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Abstract

This paper proposes the use of a Determin-
istic Annealing Expectation-Maximization
(DAEM) algorithm to estimate the word-
alignments involved in the statistical trans-
lation process. This approach is aimed to
overcome the problem of the local maxima
in complex alignment models, thus making
unnecessary to iterate with previous and
simpler ones.

Using the DAEM algorithm allows us to
explore the power of highly expressive
statistical alignment models without the
experimental limitations of working with
non-convex models, while, at the same
time, observing consistent improvements
in translation quality.

Experimental results show that, by us-
ing an appropriate temperature scheduling,
equal or better estimations are obtained in-
dependently of the initial parameter esti-
mates.

1 Introduction

Statistical Machine Translation (SMT) systems use
mathematical models to describe the translation
task and to estimate the probabilities involved in
the process.

Brown et al. (1993) established the SMT
grounds formulating the probability of translating
a source sentence f into a target sentence e, as

ê = argmax
e

Pr(f | e) · Pr(e) (1)

where Pr(e) stands for the language model and
Pr(f |e) is the translation model. The language

c© 2010 European Association for Machine Translation.

model is usually based on n-grams, accounting
mainly for the word-order with the purpose of
avoiding ill-formed sentence e, and the translation
model accounts for the probability of the words of
e being a good translation of the words of f .

In word-to-word SMT, word-alignments were
used to model the distribution Pr(f | e). In this
context, a hidden variable a is introduced to repre-
sent word-correspondences in a bilingual sentence
pair. Introducing the alignment concept:

Pr(f | e) =
∑
a

Pr(f ,a | e) (2)

In practice, however, the direct modelling of the
posterior probability Pr(f | e) has been widely
adopted. To this purpose, different authors (Pap-
ineni et al., 1998; Och and Ney, 2002) propose the
use of the so-called log-linear models, where the
decision rule is given by the expression

ê = argmax
e

M∑
m=1

λmhm(f , e) (3)

where hm(x,y) is a score function representing an
important feature for the translation of f into e, M
is the number of models (or features) and λm are
the weights of the log-linear combination.

In order to introduce context information, mod-
ern state-of-the-art SMT systems no longer im-
plement a word-by-word translation model as de-
scribed by Equation 2, but rather segment-to-
segment. Phrase-Based (PB) SMT systems, which
constitute the most popular implementation of log-
linear SMT models, still rely heavily on word-
alignment models in order to obtain these seg-
ments. Once the word alignments have been ob-
tained, all bilingual phrases (i.e. subsequent word
segments) coherent with the word alignment are
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extracted. Hence, the quality of the final trans-
lations produced by such systems still depends
greatly on the quality of the word-alignment pro-
duced.

In order to obtain good estimations of the
hidden alignment variable a in Equation 2,
the log-likelihood expression derived from such
equation is maximized by using, traditionally,
the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977). From a given set of
sample observations, EM algorithm has been used
so far to maximize the log-likelihood of a given
model that depends on unobserved (latent) vari-
ables. This is an iterative procedure consisting
of two steps. The Expectation (E) step computes
the expected value of the hidden variables and of
the log-likelihood, and then the Maximization (M)
step computes the parameter values that maximize
the expected log-likelihood from the E step. The
process is then repeated in a new iteration of the
algorithm, using the parameter estimates from the
previous iteration to obtain new estimates of the
hidden variables, and so forth.

Since the EM algorithm uses at every iteration
the parameter estimates from the previous one,
such parameters need to be initialized for the first
iteration. However, depending on this initializa-
tion, the EM algorithm may not converge to the
global maximum if the solution space is not con-
vex and the search is stuck in a local maximum of
the log-likelihood surface. This problem is known
as the local maxima problem.

Aware of the local maxima problem, Brown et
al. (1993) proposed several models with increas-
ing complexity, with the purpose of training them
sequentially from the simplest to the most com-
plex one. After performing a certain amount of
iterations with the EM algorithm in the alignment
model i, the estimated parameters are transferred
conveniently to the alignment model i+ 1 with the
purpose of achieving a better initialization yield-
ing a better final estimation. In practice, the num-
ber of iterations performed by the EM algorithm
for every model is set experimentally in order to
maximize the score representing the quality of the
automatic translations.

Transferring parameters between models during
their sequential training is a useful technique but it
can still prevent us from finding the global maxi-
mum in subsequent models (Fig. 1). Due to the
different nature of the alignment models, estimates

Figure 1: Inaccuracies during the transfer of pa-
rameters between models may occur.

obtained from previous models may not be the best
initial values for the EM algorithm to train the next
model. Our intention in the present paper is to ex-
plore this scenario in detail.

Ueda and Nakano (1998) proposed a Deter-
ministic Annealing version of the EM algorithm
(DAEM), where the final estimation of the param-
eters are independent of the initial chosen values.
DAEM has not been proved to solve theoretically
the local maxima problem, but it has been used
successfully in other applications where the max-
imization of functions with incomplete data is re-
quired (Park et al. (2005) applied DAEM for Image
Segmentation, and Yohei et al. (2005) for Speaker
and Speech Recognition) obtaining equal or better
results than those achieved with EM.

This paper shows how the DAEM algorithm
can be successfully applied to complex alignment
models. Specifically, in this paper we will be ap-
plying DAEM to IBM Model 4. As results show,
performing EM iterations with previous models is
not necessary anymore.

The paper is organized as follows. Section 2 re-
views the key features of IBM Model 4 and de-
scribes how DAEM may be applied for estimating
parameters. Section 3 describes the SMT system in
which we will be applying DAEM, while section 4
presents experimental results. Finally, a discussion
is presented in the section 5 and future work is the
final section.



2 The DAEM algorithm in SMT

2.1 IBM Model 4

Alignment Model 4 (Brown et al., 1993) is a com-
plex model which is widely used in state-of-the-
art SMT systems. They key idea behind such
model can be expressed as follows: Given a sen-
tence e = e1, . . . , ei, . . . , el of length l = |e|
from a target language, and a source sentence
f = f1, . . . , fj , . . . , fm of length m = |f | from
a source language, we first choose a source word
ei and the number φi of source words that ei is go-
ing to be aligned to, according to the fertility prob-
ability distribution n(φ|ei). A target word can be
aligned to zero, one or more source words, and this
property is called fertility.

Once ei and φi have been chosen, select
f j+φi
j = fj , . . . , fj+φi

following a certain proba-

bility distribution t(f j+φi
j |ei) modelling the prob-

ability of translating f j+φi
j into ei. With the help

of the functions A and B that map words from the
source and the target language into a small num-
ber of classes, we have to decide the final position
in the source sentence for every word fj . Such
a decision is determined by the distortion proba-
bility distributions d1(∆j|A,B) and d>1(∆j|B).
d1(∆j|A,B) is used to place the word f ∈ f j+φi

j

whose position in f is smallest and d>1(∆j|B) to
place the rest of the words in f j+φi

j .

Taking into consideration extraneous words ap-
pearing in the source sentence, the expression de-
scribed by IBM Model 4 for the probability of a
sentence f and an alignment a given a target sen-
tence e is

Pr(f ,a|e) =
∑

(τ,π)∈〈f ,a〉

Pr(τ, π|e) (4)

In this equation, a tablet τ is the set of words that
can be generated by a given target word ei and the
distortions π are the final positions of each subset
of words in τ in the source sentence.

The probability of a tablet and a set of distor-
tions given a target sentence can be expressed as a

product of probabilities:

Pr(τ, π|e) = n0

(
φ0|

l∑
i=1

φi

)
l∏

i=1

n(φi|ei)
l∏

i=0

φi∏
k=1

t(τik|ei)

1
φ0!

l∏
i=1

φi∏
k=1

pik(πik) (5)

where n0(φ0|m′) is a function depending on the
parameters p0 and p1 = 1 − p0 describing the
amount of extraneous words appearing in the
source sentence.

n0(φ0|m′) =

(
m′ − φ0

φ0

)
pm

′−2φ0
0 pφ0

1 (6)

Here, p1 is the probability that a word f requires an
extraneous word not connected with any word of
e. The distribution probability p(π) is a function
of the distortion probabilities, used here to keep
notation simple. Refer to (Brown et al., 1993) for
further details. There are many configurations of
tablets and distortions that give as a result the same
source sentence f aligned by means of the same a.
Note that the summation takes into consideration
every possible configuration of (τ, π) that is con-
sistent with the pair 〈f ,a〉.

Using standard methods for function maximiza-
tion at Equation 2, a generic expression to re-
estimate parameters is obtained:

p(ω; f , e) = ξ−1
∑
a

Pr(f ,a|e)c(ω; a, f , e) (7)

where ξ−1 acts as a reminder that the proba-
bilities have to be normalized. The general-
ized probability distribution p(ω; f , e) instantiates
to n0(φ0|m′), n(φ|e), t(f |e), d1(∆j|A,B) and
d>1(∆j|B) for IBM Model 4 parameter estima-
tion. Here, c(ω; a, f , e) are generic counters that
count the number of times that the event ω occurs
in the pair (f , e) with the alignment a. Examples
of the counters are

c(f |e; a, f , e) =
m∑
j=1

δ(f, fj)δ(e, eaj ) (8)

is the number of times that the word f is related to
word e by alignment a in the pair (f , e), and

c(φ|e; a, f , e) =
l∑

i=1

δ(φ, φi)δ(e, ei) (9)



is the number of times that the word e has a fertility
of φ words by alignment a in the pair (f , e).

Traditionally, the EM algorithm has been used
to estimate the parameters involved in the trans-
lation process, with the risk associated to the lo-
cal maxima problem. DAEM will be used in the
parameter estimation aiming to overcome such a
problem.

2.2 DAEM

The Deterministic Annealing EM algorithm
(DAEM) (Ueda and Nakano, 1998) helps to over-
come the problem of the local maxima, reformu-
lating the maximization of the likelihood into the
minimization of the free energy, a concept ex-
tracted from thermodynamics.

The idea behind such a procedure is to
parametrize the objective function defining the
hyper-surface that has to be explored, so that for
high values of the temperature 1

β , the curves are
smooth enough to allow us to find safely the global
maximum using the traditional EM algorithm.

Each time the temperature is decreased, regu-
lar EM iterations are performed and new param-
eter estimates are computed. As the temperature
decreases iteratively, the surface of the free energy
becomes more and more similar to the likelihood.
The final value of the temperature makes the ex-
pression of the free-energy to be equal to the like-
lihood.

The free energy is defined as an effective cost
function that depends on the temperature:

Fβ(Θ) = − 1
β

log
∑
χmis

p(χobs, χmis; Θ)β (10)

where Θ are the parameters of the density func-
tion, χobs and χmis are observable and unobserv-
able data respectively. In the following subsection,
it will be showed how to apply easily the DAEM
algorithm to statistical models where the EM algo-
rithm was originally used, through an example on
IBM Model 4.

2.3 DAEM algorithm for IBM Model 4

In the model studied, missing variables are the
alignments a, and pairs (τ, π). The observed vari-
ables during training time are every bilingual pair
of sentences (f ,a). Using the expression of the
free energy with the likelihood of the translation

model, we obtain the following expression

Fβ(n, t, d) = − 1
β

log
∑
a

∑
(τ,π)∈〈f ,a〉

Pr(τ, π|e)β

(11)
Unlike the expression of the likelihood, Equa-

tion (11) has to be minimized. Adding a La-
grangian multiplier (with positive sign) for every
constraint and setting the partial derivatives of the
auxiliary function to zero, generalized parameter
re-estimation expressions parametrized by β arise:

p(ω;β, f , e) = ξ−1
∑
a

n0

(
φ0|

l∑
i=1

φi

)β
l∏

i=1

n(φi|ei)βφi!
m∏
j=1

t(fj |eaj )β

∏
j:aj 6=0

daj (πaj )βc(ω; a, f , e)

(12)

where the counters c(ω; a, f , e) are the same as in
the EM algorithm. More compactly,

p(ω;β, f , e) = ξ−1 Pr(f ,a|e)βc(ω; a, f , e) (13)

where, ξ−1 is again a reminder that the probabili-
ties have to be properly normalized.

The proposed DAEM algorithm to train IBM
Model 4 is as follows:

1. Initialize uniformly and different from zero
the parameters p(ω): n(φ|e), t(f |e), p0, p1,
d1(∆j|A,B) and d>1(∆j|A).

2. For 0 < β << 1 to β = 1, compute

p̃(ω;β) =
S∑
s=1

p(ω;β, f s, es) (14)

using the EM algorithm with the desired
amount of iterations, with a corpus of S pair
of sentences.

2.4 Scheduling
The initial idea behind the DAEM approach is
to smooth the hyper-surface representing the cost
function with a low value of β. Starting DAEM it-
erations with a positive value of β close to zero
is intended to be equivalent to a minimization
of a concave function. At the first step of the
DAEM algorithm, parameters are initialized uni-
formly with values different from zero. Then, EM



is used regularly to maximize the objective func-
tion parametrized by the starting β. The estimates
obtained by the last iteration of the EM for β are
used for the first iteration of EM for the next value
of β, and so on.

This process is repeated iteratively with increas-
ing values of β up to one. Minimizing Equation
(10) for β = 1 is equivalent to maximizing the
traditional likelihood function, with the advantage
of having excellent initial values for the EM algo-
rithm during the last iteration of DAEM.

Since at least one EM iteration must be com-
pleted for every step of β, over-training may occur
before the temperature 1

β achieves a value of one.
For this reason, an early stopping of the decrease
of the temperature 1

β may result in better estima-
tions (Fig. 2).

Over-training is a difficult problem to solve us-
ing theoretical methods so that some experimen-
tation is required to avoid it. When working
with DAEM, the following considerations must be
taken into account:

• Selecting a β positive and close to zero as ini-
tial value for the DAEM algorithm.

• Selecting an appropriate step size for β.
Smaller steps provide a higher accuracy but
increases the computational cost.

• Selecting the number of EM iterations at ev-
ery value of the temperature.

3 Experimental Setup

We performed our experiments on the Europarl
corpus (Koehn, 2005), which is a corpus widely
used in SMT and that has been used in several
MT evaluation campaigns. We performed our
experiments on the partition established for the
Workshop on Statistical Machine Translation of
the ACL 2008. The Europarl corpus was extracted
from the proceedings of the European Parliament,
and is divided into three separated sets: one for
training, one for development and one for test.

For our experiments, we focused on the
French→English translation task. The characteris-
tics of this task can be seen in Table 1. As baseline
for our experiments, the Moses-toolkit (Koehn and
others, 2007) was used in its default setup, as pro-
posed in the WMT08 task. This includes regular
EM training of several low-order word-alignment
models, in order to obtain good initial parame-
ter estimates for training Model 4 and obtaining

Table 1: Characteristics of Europarl corpus
French-English. Develop. stands for Develop-
ment, OoV for “Out of Vocabulary” words, K for
thousands of elements and M for millions of ele-
ments. Data statistics were collected after tokeniz-
ing, lowercasing and filtering out long sentences.

Fr En

Training

Sentences 948K
Run. words 20.7M 19.5M
Avg. leng. 21.8 20.5
Vocabulary 98K 81K

Develop.

Sentences 2000
Run. words 63K 59K
Avg. leng. 31.6 29.4
OoV 60 67

Test

Sentences 2000
Run. words 62K 58K
Avg. leng. 31.1 29.0
OoV 69 75

convenient segmentations of the training sentence
pairs. Specifically, we performed 5 iterations of
IBM Model 1, 5 HMM iterations, 3 iterations of
IBM Model 3 and 3 more iterations of IBM Model
4.

For our system, GIZA++ (Och and Ney, 2003)
was conveniently modified to add the DAEM loop
with a linear progression of the temperature: β =
0.001, 0.02, 0.04, . . . , 1.0 on the IBM Model 4 us-
ing the same hill-climbing technique implemented
in GIZA++, performing three iterations of the EM
algorithm for every value of β.

Once the bilingual phrase pairs have been ex-
tracted and probabilities have been associated to
them, the weights of the log-linear models were
optimized for the development set using the MERT
procedure (Och, 2003).

We measured the quality of the translations pro-
vided by both systems with two scores, BLEU and
TER. BLEU (Papineni et al., 2002) computes the
precision of unigrams, bigrams, trigrams and 4-
grams with a penalty for too short sentences, and
the Translation Error Rate (TER) criterion (Snover
et al., 2006) computes the minimum number of
editions (substitutions, insertions and deletions)
needed to convert the translated sentence into the
reference sentence, including shift of words as edi-
tion operations, and normalizes with the average
number of reference words.



Figure 2: Scheduling on a small corpus consisting
of 200K sentence pairs. Beta values were a linear
progression β = 0.1, . . . , 1.0. Better BLEU score
may be achieved stopping DAEM earlier and mak-
ing smaller β-steps.

4 Experimental Results

Preliminary experiments with a reduced Europarl
training corpus of 200K sentence pairs were done,
stopping at different values of β (Fig. 2). The best
results obtained with this reduced version of the
Europarl were around a value of β = 0.8. Specif-
ically, in our experimental environment, the value
β = 0.76 yielded the best results in terms of BLEU
and TER in the full Europarl corpus. As men-
tioned, we performed 3 EM iterations with IBM
Model 4, dropping out the initialization with other
models.

The pairwise BLEU and TER improvement in-
tervals (see Table 4) computed by the bootstrap-
ping technique (Koehn, 2004) at a 95% confidence
level show that improvements obtained by apply-
ing DAEM are statistically significant. For com-
puting these intervals, 10.000 bootstrap repetitions
were performed. Specifically, using the DAEM al-
gorithm leads to an increase of BLEU in the range
of [0.04, 0.57], while obtaining a decrease on the
error rate (TER) in the range of [−0.56,−0.04].
Improvements in these two measures with a differ-

Table 2: Using the DAEM algorithm to train IBM
Model 4, better scores were obtained.

Pairwise
baseline DAEM improv. interval

BLEU 32.46 32.75 [0.04,0.57]
TER 52.39 52.09 [−0.56,−0.04]

ent nature support our thesis that better results can
be obtained by using DAEM than those obtained
by using EM.

5 Conclusions

Statistical machine translation systems require
complex models with a large amount of parame-
ters and DAEM provides promising results on this
field.

In the case of Statistical Machine Translation,
using the DAEM approach in function maximiza-
tion (minimization) problems related to the estima-
tion of statistical alignments, improves the overall
quality of the translations obtained, as measured
by BLEU and TER, when compared to those ob-
tained by the traditional EM algorithm.

The fact that the estimations obtained by the
DAEM algorithm are independent of the initial pa-
rameter values adds a special focus of interest. By
training IBM Model 4 with DAEM instead of reg-
ular EM, it is more likely to obtain those parameter
estimates for which the objective function presents
a global maximum.

Furthermore, we discarded all the previous
models while using DAEM algorithm on IBM
Model 4, since their parameter estimations were
not longer necessary to initialize the parameters in
subsequent models. For this reason, we do not face
the risk of losing the global maximum while trans-
ferring the parameters from one model to another
and we may have a more realistic perspective of
the potential of the studied model.

The ease of implementation of the DAEM al-
gorithm on already-implemented models makes
it worth of consideration. Moreover, by using
DAEM we can focus on the design of new complex
models without being forced to provide its corre-
sponding simplifications with a gradual increase of
complexity, trusting in DAEM to perform the min-
imization of the free energy function associated to
the expression of the likelihood. Hence, DAEM
can also be a good method to objectively compare
single models with a different nature, rather than
compare a set of sequential models with an arbi-
trary number of EM iterations per model.

6 Future Work

Future work involves applying DAEM with IBM
Models 5 and 6. Some authors propose the use
of a Hidden Markov Model instead of Model 4.
This model is also a good candidate to test the per-



formance of the DAEM algorithm because its re-
sults are close in quality to those obtained by IBM
Model 4 and its computational cost at every EM
iteration is much lower.

Scheduling is a practical aspect that must be ex-
plored with much more detail. Smaller steps on the
temperature may help to select a better stop value
of β and we will explore this possibility.

EM iterations in Model 4 are much more time-
demanding than those performed in previous mod-
els. Since DAEM performs EM iterations at every
decrease of temperature, the entire training time is
much higher than the traditional one. Using an ap-
propriate scheduling configuration to select a con-
venient number of temperature steps and its corre-
sponding number of EM iterations, training can be
performed in a more efficient manner.

It can also be interesting to study the perfor-
mance of a geometrical progression of the temper-
ature and eventually reduce the number of EM iter-
ations for low temperature levels, since it can dras-
tically reduce the current amount of time required
for training.

Due to the fact that the present work is not
dependent on the used languages, further experi-
ments with different pairs will be carried out, as we
expect to have similar improvements on the qual-
ity of the translations. In addition, we also plan
on analysing the scalability of the approach pro-
posed in this paper when dealing with bigger cor-
pora, such as the NIST corpus or the more recent
versions of the Europarl corpus.

In this paper, results were reported in terms of
BLEU and TER to show the actual improvements
in terms of translation quality. Nevertheless, such
scores are computed after employing the align-
ments within the Moses-pipeline, which makes
use of the alignments only to extract phrases.
Hence, the impact of this method on the training
of the statistical alignment models may fade.
For this reason, we intend to conduct a deeper
analysis of the alignment quality produced by
DAEM, by studying comparable results in terms
of log-likelihood and Alignment Error Rate.
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