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Abstract

Statistical machine translation relies heav-
ily on parallel corpora to train its mod-
els for translation tasks. While more and
more bilingual corpora are readily avail-
able, the quality of the sentence pairs
should be taken into consideration. This
paper presents a novel lattice score-based
data cleaning method to select proper sen-
tence pairs from the ones extracted from a
bilingual corpus by the sentence alignment
methods. The proposed method is carried
out as follows: firstly, an initial phrase-
based model is trained on the full sentence-
aligned corpus; then for each of the sen-
tence pairs in the corpus, word alignments
are used to create anchor pairs and source-
side lattices; thirdly, based on the trans-
lation model, target-side phrase networks
are expanded on the lattices and Viterbi
searching is used to find approximated de-
coding results; finally, BLEU score thresh-
olds are used to filter out the low-score
sentence pairs for the data cleaning pur-
pose. Our experiments on the FBIS cor-
pus showed improvements of BLEU score
from 23.78 to 24.02 in Chinese-English.

1 Introduction

To overcome problems of data sparseness, most
statistical machine translation (SMT) methods
tend to use the largest possible corpora to train
the models. Following the word-based (Brown et
al., 1993) and phrase-based (Koehn et al., 2003)
methods, incorporating as much parallel corpora as
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possible normally obtains a better system perfor-
mance. Even in some SMT evaluation tasks (Zoll-
mann et al., 2008), a huge amount (nearly 10M) of
sentence pairs are provided to train the models.

However, as the size of the corpus increases
dramatically, sentence alignment can only be per-
formed automatically. Since it is inevitable that
(a possibly large number of) misaligned sentences
will be introduced during the automatic sentence
alignment phase, some part of the bilingual corpus
will not contribute at all to the SMT systems. An-
other drawback of this paradigm is that it takes a
long time to train models on the full corpus. Fur-
thermore, even if the models are ready for use,
sometimes they will become too big to fit into
memory, and in addition the decoding speed will
suffer.

To overcome these problems, two possible
methods may be useful for improving conven-
tional SMT methods: (i) phrase table pruning tech-
niques (Johnson et al., 2007; Yang et al., 2009),
which are carried out on the model side; and (ii)
data cleaning methods, which are carried outab
initio on the training data side.

Some work has been reported on data cleaning
of SMT. In (Lü et al., 2007), information retrieval
methods are utilized to weight the training data
to obtain significant improvements over a base-
line SMT system. In (Okita, 2009), both word-
based and phrase-based models are trained to de-
code all the training data, and then the sentence
pairs are filtered by various evaluation scores of the
decoding results. On the other hand, a lot of work
has been done on the learning capabilities of SMT
system: by examining system performance under
different conditions, (Turchi et al., 2008) argues
that SMT systems may not be improved by adding
more data in i.i.d ways. Active learning (Haffari et
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al., 2009) are also introduced to obtain improved
performance compared with a random sentence se-
lection scheme.

Another work related to this paper introduces
a constraint satisfaction approach (Canisiu et al.,
2009), which integrates many different solutions
to aspects of the output space. It uses an optimized
objective function during the decoding of a word-
based SMT system to obtain better translation re-
sults.

The starting point of this paper is fairly close to
that of (Okita, 2009). However, in there, the pure
decoding method suffers from the problem that the
decoding of the whole corpus takes a fairly long
time to accomplish, which probably makes it im-
possible for large corpora. Note that in the speech
recognition realm, forced-alignment (Malfrere et
al., 2003) instead of decoding, can be used to as-
sess goodness of utterances (Witt, 1999) by given
the trained acoustic model and transcriptions. Al-
though we cannot port forced-alignment directly
into SMT, the idea presented in this paper is to use
trained models to access the goodness of sentence
pairs and is motivated by the forced-alignment ap-
proach. Instead of directly decoding, we are going
to use the ready-for-use word alignments to reduce
the search space in the decoding phase, and thus to
approximate the final decoding results, which are
used to obtain the evaluation scores for data clean-
ing.

The rest of this paper is organized as follows: In
section 2 we give a brief overview of the decoding-
based data cleaning method. In section 3 we dis-
cuss the use of word alignments to reduce the
search space in decoding. Section 4 describes
our lattice score-based decoding for data cleaning.
Section 5 gives the details of lattice building, and
section 6 presents Viterbi decoding on lattices. Ex-
periments and results are carried out in section 7.
The conclusion and future work are discussed in
section 8.

2 Decoding-based data cleaning

The decoding-based data cleaning method for
phrase-based SMT in (Okita, 2009) can be formal-
ized as follows:

First train a phrase-based SMT modelM using
the training corpus. Then for each sentence pair in
the training corpus, wheres andtref are the source
and target sentences respectively, decodes by the
modelM to derive its translationt∗. Then take

tref as the reference to evaluate translationt∗, and
use the evaluation scores as the criterion for data
cleaning. After the removal of sentence pairs with
low evaluation scores (or X-gram scores in (Okita,
2009)), a new model is trained on the cleaned cor-
pus.

The decoding phase works as follows: denote
t as the target sentence fors, and letσs,t be the
segmentation ofs andt. Following the log-linear
model (Och & Ney, 2002), the decoding resultt∗

for s is represented as in (1):

t∗ = argmax
t,σ

∏

f∈F

Hf (s, t, σ)
λf (1)

where the setF is a finite set of features andλf

are the weights of the feature functionsHf of the
aligned source and target sentence pairs. The set of
featuresF consists of a phrase translation model
(phrase translation probability, lexical weighting,
phrase penalty), a language model, a distance-
based reordering model, the word penalty and a
lexicalized reordering model (Koehn et al., 2005).

For the cleaning stage, various evaluation meth-
ods, such as BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee et al., 2005), NIST (Doddington,
2002) are taken into account to score the decod-
ing resultt∗ and target-side correspondence in the
training corpustref of the source sentences. Fi-
nally, those sentence pairs with low scores are fil-
tered out to obtain a cleaned corpus to train the
final SMT models.

Since during the decoding process all the pos-
sible segmentation and alignments between the
source and target sentences are to be examined, it
will take quite a long time to perform this method,
especially when the training corpus is large. This
paper focuses on how to reduce the search space
of the decoding phase mentioned above, by taking
into account the word alignment information that
is readily available after the training phase.

3 The use of word alignments

During the training phase, most phrase-based SMT
systems start with the word alignment information,
most often using GIZA++,1 an implementation of
the IBM Models. Following the heuristic approach
proposed by (Och & Ney, 2003), the bidirectional
alignments of the sentence pairs are refined by ex-
tending the intersection of the alignment points of
the two word alignments by the union of the two
1http://fjoch.com/GIZA++.html



word alignments. Finally, the refined word align-
ments are used to extract phrase pairs (Zens et al.,
2002).

In this paper, the word alignments are not only
used for extracting phrase pairs, but also to reduce
the search space in the decoding process for the
data cleaning phase. In formula (1), all possible
target sentences and all segmentations of both the
source and target sentences are considered during
the decoding process. However, since word align-
ment information has already been extracted for
each of the sentence pairs in the training corpus,
the search space can be approximated by only al-
lowing the possible target sentences and segmenta-
tions that can be inferred from the word alignment
information. Given the word alignmentA between
sentence pairs andtref , and the translation model
M derived from the full corpus, formula (1) can be
modified as in (2):

t̂ = argmax
t∈T̂ (M,A),σ∈Σ̂(A)

∏

f∈F

Hf (s, t, σ)
λf (2)

where T̂ (M,A) is the set of all possible target
sentences that can be inferred from the translation
modelM and the word alignmentA andΣ̂(A) is
the set of all possible segmentations that can be
inferred from the word alignmentA. By using for-
mula (2) to obtain̂t as an approximation of the de-
coding resultt, the data cleaning process can be
accomplished by evaluatinĝt with tref . Note that
since the search space is dramatically reduced us-
ing formula (2), the whole data cleaning process is
faster to making it possible for use on large cor-
pora.

4 Lattice score procedure

In the last section, by using the word alignment
information extracted in the training phase, the
search space is reduced to speed up the decoding of
data cleaning. However, it is not necessary to ac-
complish the decoding procedure in formula (2) to
obtain the approximated translationt̂ for the source
sentences. Instead of modifying the pruning strat-
egy in the decoding phase, the method proposed in
this paper is to use the word alignments to build
source-side lattices, and to search on the expanded
target phrase networks to extract the hypothesist̂

for a source sentences. By looking up the trans-
lation model, all the features used in the decod-
ing process of formula (1) are utilized to guide the

searching. The proposed method involves the fol-
lowing steps:

(1) Collect a set of anchor pairsΛ(A) by look-
ing up the word alignment informationA for each
sentence pairss andtref as in (3):

Λ(A) = {(f̂ , ê) = (f j+m
j , ei+n

i ) | ∀(i′, j′) ∈ A :

j ≤ j′ ≤ j +m ↔ i ≤ i′ ≤ i+ n}
(3)

This formula represents the same procedure with
phrase pairs extraction in (Zens et al., 2002), but
we use the extracted phrase pair positions(j, (j +
m)− i, (i + n)) as anchor pairs.

(2) Build a source-side lattice by looking up
the target sentence and the target-side positions
of the anchor pairs extracted. Nodes and implicit
edges of the lattice are created from target words,
and non-implicit edges are created from the source
words in the anchor pairsΛ(A).

(3) Expand the source-side lattice into target-
side phrase network. Nodes and implicit edges are
copied into the network, while non-implicit edges
are created from the entries of the source words in
the translation table.

(4) Search on the target-side phrase network to
find a best path with lowest cost of the log-linear
model in formula (2). The approximated decoding
resultt̂ can be determined by backtracking the best
path and joining the target phrases on the network.

Actually, steps (3) and (4) are carried out to-
gether by applying Viterbi algorithm (Young et al.,
1989) on the source-side lattice. The details of
lattice building and Viterbi decoding will be illus-
trated in the following two sections.

5 Lattice building

Lattice building process in steps (1) and (2) in the
last section is formalized in algorithm 1.

Figure 1: Sample sentence pair

Take the sentence pair in Figure 1 as an example.
The beginning part of the generated lattice from al-
gorithm 1 is depicted in Figure 2. Note that for il-
lustration purpose, non-implicit edges (with solid
lines) in the lattice are labeled by source words
f
j+m
j , target wordsei+n

i (just for illustration) and
position information(j, (j+m)−i, (i+n)), which



Figure 2: Source-side lattice

Algorithm 1 LATTICE BUILDING

Require: Sentence pair and the word alignments.
1: Create anchor pairsΛ according to formula

(3).
2: CreateN + 1 nodes according to target sen-

tence lengthN .
3: Connect nodes byN implicit edges labeled by

target words.
4: for each anchor pair(f j+m

j , ei+n
i ) in Λ do

5: Create non-implicit edgeE from nodei
to nodei+ n.

6: LabelE by the source wordsf j+m
j and

the source and target positions(j, (j +
m)− i, (i+ n))

7: end for

are displayed in separated lines besides the non-
implicit edges. The lattice is constructed as fol-
lows: firstly, anchor pairs are extracted from word
alignments in the training phase, as is described in
line 1 of algorithm 1. Then Nodes are created ac-
cording to target sentence length. Thirdly, implicit
edges (with dotted lines) in figure 2 are created
from target words. For example, the implicit edge
from node0 to 1 denote the first wordpowell in
the target sentence. After that, non-implicit edges
are created from anchor pairs and sentence pairs.
For example, for anchor pair position(0, 4− 0, 3),
an non-implicit edge is created from node0 to 3,
labeled with source words from position0 to 4 (in
Figure 2).

6 Viterbi algorithm

The source-side lattices built in the last section are
guaranteed to be directed acyclic graphs and their

nodes are already in topological order. We apply
the token passing implementation of Viterbi algo-
rithm (Young et al., 1989) to carry out the target-
side phrase network expanding and the Viterbi
searching on the network. Each node in the source-
side lattice has a stack to hold tokens. Tokens hold
the cost of each partial path together with the back-
track information, and can move from one node to
another. The searching process is formalized in al-
gorithm 2.

By joining the hypothesis collected from the
best path (line 16 of algorithm 2), we can obtain
the approximated translation resultt̂ in formula
(2).

Note that some of the nodes do not have any out-
going non-implicit edges, (for example, nodes 3
and 5 in Figure 3), during the searching phase, all
tokens on these nodes cannot be propagated any
further because there is no non-implicit edge avail-
able. Depending on the lattice topology, some-
times there is no path consisting only of non-
implicit edges. In this case there will be no Viterbi
search result, and no target translation. To over-
come this, implicit edges are utilized to accom-
plish the searching. Token generation and costs
via implicit edges are discussed in section 6.1.

6.1 Token costs

There are two kinds of token costs in algorithm 2:
(1) Normal cost (line 8 in algorithm 2): It is sim-

ilar to the log-linear model in formula (2), includ-
ing scores from the phrase translation models, the
language model, word penalties, distance-based
and lexical reordering models. Note that since
source positions is preserved from the source-side
lattice (for example, in Figure 2, first two num-



Algorithm 2 TOKEN PASSING DECODING

Require: Source-side lattice, trained phrase-
based models.

1: Add a initial token with zero cost to the start
node.

2: for each nodeA in the source-side latticedo
3: for each token in the stack ofA do
4: if A has outgoing non-implicit edgesthen
5: for each outgoing non-implicit edgeE

(with source wordsf ) of A do
6: Collect set of phrase pairsP = {(f ′, e′)}

from translation table, wheref = f ′.
7: for each phrase pair(f̄ , ē) ∈ P do
8: Pass a new token to the end nodeB of

E, with accumulated cost and hypothe-
sis ē.

9: end for
10: end for
11: else
12: Pass a new token to the next nodeC of

A, with accumulated cost and hypothesise

(the target word on the implicit edge from
A toC).

13: end if
14: end for
15: end for
16: Traceback from the lowest cost token of the

last node.

bers of the parenthesized labels of non-implicit
edges), reordering scores are calculated by look-
ing up source positions of two consecutive tokens.

(2) Implicit-edge cost (line 12 in algorithm 2):
Suppose tokenτn+1 is passed from tokenτn via
an implicit edge. The new cost is estimated from
the history ofτn as in formula (4):

cost(τn+1) = cost(τn) +
cost(τn)− lmcost(τn)

n

+lmcost(τn+1) + word penlaty

(4)

wherelmcost indicates the target language model
cost of the hypothesis corresponding with the to-
ken, andword penalty is the same with that in
normal cost. The basic assumption held in formula
(4) is that tokens with better history will generate
better tokens.

Formula (4) penalizes tokens via implicit edges.
For example, in Figure 3, from node1 to 8, it is
obvious that tokens via implicit edges (nodes3 to
4, 5 to 6, 6 to 7 and7 to 8) will generate more costs

because they have to go through more nodes than
tokens via the non-implicit edge from node1 to 8.
Note that cost estimation is biased at the beginning
of lattices, because history of the path is too short.
However, this problem is not obvious since most
of the nodes have outgoing non-implicit edges.

6.2 Merging and Pruning

Keeping all the tokens generated in the searching
process wastes a significant amount of computing
resources. To overcome this, path merging and
pruning are adopted to reduce the whole search
space. Risk-free merging operation is carried out
for tokens on the same node. Only those tokens
with same partial translation, same source phrase
and same source position are merged to keep the
one with lowest cost. Beam pruning is also car-
ried out for all tokens on the same node. While
each node in the network has a stack to hold to-
kens passed from previous nodes, all tokens are
sorted in order of path cost. Only a portion of the
lower cost tokens are kept using either a probabil-
ity threshold of the best token or fixed admissible
token numbers.

7 Experiments and evaluation

7.1 Experimental settings

The experiments are conducted on Chinese-to-
English. Our experimental data come from FBIS
corpus, which is a multilingual paragraph aligned
corpus with LDC resource number LDC2003E14.
Sentence alignment is carried out by Champollion
aligner (Ma, 2006), which is designed for noisy
data. In this case, our training data are consid-
ered as a semi-cleaned corpus, which is a hard task
for data cleaning. After the sentence alignment,
we have 256,911 sentence pairs as the whole data
set. Then 2,000 pairs of development set and 2,000
pairs of test set are selected randomly from the
whole data set. After sentence length filtering, the
rest of the data set is used as the training set.

We use Moses (Koehn et al., 2007) as the base-
line system. The GIZA++ toolkit is used to per-
form word alignment and “grow-diag-final” re-
finement method is adopted (Koehn et al., 2003).
Phrase extraction is carried out by the method
of (Zens et al., 2002), which is also used for
lattice generation in this paper. Minimum error
rate training (Och, 2003) is performed for tun-
ing. The language model in all experiments is a
5-gram language model trained on the training set



Figure 3: Tokens via implicit edges

using SRILM2 toolkit with modified Kneser-Ney
smoothing (Kneser & Ney, 1995).

Our proposed data cleaning method is carried
out using algorithm 3:

Algorithm 3 DATA CLEANING

1: Train and tune the baseline Moses modelM ,
and obtain the refined word alignmentsA of
the training set.

2: for each sentence pair(s, tref ) in the training
setdo

3: Use our proposed method in Section 4 to
calculate the approximated decoding re-
sult t̂.

4: Calculate sentence BLEU score oft̂ tak-
ing tref as the reference.

5: end for
6: Filter out all sentence pairs with BLEU scores

lower than our predefined threshold from the
training.

7: Use filtered training set to re-train and re-tune
the Moses model for evaluation.

It is worth noting that the baseline translation
model, reordering model, language model, tuned
weights and word alignments are used in our pro-
posed data cleaning method. No extra training or
tuning is needed. In this paper, the filtering thresh-
olds are selected from the distribution of BLEU
scores calculated by our lattice score method.

7.2 Results

On the training set, the BLEU scores calculated
from the approximated decoding results and the
target sentences are depicted in Figure 4. The x-
axis indicates the BLEU score and y-axis indicates
number of sentences. The mean BLEU score of
all lattice score results on the training set is 48.49.
From the figure, we note that only a small amount
of sentence pairs have a lower BLEU score. Then
we take gradually changed BLEU thresholds to fil-
ter out sentence pairs with lower scores to check
the effectiveness of our lattice score based data
cleaning method.

2http://www.speech.sri.com/projects/srilm/

Figure 4: BLEU distribution of lattice score results

By adjusting Figure 4, we adopted four thresh-
olds of BLEU scores for the data cleaning experi-
ments: 10.00, 15.00, 20.00 and 25.00, which re-
moved 2.6%, 4.8%, 7.5% and 11.3% sentences
from the original training corpus respectively.

The baseline system and data cleaning systems
with four thresholds are illustrated in Tables 1 and
2, for dev set and test set respectively. The phrase
table limit is set to 20 and histogram beam is set to
50 in our Viterbi searching on lattices.

Methods BLEU NIST METEOR
baseline 21.73 6.33 51.6

thd=10.00 21.99 6.35 51.58
thd=15.00 21.81 6.33 51.41
thd=20.00 21.82 6.35 51.47
thd=25.00 21.70 6.25 50.9

Table 1: Results on dev set

Methods BLEU NIST METEOR
baseline 23.78 6.58 54.07

thd=10.00 24.02 6.60 54.31
thd=15.00 23.77 6.56 54.14
thd=20.00 23.95 6.60 54.11
thd=25.00 23.86 6.52 53.66

Table 2: Results on test set

As we can see from Tables 1 and 2, our proposed
data cleaning method gives positive results over
the baseline system with various thresholds. The
maximum improvement on test set is 0.24 BLEU



score (1% relative improvement), and it is obtained
by setting the threshold at 10.00.

Figure 5: Sample sentence pairs

By manually analyze part of the sentence pairs
filtered out in the line 6 of algorithm 3, we find
that they can be categorized into four kinds of sen-
tences:

• Misaligned pairs: sentence pairs with com-
pletely difference meanings. For example, the
sentence pair in the first row of Figure 5.

• Partially aligned pairs: one sentence should
be aligned to one part of another sentence.
For example, in the second row of Figure 5,
the source sentence should be aligned to the
latter half of the target sentence.

• Garbage pairs: sentence pairs consists of
garbage words, which is typically generated
from incorrect encodings.

• Hard pairs: sentence pairs that are hard to
translate. For example, in the sentence pair
in the third row of Figure 5, the source sen-
tence is ancient Chinese which is different
from most of the source sentences (modern
Chinese) in the corpus.

It is obvious that the first three kinds of sentence
pairs are supposed to be removed from the training
corpus, because they would not contribute to the
final SMT system due to the bad word alignments
and phrase extraction on those sentence pairs. To
some extent, hard pairs should be cleaned from the
training set as well. In our case, only a small por-
tion of sentences in the corpus are ancient Chinese,
and they can be treated as another language which
is different from the source language, thus, those

sentences generate incorrect word alignments and
phrase extractions, and SMT system would not
benefit from them.

8 Conclusion and future work

In this paper, we introduced a novel lattice score-
based data cleaning method to select proper sen-
tence pairs from the sentence-aligned corpus. The
procedure is based on conventional phrase-based
SMT training and tuning, but the word alignment
information is utilized to reduce the search space
during the decoding of the training set for data
cleaning. Source-side lattice is created accord-
ing to the anchor pairs extracted from word align-
ments. Target-side phrase network is expanded
from source-side lattice by looking up the phrase
table. Token passing is used to search for the best
path in the target-side phrase network to obtain the
approximated decoding results. Experiments on
FBIS data showed the benefits of our data cleaning
methods with various BLEU score-based thresh-
olds against baseline Moses system.

In the future, firstly we plan to apply our algo-
rithm on large-scale noisy data and other language
pairs. And we will find a better way to adjust the
biased cost estimation for tokens via implicit edges
at the beginning of lattices.
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