veux pas

don’t2

split

Figure 2: Original tuple (top left), introduction
of split words (top right) and tuples obtained
after reordering source words (bottom).

In the example, the English token don′t

is translated into a sequence of discontinu-
ous word segments ne ... pas. Once identi-
fied, the original source token is split so as to
match the number of discontinuous segments.
To continue with our example, don′t is split
into don′t1 and don′t2 to match the two dis-
continuous segments ne...pas. Hence, simi-
lar to (Crego and Mariño, 2007b), we aim at
monotonizing the word-to-word alignment, the
main novelty being here the introduction of
split tokens.

As it can be seen in the example, the target
side of translation units remains unchanged,
meaning that we can continue to generate the
target in left-to-right fashion. Word reorder-

ings and split words are introduced in the
source sentence only, motivating the use of a
word lattice. During training, the alignment is
entirely monotonized before extracting tuples,
only keeping those one-to-many and many-to-
one alignments where the tokens on the many
are contiguous; when this is not the case, split-
ting takes place.

Note that when translating the same ex-
ample in the opposite direction, that is from
French to English, the right translation is
achieved without needing to split tokens. In
such a case, the system would proceed by first
reordering source words, obtaining ne pas veux,
and then monotonically translating using the
units: ne pas : don’t and veux : want, yielding
the right translation don’t want.

When decoding test sentences, the word lat-
tice is used to encode the most promising re-
orderings/splits of the input sentence, so as
to reproduce the modifications introduced in
the source sentences of the training corpus (as
shown in figure 2). Thus, we slightly extend
the reordering formalism introduced in 2 to al-
low the insertion of split tokens. Following the
previous example, the new rule consists of:

don′t want ; don′t1 want don′t2

meaning that whenever you find in the input
sentence the word sequence don’t want, the in-
put lattice is extended with the path don′t1

want don′t2, as represented on figure 3.

don’t1

want

don’t2

don’t want ......

Figure 3: Monotonic input graph extended with
a split rule.

So far, the method presented does not pro-
duce gappy units, but standard tuples with
higher monotonization levels. However, with
the addition of split rules, they become very
similar to the units used in hierarchical trans-
lation systems. Note that the resulting ex-
tended input graph (figure 3) contains exactly
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the units extracted by the splitting procedure
(figure 2 bottom).

The fully lexicalized split rules previously in-
troduced would however be useless, failing to
generalize to novel patterns. Therefore, as is
done with “standard” reordering rules, split
rules are defined over patterns of POS tags,
instead words. Of course, the identity of split
word has to be preserved, as it would make
no sense to split, during decoding, words for
which no translation units have been collected
in training. Finally, the split rule induced for
the previous example is:

don′t V ; don′t1 V don′t2

where V is a POS tag standing for a verb.
This strategy has two additional benefits.

First, it yields smaller translation units, whose
probability are better estimated. Going back
to the example of figure 2, the original trans-
lation unit (left) is larger than the new one
(right), and more likely to cause estimation
problems. Second, it allows to better use the
information available in the training corpus.
To see why, consider again our running exam-
ple. Leaving the original unit undecomposed
prevents to extract the match between want
and veux, which is correctly extracted in the
novel formalism.

In the next section, we detail how the gener-
alization power of split/reordering rules can be
further increased by using dependency parse
trees.

3.2 Syntax aware split rules

Syntactic reordering rules employed in this
work are similar to those detailed in (Crego
and Mariño, 2007b). These rules introduce
reorderings at the level of syntactic nodes.
Hence, long reorderings can be achieved with
short rules, as nodes may dominate arbitrary
long sequences of words. Thus, the LHS of
the rules is referred to the parse nodes of the
original source sentences, while the RHS spec-
ifies the permutation that is introduced. Fig-
ure 4 shows the parse tree and POS tags of the
Chinese sentence: Aozhou shi yu Beihan you
bangjiao de shaoshu guojia zhiyi, an example
borrowed from (Chiang, 2007).

Figure 5 illustrates how, by applying three
rules to the previous Chinese example, we can

get the reorderings/split required to derive the
correct English translation: Australia is one of
the few countries that have diplomatic relations
with North Korea. As previously stated, rules
(FSTs) are sorted before applied (composed).
Note that in the case of syntactic rules, the
length of a rule is based on the number of words
appearing in the LHS of the rule.

Figure 4: Dependency parse tree and POS tags
of the Chinese sentence: ’Aozhou shi yu Bei-
han you bangjiao de shaoshu guojia zhiyi’.

Figure 5: Chinese sentence rewritten by means
of reordering/split rules.

Considering the first rule applied in figure 5,
the tree in its LHS contains four nodes (eight
words), which cover the following sequences
of Chinese words: yu Beihan you bangjiao de,
shaoshu, guojia and zhiyi. Words matched by
the rules are displayed above the rules using
bold characters.

Note that equivalently to POS rules, words
to be split in syntactical rules appear fully lex-
icalized. The second rule in figure 5 splits the
word de. Thus, it appears fully lexicalized in
the LHS of the rule.

Finally, the last rule is formed of POS tags.
It reorders the words yu Beihan you bangjiao
into you bangjiao yu Beihan. The monotonic
translation of the resulting reordered path
yields the correct English translation.
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Syntactical reordering/split rules are auto-
matically extracted from the training bi-texts,
making use of the word-to-word alignments
and the source dependency trees.

To conclude this section, notice that gappy
units introduced in this work are only those
that are motivated by word structures where
words of the source side are aligned to multiple
non-contiguous words of the target side. As a
result, we approximate the behavior of a hier-
archical system employing only a very limited
set of rule patterns.

4 Experiments

In this section, we give details regarding the
evaluation framework and report on the ex-
perimental work carried out to evaluate the
improvements.

4.1 Evaluation Framework

We have used the BTEC (Takezawa et al.,
2002) corpus focusing on translations from
Chinese to English. It consists of the data
made available for the IWSLT 2007 evaluation
campaign. Some statistics regarding the cor-
pora used, namely number of sentences, words,
vocabulary, average sentence length and num-
ber of references per language are shown in ta-
ble 1.

Sent Words Voc Avg Refs

Train

en 377k 11k 9.5
zh

40k
354k 9,6k 8.9

1

Tune / Test (zh)

tune 506 3,564 871 7 16

tst2 500 3,608 921 7.22 16
tst3 506 3,889 916 7.69 16
tst4 489 5,476 1,094 11.2 7
tst5 500 5,846 1,292 11.69 7
tst6 489 3,325 864 6.8 6

Table 1: BTEC Corpus (Chinese-to-English).

Chinese words were segmented by means
of the ICTCLAS (Zhang et al., 2003) tag-
ger/segmenter. Word alignments were com-
puted for the training data in the original word
order, using GIZA++3. The grow-final-diag-
and heuristic is used to refine the alignments

3www.fjoch.com/GIZA++

before the translation units extraction. The
Chinese side was parsed using the freely avail-
able Stanford Chinese Dependency Parser4.
We have used the SRILM toolkit5 to estimate
the N -gram language models, using respec-
tively 4 and 5 as n-gram orders for the transla-
tion LM and target LM (Kneser-Ney smooth-
ing and interpolation of lower and higher n-
grams are always used).

For tuning, optimal log-linear coefficients
were found using an in-house implementation
of the downhill SIMPLEX method. The BLEU
score was used as the objective function.

4.2 Results

Accuracy results are reported for different con-
figurations in table 2. System configurations
consist of: base for which translation units do
not introduce the ability to split source words
into multiple tokens, and +split where the
previous technique is used. The POS config-
uration employs POS tags in the source side
of the reordering rules while +SYN employs
both POS tag and syntactic rules.

base +splitSet
POS +SYN POS +SYN

Moses

tst2 47.25 48.15 47.42 48.39 48.14
tst3 55.82 56.88 56.44 57.17 55.95
tst4 15.72 16.82 16.48 17.08 18.06

tst5 15.89 16.32 16.34 16.89 15.91
tst6 29.56 30.81 29.81 31.67 31.76

Table 2: Accuracy results measured using the
BLEU score.

The last column shows accuracy results ob-
tained by Moses (Koehn et al., 2007), a state-
of-the-art phrase-based SMT system.

It is worth saying that the Moses system
was built using the same data sets and align-
ments that were used for our system (Moses
performs lexicalized reordering with a maxi-
mum reordering distance of 8 words). In this
case, we run a different optimization for each of
the system configurations. BLEU confidence
intervals range depending on the test set ap-
proximately from ±2.0 to ±3.0 points BLEU.

As it can be seen, the system built using
the +split technique obtains higher accuracy
results than the baseline one (base), in all test

4nlp.stanford.edu/downloads/lex-parser.shtml
5www.speech.sri.com/projects/srilm
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sets and for both reordering rule configurations
(POS and +SYN).

Even if results show a clear tendency to
highly score the +split system, differences in
all BLEU results fall within the confidence
margin. However, when inspecting transla-
tions obtained by the system +split +SYN,
we find several examples, such as the one
shown in figure 6, where the decoder succeeds
to apply the proposed gappy units.

Figure 6: Sequence of translation units output
by the decoder.

As it can be seen, motivated by a gappy
unit, the first Chinese word is translated in
two distant steps, yielding how much and cost
respectively. The gap between both fragments
is correctly filled by the English words does it
as translation of the second and third Chinese
words.

Considering the base systems, the same
translation could only be produced if the first
three Chinese words had been seen in training
aligned to how much does it. In other words,
larger units are needed to account for the cor-
rect translation.

The increment in the total number of trans-
lation units extracted when moving from the
base to the +split configurations (from 267k
to 285k), as well as the increment in units
used to translate the test sets (from 18, 345 to
19, 150) supports the fact that higher mono-
tonizations levels of the training corpus have
been achieved. All together, the resulting vo-
cabulary of translation units, including all the
new split units (13, 706), contains 63, 036 units
to be compared with the 56, 046 units in the
baseline system.

Considering search efficiency, decoding time
was increased about 1.5 times when build-
ing the system using the split technique, for
both reordering rule configurations (POS and
+SYN). Using gappy translation units does
not increase the complexity of the search.

5 Conclusions and Further Work

In this paper, we have presented an exten-
sion to a bilingual n-gram translation system
in which we allow translation units with gaps.
The use of word lattices allowed us to introduce
the concept of gappy translation units into an
n-gram-based system, as an attempt to bridge
the gap between phrase-based and hierarchi-
cal systems. Our decoder additionally benefits
from the simplicity of left-to-right decoders, in
contrast to the cost in complexity incurred by
performing decoding as parsing. This have
been achieved by means of standard tuples
tightly coupled with reordering/split rules, in-
troduced into the overall search through an in-
put word lattice.

Our small but consistent accuracy improve-
ments can mainly be attributed to the fact
that a higher level of monotonization of
the training corpus allows the extraction of
smaller/more reusable units. As explained
above, the split/reordering rules used in this
study are costless, meaning that all reorder-
ings are equally likely. As a consequence, the
reward of using a split rule only comes from
the translation models’ score, which are com-
puted separately for each instance of a split
token. We believe that devising an appropri-
ate weighting scheme for these split/reordering
rules is needed to take full advantage of the ex-
tra expressiveness allowed by gappy units.

With the objective that our translation
model highly benefits from the advantages of
additional context, each gappy translation unit
must be entirely weighted with a single proba-
bility. Instead, in our current implementation,
each gappy unit is multiply weighted with par-
tial probabilities. An open issue to definitely
tackle in further research.

Additionally, we believe that the slight im-
provements achieved can be increased if ad-
ditional gappy units are acquired from bilin-
gual structures other than the one-to-many
employed in the present experiments. We plan
to extend the framework proposed in this pa-
per with more complex gappy units, simil-
iar to those used by hierarchical MT systems,
thereby, taking full advantage of additional
translation context provided by these units.
We also plan to further investigate other as-
pects of hierarchical units, such as different

72



levels of lexicalization in both the source and
the target side.
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