
Proceedings of the 13th Annual Conference of the EAMT, pages 20–27,
Barcelona, May 2009

TS3: an Improved Version of the Bilingual Concordancer TransSearch

Stéphane Huet, Julien Bourdaillet and Philippe Langlais
DIRO - Université de Montréal

C.P. 6128, succursale Centre-ville
H3C 3J7, Montréal, Québec, Canada

{huetstep,bourdaij,felipe}@iro.umontreal.ca

Abstract

Computer Assisted Translation tools re-
main the preferred solution of human
translators when publication quality is
of concern. In this paper, we present
our ongoing efforts conducted within
TS3, a project which aims at improv-
ing the commercial bilingual concordancer
TransSearch. The core technology of
this Web-based service mainly relies on
sentence-level alignment. In this study, we
discuss and evaluate the embedding of sta-
tistical word-level alignment.

1 Introduction

Although the last decade witnessed an impressive
amount of effort devoted to improving the current
state of Machine Translation (MT), professional
translators still prefer Computer Assisted Transla-
tion (CAT) tools, among which translation mem-
ory (TM) systems and bilingual concordancers.
Both tools exploit a TM composed of a bitext: a
set of pairs of units (typically sentences) that are
in translation relation. Whereas a TM system is
a translation device, a bilingual concordancer is
conceptually simpler, since its main purpose is to
retrieve from a bitext, the pairs of units that con-
tain a query (typically a phrase) that a user man-
ually submits. It is then left to the user to locate
the relevant material in the retrieved target units.
As simple as it may appear, a bilingual concor-
dancer is nevertheless a very popular CAT tool. In
(Macklovitch et al., 2008), the authors report that
TransSearch,1 the commercial web-based con-
cordancer we focus on in this study, received an av-

c© 2009 European Association for Machine Translation.
1www.tsrali.com

erage of 177 000 queries a month over a one-year
period (2006–2007).

Figure 1 provides a screenshot of a session with
the current concordancer TransSearch. A user
submitted the multi-word query in keeping
with to which the system responded with a web-
page showing the first 25 pairs of sentences in the
TM that contain an occurrence of the query. As
can be observed, nothing in the target material re-
trieved is emphasized, which forces the user to
read the examples retrieved until an appropriate
translation was found.

Figure 1: Screenshot of TransSearch. Two of
the first 25 matches returned to the user for the
query in keeping with.

The main objective of the TS3 project is to auto-
matically identify (highlight) in the retrieved mate-
rial the different translations of a user query. Iden-
tifying translations offers interesting prospects for
user-efficient interactions. Although the definitive
look-and-feel of the new prototype is not settled
yet, Figure 2 shows an interface where the user can
consult the most likely translations automatically

20

identified. Of course, she can still consult the pairs
of sentences containing the query, but can as well
click a given translation to see related matches.

Figure 2: A hypothetical interface which exploits
translation spotting.

The reminder of this paper is organized as fol-
lows. We first describe in Section 2 the translation
spotting technique we implemented. Since trans-
lation spotting is a notoriously difficult problem,
we discuss two novel issues that we think are es-
sential to the success of a concordancer such as
TransSearch: the identification of erroneous
alignments (Section 3) and the grouping of trans-
lation variants (Section 4). We present the data we
used in Section 5 and report on experiments in Sec-
tion 6. We conclude our discussion and propose
ongoing avenues in Section 7.

2 Transpotting

Translation spotting, or transpotting, is the task of
identifying the word-tokens in a target-language
(TL) translation that correspond to the word-
tokens of a query in a source language (SL). It
is therefore an essential part of the TS3 project.
We call transpot the target word-tokens automat-
ically associated with a query in a given pair
of units (sentences). For instance in Figure 2,
conformément à and va dans le sens
de are two of the six transpots displayed to the
user for the query in keeping with.

2.1 Word Alignment
As mentioned in (Simard, 2003), translation spot-
ting can be seen as a by-product of word-level

alignment. Since the seminal work of (Brown et
al., 1993), statistical word-based models are still
the core technology of today’s Statistical MT. This
is therefore the alignment technique we consider
in this study.

Formally, given an SL sentence S = s1...sn and
a TL sentence T = t1...tm in translation relation,
an IBM-style alignment a = a1...am connects
each target token to a source one (aj ∈ {1, ..., n})
or to the so-called NULL token which accounts for
untranslated target tokens, and which is arbitrarily
set to the source position 0 (aj = 0). This de-
fines a word-level alignment space between S and
T whose size is in O(mn+1).

Several word-alignment models are introduced
and discussed in (Brown et al., 1993). They differ
by the expression of the joint probability of a target
sentence and its alignment, given the source sen-
tence. For computational reasons, we focus here
on the simplest form, which corresponds to IBM
models 1&2:

p(tm1 , am
1 |sn

1) =
m∏

j=1

∑
i∈[0,n]

p(tj |si) × p(i|j, m, n)

where the first term inside the summation is the
so-called transfer distribution and the second one
is the alignment distribution.

Given this decomposition of the joint probabil-
ity, it is straightforward to compute the so-called
Viterbi alignment, that is, the one maximizing
the quantity p(am

1 |tm1 , sn
1). This approach often

produces discontiguous alignments, which poses
problems in practice. Furthermore, most of the
queries in our logfile are contiguous ones, there-
fore we expect their translations to be contiguous
as well.

2.2 Transpotting Algorithm

In order to enforce contiguous transpots, we im-
plemented a variant of the transpotting algorithm
initially proposed by Simard (2003), and which
shares close similarities with phrase extraction
technique described in (Venugopal et al., 2003).
The idea is to compute for each pair 〈j1, j2〉 ∈
[1,m] × [1,m], two Viterbi alignments: one be-
tween the phrase tj2j1 and the query si2

i1
, and one

between the remaining material in the sentences
s̄i2
i1

≡ si1−1
1 sn

i2+1 and t̄j2j1 ≡ tj1−1
1 tmj2+1. This

method, which finds the translation of the query

21

according to:

t̂ĵ2
ĵ1

= argmax
(j1,j2)

max

a
j2
j1

p(aj2
j1
|si2

i1
, tj2j1)

×
max

ā
j2
j1

p(āj2
j1
|s̄i2

i1
, t̄j2j1)

,

has a complexity in O(nm3). It ranked first among
several other alternatives we investigated (Bour-
daillet et al., 2009).

2.3 The Need for Post-processing
Frequent queries in the TM receive numerous
translations by the previously described transpot-
ting process. Figure 3 illustrates the many trans-
pots returned by our transpotting algorithm for the
query in keeping with. As can be observed,
some transpots (those marked by a star) are clearly
wrong (e.g. à), many others (in italics) are only
partially correct (e.g. conformément). Also, it
appears that many transpots are indeed very simi-
lar (e.g. conforme à and conformes à).

conforme à (45) conformément à (29)

à? (21) dans? (20)

. . .
conforme au (12) conformes à (11)

avec? (9) conformément (9)

. . .
correspond à (1) respectent (1)

d’actualité? (1) gestes en? (1)

Figure 3: Subset of the 273 different transpots re-
trieved for the query in keeping with. Their
frequency is shown in parentheses.

Since in TS3 we want to offer the user a list of
retrieved translations for a query, strategies must
be devised for bypassing alignment errors and de-
livering as many as possible translation variants
to the user. We investigated two avenues in this
study: detecting erroneous transpots (Section 3)
and merging together variants of the same canoni-
cal translation (Section 4).

3 Refining Transpotting

We investigated the learning of classifiers trained
to distinguish good transpots from bad ones.
We tried several popular classifiers:2 a voted-
perceptron algorithm (Freund and Schapire, 1999)
2We used Weka in our experiments www.cs.waikato.
ac.nz/ml/weka.

which has been reported to work well in a number
of NLP tasks (Collins, 2002); a support vector ma-
chine (SVM), commonly used in supervised learn-
ing (Cristianini and Shawe-Taylor, 2000); a deci-
sion stump, a very simple one-level decision tree;
AdaBoost using a decision stump as weak classifier
(Freund and Schapire, 1996); and a majority vot-
ing classifier between a voted-perceptron, an SVM
and AdaBoost (Kittler et al., 1998).

Each classifier was trained in a supervised way
thanks to an annotated corpus we devised (see Sec-
tion 5). We computed three groups of features
for each example, that is, each query/transpot pair
(q, t). The first group is made up of features related
to the size (counted in words) of q and t, with the
intuition that they should be related. The second
group gathers various alignment scores computed
with word-alignment models (min and max like-
lihood values, etc.). The last group gathers clues
that are more linguistically flavored, among which
the ratio of grammatical words in q and t, or the
number of prepositions and articles. In total, each
example is represented by at most 40 numerical
features.

4 Merging Variants

Once erroneous transpots have been filtered out,
there usually remain many translations for a given
query. For instance, the best classifier we trained
identified 91 bad transpots among the 273 candi-
dat ones. Among the remaining transpots, some
of them are very similar and are therefore redun-
dant for the user (see Figure 3). This phenomenon
is particularly acute for the French language with
its numerous conjugated forms for verbs. Another
problem that often shows up is that many transpots
differ only by punctuation marks or by a few gram-
matical words.

Of the 182 transpots surviving the filter, we
estimate that no less than 37 interesting canoni-
cal translations exist for the query in keeping
with. Therefore, it is important from the user per-
spective to identify them. We investigated ways to
merge together close variants. This raises several
difficulties. First, the transpots must be compared
together, which represents both a tricky and time
consuming process. Second, we need to identify
groups of similar variants. We describe our solu-
tions to these problems in the sequel.

22

4.1 Word-Based Edit Distance

A word-level specific edit distance was empirically
developed to meet the constraints of our applica-
tion. Different substitution, deletion and insertion
costs are set according to the grammatical classes
or possible inflections of the words; it is therefore
language dependent. We used an in-house lexicon
that lists, for both French and English, the lem-
mas of each inflected form and its possible parts-
of-speech.

A minimal substitution cost was empirically
given between two inflected forms of the same
lemma. A score has been engineered which in-
creasingly penalizes in that order edit operations
involving punctuation marks, articles, grammatical
words (prepositions, conjunctions and pronouns),
auxiliary verbs and lexical words (verbs, nouns,
adjectives and adverbs).

4.2 Neighbor-Joining Algorithm

Comparing the transpots pairwise with the dis-
tance we defined is an instance of multiple se-
quence alignment, a well studied problem in bioin-
formatics (Chenna et al., 2003). We adopted
the approach of progressive alignment construc-
tion. This method first computes the word-
based edit-distance between every pair of trans-
pots and stores the results in an edit-matrix. Sec-
ond, a greedy bottom-up clustering method called
neighbor-joining (Saiou and Nei, 1987) is con-
ducted; it builds a tree by joining together either
two transpots, that is two leaves of the tree, or a
transpot and a node in the tree already aggregating
several translations. At each step, the most simi-
lar pair is merged and added to the tree, until no
transpot remains unaligned.

Finally, the neighbor-joining algorithm returns a
tree whose leaves are transpots. Closest leaves in
this tree correspond to the most similar variants.
Therefore, clusters of variants can be formed by
traversing the tree in a post-order manner. The
transpots associated with two neighboring leaves
and which differ only by grammatical words or by
inflectional variants are considered as sufficiently
similar to be merged into a single cluster. This
process is repeated until all the leaves have been
compared with their nearest neighbor and no more
similar variants remain.

Figure 4 illustrates this process. The two neigh-
bor transpots conforme à and conformes à
are first grouped together, so are conforme au

and conforme aux. Then, those two groups
are merged into a single cluster. The transpot
correspondant à being too different is not
aggregated into this cluster.

Figure 4: Merging of close transpots.

4.3 Naive Joining Algorithm

We also implemented a conceptually simpler
merging algorithm which relies on the frequencies
of transpots. The algorithm compares the most fre-
quent variant with all the other ones. Those that are
close enough (according to our distance) are aggre-
gated into a cluster. This process is iteratively ap-
plied on the remaining variants until no more clus-
ter can be formed.

5 Corpora

5.1 Translation Memory

The largest collections in TransSearch come
from the Canadian Hansards, that is, parallel texts
in English and French drawn from official records
of the proceedings of the Canadian Parliament. For
our experiments, we indexed with Lucene3 a TM
comprising 3.3 million pairs of French-English
sentences aligned at the sentence-level by an in-
house aligner. This was the maximum amount
of material we could train a statistical word-
alignment model on, running the giza++ (Och
and Ney, 2003) toolkit on a computer equipped
with 16 gigabytes of memory.

5.2 Automatic Reference Corpus

We developed a reference corpus (REF) by inter-
secting our TM with a bilingual lexicon, and some
user queries. We used an in-house bilingual-phrase
lexicon we collected over various projects, which
includes 59 057 English phrases with an average of
1.4 French translations each. We extracted from
the logs of TransSearch the 5 000 most fre-
quent queries submitted by users to the system.
4 526 of those queries actually occurred in our TM,
and of these, 2 130 had a sanctioned translation in
our bilingual lexicon. We collected up to 5 000
pairs of sentences for each of those 2 130 queries,
3http://lucene.apache.org

23

leading to a set of 1 102 357 pairs of sentences,
with an average of 517 pairs of sentences per
query. For each of the 2 130 queries, the bilingual
lexicon enabled us to extract a mean of 3.5 differ-
ent transpots (and a maximum of 37). This results
in a set of 7 472 different pairs of query/translation.

5.3 Human Reference
In order to train the classifiers described in Sec-
tion 3, four human annotators were asked to iden-
tify bad transpots among those proposed by our
transpotting algorithm. We decided to annotate the
query/transpot pairs without their contexts of oc-
currence, which allows a relatively fast annotation
process,4 but leaves some cases difficult to anno-
tate. For instance, in our running example, a trans-
pot such as conforme à is straightforward to
annotate, but others such as dans le sens de
or tenir compte de gave annotators a harder
time since both can be valid translations in some
contexts. We ended up with a set of 531 queries
that have an average of 22.9 transpots each, for
a total of 12 144 annotated examples. We com-
puted the inter-annotator agreement and observed
a 0.76 kappa score, which indicates a high degree
of agreement.

6 Experiments

6.1 Transpotting
For each of the 1 102 357 pairs of sentences of REF,
we evaluated the ability of the transpotting algo-
rithm described in Section 2.2 to find the reference
translation t̂ for the query q, according to recall and
precision ratios computed as follows:

recall = |t ∩ t̂|/|t̂| precision = |t ∩ t̂|/|t|
F-measure = 2 × |t ∩ t̂|/(|t| + |t̂|)

where t is the transpot identified by the algo-
rithm, and the intersection operation is to be un-
derstood as the portion of words shared by t and
t̂. A point of detail is in order here: since sev-
eral pairs of sentences often contain the same given
query/reference translation pair (q, t̂), we first av-
erage for a given pair the ratios measured for all
the occurrences of that pair in the reference cor-
pus. Then, we average the scores over the set of all
different pairs (q, t̂) in the corpus. This avoids bi-
asing our evaluation metrics toward frequent pairs
in the REF corpus.5

4On the order of 40 seconds per query.
5Without this normalization, results would be increased by a
range of 0.2 to 0.4 points.

prec. rec. F-meas.
transpotting 0.30 0.60 0.38
transpotting

0.37 0.76 0.46
+ voting

Table 1: Transpotting results before and after fil-
tering (REF). See next section for an explanation
of line 2.

Our transpotting algorithm (see line 1 of Ta-
ble 1) achieves a precision of 0.30, and a recall
of 0.60. At a first glance, these figures might seem
rather low. However, recall that our normalization
prevents frequent queries that are often correctly
aligned from being counted several times. Thus,
this reinforces the score measured for infrequent
queries, which in turn tend to be worse aligned.
Also, we observed that very often the reference
translation is a subset of the transpot found, which
lowers precision. This is the case of the example
shown in Figure 5.

Une telle restriction ne s’
inscrit pas dans le sens des
pratiques actuelles.

Figure 5: Transpot (underlined) and reference
translation (in bold) for the query in keeping
with.

6.2 Training Classifiers

As described in Section 3, we trained various clas-
sifiers to identify spurious transpots, representing
an example (a query/transpot pair) by three kinds
of feature sets. All these variants plus a few chal-
lenging baselines are evaluated according to the ra-
tio of Correctly Classified Instances (CCI). Since
in our application we are interested in filtering
out bad transpots, precision, recall and F-measure
rates related to this class are computed as well.

We report in Table 2 the figures we measured
by a 10-fold stratified cross-validation procedure.
To begin with, the simplest baseline we built (line
1) classifies all instances as good. This results in
a useless filter with a CCI ratio of 0.62. A more
sensible baseline —that we engineered after we in-
vestigated the usefulness of different feature sets—
classifies as bad the transpots whose ratio of gram-
matical words is above 0.75. It is associated with
a CCI ratio of 0.78 (line 2).

We started by investigating the voted-perceptron

24

Bad
Classifier Features CCI precision recall F-measure
Baseline: all good 0.62 0.00 0.00 0.00
Baseline: grammatical ratio > 0.75 0.78 0.88 0.49 0.63

Voted-Perceptron (VP)

size 0.73 0.75 0.47 0.58
IBM 0.78 0.69 0.78 0.73
grammatical 0.79 0.88 0.52 0.65
all 0.83 0.81 0.73 0.77

SVM

all

0.83 0.84 0.70 0.76
Decision Stump 0.81 0.77 0.70 0.74
AdaBoost 0.83 0.71 0.83 0.76
Majority-Voting (VP+SVM+AdaBoost) 0.84 0.84 0.71 0.77

Table 2: Performance of different algorithms for identifying bad transpots.

and the contribution of each feature sets on its per-
formance.6 When the voted-perceptron is trained
using only one set of features, the one making use
of the grammatical features obtains the best CCI
ratio of 0.79 and an F-measure of 0.65. Even
if the configuration based on IBM model 2 word
alignment scores obtains a slightly inferior CCI
ratio of 0.78, it has a much higher F-measure of
0.73 and can be considered as the best feature set.
When using all feature sets, the voted-perceptron
clearly surpasses the baseline with a CCI of 0.83
and an F-measure of 0.77. It should be noticed
that while the best baseline has a better precision
than the best voted-perceptron, precision and recall
are more balanced for the latter. Because it is not
clear whether precision or recall should be favored
for the task of bad transpot filtering, optimizing the
F-measure is preferred.

When training the other classifiers using all fea-
ture sets, no significant gain can be observed. Nev-
ertheless the majority-voting classifier obtains the
best CCI ratio of 0.84 and an F-measure of 0.77.
The figures obtained by the decision stump, a one-
level decision tree, are surprisingly high. The rule
used by this classifier considers the minimal word
alignment probability inside a Viterbi alignment
based on an IBM model 2. At the very least, this
confirms the interest of this feature set.

Once the best classifier had been obtained, i.e.
majority-voting, we evaluated the impact of trans-
potting filtering against the REF corpus. Results
are shown in Table 1 (line 2). We observe a signif-
icant gain in F-measure which increases from 0.38
to 0.46. The higher gain is in recall, from 0.60 to
6Similar results concerning the different feature set have been
observed for the other classifiers and are not presented here.

0.76. Referring to the example of Section 6.1, this
means that filtering eliminates too short transpots.
Inspections revealed that short bad transpots, such
as grammatical words, are frequently identified as
bad by the classifier. This demonstrates the interest
of filtering bad transpots.

6.3 Merging Variants

The interest of grouping together similar variants is
clear from a user perspective. However, the gran-
ularity with which we should aggregate variants is
not obvious.7 We studied two approaches. The
first method aims at grouping together transpots
that differ by punctuation marks or that are inflec-
tional variants of the same lemma. It is based on an
edit distance, called D1, which uses the same edit-
costs for grammatical and lexical words. The sec-
ond method groups together variants with looser
constraints. It resorts to an edit distance, named
D2, that associates lower edit-costs with grammat-
ical words than with lexical words.

From the transpots obtained for the 5 000
queries of the REF corpus (and filtered by our best
classifier), this method leads to an average of 69
clusters per query (Table 3, columns 2 and 4),
whereas there are on average 85 unique transpots
per query (Table 3, column 1). The same level
of grouping is observed for the two joining algo-
rithms described in Section 4.3.

As expected, the use of D2 dramatically re-
duces the number of clusters to an average of 45
per query (Table 3, columns 3 and 5). Contrary
to D1, D2 allows the merging process to gather
similar variants such as sur des années and

7This would certainly require tests with real users.

25

baseline
naive joining neighbor-joining
D1 D2 D1 D2

85 69 45 69 45

Table 3: Average number of responses per query.

durant des années. However, it occa-
sionally leads to erroneous groupings such as
tout à fait (fully) and fait tout (do
everything).

In what follows, we measure quantitatively the
improvement from the point of view of the quality
of the first responses suggested for each query.

Experimental Setup Table 4 shows the 5 most
frequent transpots computed for two queries by the
original transpotting algorithm (baseline) and ob-
tained after grouping together variants (with the
naive joining method). We observe the tendency
of the baseline to propose inflectional variants
of the same translation, while merging variants
leads to more diversity, which is preferable since
the number of variants that can be displayed in
TransSearch without scrolling is limited. In-
deed, we think that presenting the user with around
5 transpots and some sentences where they oc-
curred is a good compromise (see Figure 2).

In order to simulate this, we measure in what
follows the diversity of the best 5 transpots pro-
posed by different methods. The baseline keeps
the 5 most frequent transpots as returned by our
transpotting algorithm, while the other methods al-
low for clustering the transpots. The 5 most fre-
quent clusters are considered,8 and the most fre-
quent variant in each cluster is retained. Therefore
each method delivers at most 5 transpots.

The best 5 transpots are considered as bags
of unigrams, bigrams or trigrams and compared
to reference translations turned also in bags of
n-grams. All the words are lemmatized, and
short words (less than 4 characters) are discarded
as a proxy to remove grammatical words. For
instance, the transpots returned by the baseline
method in Table 4 for the first query are turned into
{décrire, comme}.

Results The comparison of the generated bags-
of-words with the reference ones is done by com-
puting precision and recall. The reference used
here is the resource described in Section 5.3. Ta-
8The frequency of a cluster is the cumulative frequency of all
the variants it groups.

ble 5 reports results obtained with the metrics
based on bags of n-grams without joining variants
(line 1) and when using either the neighbor-joining
algorithm (lines 2 and 3) or the naive method
(lines 4 and 5). Their comparison shows an im-
provement in terms of F-measure for unigrams, bi-
grams and trigrams when variants are merged. If
the precision slightly decreases for unigrams w.r.t.
the baseline, a significant improvement is obtained
especially with the edit distance D2. These results
are correlated with the more diversified transla-
tions obtained when variants are grouped together.

7 Discussion

In this study, we have investigated the use of sta-
tistical word-alignment for improving the commer-
cial concordancer TransSearch. A transpotting
algorithm has been proposed and evaluated. We
discussed two novel issues that are essential to the
success of our new prototype: detecting erroneous
transpots, and grouping together similar variants.
We proposed our solutions to these two problems
and evaluated their efficiency. In particular, we
demonstrated that it is possible to detect erroneous
transpots better than a fair baseline, and that merg-
ing variants leads to transpots of better diversity.

For the time being, it is difficult to compare our
results to others in the community. This is princi-
pally due to the uniqueness of the TransSearch
system, which archives a huge TM. To give a point
of comparison, in (Callisson-Burch et al., 2005)
the authors report alignment results they obtained
for 120 selected queries and a TM of 50 000 pairs
of sentences. This is several orders of magnitude
smaller than the experiments we conducted in this
study.

There are several issues we are currently in-
vestigating. First, we only considered simple
word-alignment models in this study. Higher-level
IBM models can potentially improve the quality
of the word alignments produced. At the very
least, HMM models (Vogel et al., 1996), for which
Viterbi alignments can be computed efficiently,
should be considered. The alignment method used
in current phrase-based SMT is another alternative
we are considering.

Acknowledgements

This research is being funded by an NSERC grant
in collaboration with Terminotix.9

9www.terminotix.com

26

baseline décrits décrite décrit tel que décrit comme l’a
naive joining D2 décrits prévu comme l’a tel que prescrit comme le propose

baseline s’est révélé s’est avéré s’est avérée s’est révélée a été
naive joining D2 s’est révélé s’est avéré a été s’est montré a prouvé

Table 4: 5 most frequent responses for the queries as described and has proven to be when
a joining method is used or not.

unigrams bigrams trigrams
prec. rec. FM prec. rec. FM prec. rec. FM

baseline 0.93 0.45 0.61 0.82 0.35 0.49 0.68 0.30 0.41
naive D1 0.93 0.51 0.65 0.86 0.40 0.55 0.72 0.33 0.45

joining D2 0.90 0.57 0.69 0.79 0.40 0.53 0.72 0.33 0.45
neighbor- D1 0.93 0.50 0.65 0.86 0.41 0.55 0.72 0.34 0.46

joining D2 0.90 0.56 0.69 0.80 0.40 0.53 0.71 0.34 0.46

Table 5: Evaluation of quality of the variants merging process for the 5 most frequent groups retrieved
for 531 queries.

References
Bourdaillet, J., S. Huet, F. Gotti, G. Lapalme, and

P. Langlais. 2009. Enhancing the bilingual concor-
dancer TransSearch with word-level alignment. In
22nd Conference of the Canadian Society for Com-
putational Studies of Intelligence, Kelowna, Canada.

Brown, P., V. Della Pietra, S. Della Pietra, and R. Mer-
cer. 1993. The mathematics of statistical machine
translation: parameter estimation. Computational
Linguistics, 19(2):263–311.

Callisson-Burch, C., C. Bannard, and J. Schroeder.
2005. A compact data structure for searchable trans-
lation memories. In 10th European Conference of
the Association for Machine Translation (EAMT),
pages 59–65, Budapest, Hungary.

Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J.
Gibson, D. G. Higgins, and J. D. Thompson. 2003.
Multiple sequence alignment with the Clustal series
of programs. Nucleic Acids Research, 31(13):3497–
3500.

Collins, M. 2002. Discriminative training methods for
hidden Markov models: theory and experiments with
perceptron algorithms. In Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1–8, Philadelphia, PA, USA.

Cristianini, N. and J. Shawe-Taylor. 2000. An In-
troduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge Uni-
versity Press.

Freund, Y. and R. Schapire. 1996. Experiments with a
new boosting algorithm. In 13th International Con-
ference on Machine Learning (ICML), pages 148–
156, Bari, Italy.

Freund, Y. and R. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. Machine
Learning, 37(3):277–296.

Kittler, J., M. Hatef, R. P.W. Duin, and J. Matas.
1998. On combining classifiers. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
20(3):226–239.

Macklovitch, E., G. Lapalme, and F. Gotti. 2008.
TransSearch: What are translators looking for? In
18th Conference of the Association for Machine
Translation in the Americas (AMTA), pages 412–
419, Waikiki, Hawai’i, USA.

Och, F. J. and H. Ney. 2003. A systematic comparison
of various statistical alignment models. Computa-
tional Linguistics, 29(1):19–51.

Saiou, N. and M. Nei. 1987. The neighbor-joining
method: a new method for reconstructing phylo-
genetic trees. Molecular Biology and Evolution,
4(4):406–425.

Simard, M. 2003. Translation spotting for transla-
tion memories. In HLT-NAACL 2003 Workshop on
Building and Using Parallel Texts: Data Driven Ma-
chine Translation and beyond, pages 65–72, Edmon-
ton, Canada.

Venugopal, A., S. Vogel, and A. Waibel. 2003. Ef-
fective phrase translation extraction from alignment
models. In 41st Annual Meeting of the Association
for Computational Linguistics (ACL), pages 319–
326, Sapporo, Japan.

Vogel, S., H. Ney, and Tillmann C. 1996. HMM-based
word alignment in statistical translation. In 16th
Conference on Computational Linguistics, pages
836–841, Copenhagen, Denmark.

27

