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Abstract

Constraints in natural language process-
ing play an important role. In this pa-
per we show which impact (word-order)
constraints have on the translation re-
sults, when they are applied in the re-
combination step of a linear EBMT sys-
tem. Both the baseline EBMT system
and the constrained one are implemented
during this research. In the experiments
we use two language-pairs (Romanian-
English and Romanian-German), in both
directions of translations. In these lan-
guage constellations, Romanian, an in-
flected language with Latin root, is consid-
ered under-resourced. This aspect makes
the process of translation even more chal-
lenging.

1 Introduction

Machine translation (MT), one of the most chal-
lenging domains in Natural Language Processing
(NLP), plays an important role in ensuring global
communication. Documents in various domains
need to be translated in a large combination of
language-pairs. As quite often it is hard to find
the right human translators, with the right domain-
and language-knowledge, MT can be considered,
at least for these cases, a solution.

Less spoken languages have to overcome a ma-
jor gap in language resources and tools, which
all ensure the development of a good MT-system.
Even more, some of these under-resourced lan-
guages are highly inflected, with a more compli-
cated grammar and often having linguistic phe-
nomena which have been not encountered in pre-
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vious language combinations. On the other side,
exactly for these languages, human translators are
few or missing, so MT-systems are highly re-
quired.

Based mainly on the existence of a parallel cor-
pus, which does not necessary have to include a
large number of examples1, example-based ma-
chine translation (EBMT) seems to be a solution
for under-resourced languages. This MT approach,
which has its start in Nagao’s work (Nagao, 1984),
is essentially translation by analogy. The basic
premise is that, if a previously translated sentence
occurs again, the same translation is likely to be
correct again.

Constraints in natural language processing play
an important role, such as in constraint-based
grammars. Constraints usually restrict the possible
values that a variable (or a feature) may take with
respect to certain rules. In MT, they have been used
for example in the SMT approach: (Canisius and
van den Bosch, 2009), (Cao and Sumita, 2010).

In this paper we explore how (word-order) con-
straints can be used in a linear EBMT system. As
we employ an under-resourced language (i.e. Ro-
manian), we keep the systems as resource-free as
possible. The algorithms are mainly based on sur-
face forms and corpus statistics. That is why our
EBMT systems borrow ideas only from the linear
and template-based EBMT approaches.

We investigate two language pairs: Romanian-
English and Romanian-German, in both directions
of translation. The under-resourced language we
consider in this work is Romanian, as when start-
ing this work not sufficient linguistic resources
were publicly available, or, when available, com-
paring with the other two languages, they were

1In contrast to statistical MT (SMT).
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under-developed or not sufficiently tested. Further-
more, there was also no real possibility of choos-
ing among several resources, as, when available,
only one resource was at hand. The use of the Ger-
man - Romanian language-pair raises interesting
questions, as most of the example-based transla-
tion systems consider English as a source/target
language (SL/TL), which has a simpler syntax
and morphology. Romanian and German, both in-
flected languages, present language specific char-
acteristics (morphological and syntactical), that
makes the process of translation even more chal-
lenging.

After this short introduction, the following
two sections will present both EBMT systems
we implemented: the baseline EBMT system
Lin−EBMT , and the constrained system Lin−
EBMTREC+. In section 4 we will describe the
data used and the translation results. The results
obtained by Lin−EBMT are compared with the
ones provided by different constraint settings ap-
plied in Lin − EBMTREC+. In all the experi-
ments the same training and test data are used. The
paper will end with conclusions and further work.

2 Lin− EBMT , the Baseline EBMT
System

In this section we describe Lin − EBMT , the
baseline EBMT system implemented during the re-
search. Lin − EBMT is a linear EBMT system,
in the sense of system classification found in (Mc-
Tait, 2001). It is based on surface-forms and uses
no linguistic resources, with the exception of the
parallel corpus. It contains all the three steps of an
EBMT system2: matching, alignment and recom-
bination.

Before starting the translation, training and test
data are tokenized and lowercased. In order to
reduce the search space in the matching process,
we use a word index. This approach has already
been encountered in the literature, for example in
(Sumita and Iida, 1991). The matching procedure
is run only after the search space size is decreased.
If during the matching procedure the test sentence
is found in the corpus, its translation represents the
output. Otherwise, the translation steps described
in the following subsections are performed.

Matching the Input

2The steps of an EBMT system – matching, alignment and
recombination – are firstly described in (Nagao, 1984) and
specifically presented under these names in (Somers, 1999).

The matching procedure is a linguistic light ap-
proach, focusing in finding common substrings.
As, the longer the common subsequence, the lower
the probability of boundary friction problems, the
longest common subsequence (LCS) is consid-
ered. The procedure is based on the Longest Com-
mon Subsequence Similarity (LCSS) measure we
implemented using a dynamic programming algo-
rithm similar to the one found in (Bergroth et al.,
2000). The initial LCS character-based algorithm
is transformed into a token3-based one. A penalty
P = 0.01 is introduced for each token-gap be-
tween the input and the matched sentence. This
way it is chosen the sentence that covers the in-
put with less token-gaps. Therefore, the chance to
have a minimum number of sequences that should
be recombined to form the output increases. This
approach could decrease the appearance of bound-
ary friction and word-order problems.

The matching score is calculated as follows:
given the input I and a sentence S from the ex-
ample database, LCSS is calculated as:

LCSS(I, S) = LCSST (I, S)−P ∗ noTG, (1)

where

LCSST (I, S) =
Length(LCS(I, S))

Length(I)
, (2)

LCS(I, S) is the LCS between I and S,
Length(x) is the number of tokens of a string
x and noTG is the number of token-gaps of the
LCSS(I, S) when compared with I .

For example, considering the sentences
Input s1 = “Saving names and phone numbers (
Add name )”
Sentence in the corpus s2 = “Erasing names and
numbers”
The longest common subsequence LCS(s1, s2) is
“names and numbers”

Given the input and the example database, the
matching procedure gives as output the sentences
that best cover the input. The algorithm tries to
match the input with an entry in the corpus, and
in case this is not possible, to match parts of the
input with (parts of) the sentences in the corpus.
The matching algorithm is recursive and follows
the steps enumerated below:

1. Find the sentence in the corpus that best
match the input, by using the similarity mea-
sure previously described. Keep it as part of

3A token can be a word-form, a number, a punctuation sign,
etc.
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the solution. In this step only one maximum
value for LCSS(I, S) is chosen.

2. If the input is not fully covered, eliminate
what has been already found from the input
and for the rest return to step 1. Else, stop the
matching procedure: the result is found.

Output Generation - Alignment and Recom-
bination
After matching the input on examples, two further
steps are required: alignment and recombination.

The alignment information is extracted from
the GIZA++4 output, when considering the infor-
mation for target-source language direction. The
choice of only one language direction is motivated
by the need to avoid conflicts between the match-
ing step and the alignments extracted.

The alignment procedure considers the sen-
tences given as output by the matching procedure
and their translations. From these sentences all the
GIZA++ alignments are extracted5, but only the
longest target language aligned subsequences are
used further in the recombination step. For exam-
ple, given the extracted LCS “technical regulations
standards” and the following alignments: “tech-
nical - tehnice” (position 8 in TL), “regulations -
reglementǎrile” (position 7 in TL) and “standards
- standarde” (position 23 in TL), the sequences
“reglementǎrile tehnice” and “standarde” are used
in the recombination step (language-pair English-
Romanian).

The recombination step has as input the “the
bag of TL sequences” given as output by the
alignment and as result the translation. It is
based on the monolingual distribution of bi-
grams and on the recombination matrix A =
(ai,j)1≤i,j≤n, which we define as follows: If the
outcome of the alignment is n word-sequences
{sequence1, sequence2, ..., sequencen} which
form the output and are not necessarily different,
with sequencei = wi1wi2 ...wilast

, then A is a

4GIZA++ is a toolkit that is used to train the 1-5 IBM
models and an HMM word alignment model. More on
http://code.google.com/p/giza-pp/.
5All alignments need to be extracted, as they are further used
in the template-generation in Lin− EBMT REC+.

square matrix of order n that is defined as follows:

A =



−3, if i = j;
−2, if i <> j,

wilast
wj1 is

not in the
corpus;

2∗count(wilast
wj1

)

count(wilast
)+count(wj1

) , else.
(3)

where count(s), when s is a token, represents the
number of the appearances of s in the corpus. The
bi-grams considered are formed from the last word
of the sequence sequencei - wilast

and the first
word of sequencej - wj1 . The value for the case
“i <> j and count(wilast

wj1) <> 0” is com-
puted using the Dice coefficient.

The idea of representing the information in a
matrix is motivated by the “similarity matrix”
found in (Kit et al., 2002). However, the way in
which we define the recombination matrix and ob-
taine the output, differentiate our work from the
previous approach.

The recombination algorithm is based on
finding the maximum value ai,j , ‘combining’
sequencei and sequencej , and deleting all the val-
ues from the matrix corresponding to sequencej

(line and column j). When sequencei and
sequencej are combined, they are concatenated
and the matrix values for the new element
sequenceisequencej are the ones which previ-
ously corresponded to sequencej .

Given a certain corpus, the maximum value for
ai,j means that the probability that sequencej fol-
lows sequencei is the highest. This happens as the
probability that wj1 follows wilast

is the highest.
Data sparseness has a direct influence on the re-
sults. The whole recombination process starts with
the first maximum value found in the initial matrix
and it continues until the order of the matrix be-
comes one and the output is obtained.

3 Imposing Constraints on
Recombination

In the previous section we showed how Lin −
EBMT is implemented. In the recombination
step it makes no use of the information directly ex-
tracted by the matching step, as it employs only
the ‘bag of TL word sequences’ – the output of the
alignment. From these word sequences, the output
is formed by considering only 2-gram information

195



and the recombination matrix. This way the in-
formation provided by the matching (SL sentences
and their translations) is lost, although helpful data
for deciding the word order in the recombination
step is still present.

In the implementation of the extended version of
Lin − EBMT (i.e. Lin − EBMTREC+) ideas
from the template-based EBMT approach are in-
corporated in the recombination step. The previ-
ous two steps6 remain unchanged.

The idea of mixing the linear approach with the
template-based one is also found in previous pub-
lished works. In (Sumita, 2001), when combining
these two EBMT approaches, in contrast to our im-
plementation, a pure template-based approach is
used for the recombination. In our approach the
values in the recombination matrix are constrained
by information extracted from templates. A tem-
plate follows the definition from (McTait, 2001),
with the difference that the alignments of the text
fragments and variables are contained in only one
set of alignments (Aall) and not in two. Further-
more, there is no connection between the number
of text fragments and the one of variables. A tem-
plate contains an SL and a TL side.

During the translation process the template ex-
traction algorithm is applied for each test sentence
in the test data set after the alignment. It is a run-
time procedure in the translation process. It has
as input the sentence to be translated, the matched
sentences and their translations, the correspondent
longest common subsequences and GIZA++ align-
ments. A template is extracted for each matched
sentence.

The template extraction algorithm has two
phases: a monolingual and a bilingual one. The
monolingual phase is considered only for the
source language, in contrast to other template ex-
traction algorithms presented in the literature, for
example in (McTait, 2001). Similar ideas appear
also in (Caseli et al., 2006). Before starting the
monolingual phase, which is based on the infor-
mation provided by the LCS(I, Si), the align-
ment information Aalli is extended, so that each
aligned sequence is marked either as text fragment
(TEXT ) or as variable (V AR).

The Monolingual Phase:
The monolingual phase of the algorithm has as out-
put the SL side of the template. The common to-
kens between I and the SL matched sentence Si

6The matching and alignment algorithms.

(i.e. LCS(I, Si)) are considered as text fragments
in the SL side of the template. All the other tokens
from Si represent variables.

The Bilingual Phase:
Given the SL side of the template, the translation
Ti, and the alignment information Aalli, the TL
side of the template can be obtained. The TL se-
quences aligned to the SL text fragments represent
the TL text fragments. The rest of the TL tokens
are considered variables. The alignments between
the SL/TL variables and text fragments are given
by the information provided by GIZA++.

All aligned SL/TL text fragments and SL/TL
variables are attached the same identification num-
ber. In case no alignment information for some
variables is found, these variables are of the
generic type NOALIGNnumber. The variables
from TL, which are not aligned, are of the type
NOALIGN0. When SL text fragments are not
aligned, no correspondent alignment number is
found in the TL side.

After the template is obtained, it is reduced, i.e.
if on both SL and TL sides there is the same vari-
able sequence V ARiV ARi+1...V ARj−1V ARj ,
with i ≤ j and with variables one after another in
the same order, this sequence is reduced to a one
variable V ARij on both SL and TL sides.

The output of the whole algorithm for template
extraction is the set of all reduced templates. This
is used later in generating constraints in the recom-
bination step.

The recombination step in Lin−EBMTREC+

builds the output almost in the same way as in
Lin−EBMT . Differences appear in the values of
the recombination matrix and in the way the max-
imum value is searched.

From the extracted templates, word-order rules
are determined and a set C = {(wi, wj)} of con-
straints is built. C contains no duplications. A con-
straint (wi, wj) imposes that the words wi and wj

can not appear one after another in the output as the
sequence wiwj . Therefore, the value in the recom-
bination matrix corresponding to the entry wiwj is
set to -2. This way the possibility of choosing this
combination as a maximum is reduced.

We considered three types of constraints:

1. The First-Word-Constraint (C.1), which
refers to the first word of the output:
If a word wTLfirst

• is found as a first word in the TL side of
a template, and
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• is aligned to the first word wSLfirst
on

the SL side7,

then it is considered as the first word of the
output and no other words or word-sequences
can precede it. This means that for all TL
words wi provided by the alignment, the con-
straint (wi, wTLfirst

) is added to the set of
constraints C.8

2. TLSide-Template-Constraint (C.2), which
is deduced only from the TL side of each of
the templates extracted:
If in a TL side of a template the words wi and
wj appear in the sequence wi[...]wj , then the
sequence wjwi is not allowed in the output
formation. Therefore the constraint (wj , wi)
is added to the set of constraints C.

3. Whole-Template-Constraint (C.3), which is
extracted considering each of the templates,
together with the input sentence, and the
alignment information9:
Before defining this type of constraints, some
observations need to be made. Given the
input sentence I = {tSL1 ...tSLn} and the
alignment information tSLi ↔ tTLi , where
1 ≤ i ≤ n, it is considered that:

(a) In case tSLi is not aligned on the
TL side, tTLi has a generic value
“NOALIGNMENT”, value which will be
ignored in further steps;

(b) If tSLi is an out-of-vocabulary word
(OOV-word), then it is aligned to itself.
That is tTLi = tSLi .

If on the SL-side of a template, before a text
fragment tSLk

, the ‘same’10 variables/text
fragments appear as on the TL-side of the
same template before the aligned TL text frag-
ment tTLk

, then the TL aligned sequences
tTLp ...tTLq corresponding to the sequences
tSLp ...tSLq in the input, which are before
tSLk

, appear in the output also before the

7This means it is the translation of the first word of the input
wSLfirst .
8When extracting these types of constraints, information
might be derived, which is not used later. An improvement
of the algorithm could be made by considering only the TL
sequences which form the output and not all possible words.
9The alignment refers to the corresponding TL tokens (token-
sequences) of the SL tokens (token-sequences) in the input.
10In this context, the ‘same’ means that the variables and /or
text fragments have the same alignment number.

tTLk
. That means that constraints of the form

(tTLk
, tTLj ), p ≤ j ≤ q, are added to the set

of constraints C.

We chose only constraints which can be easily ex-
tracted from the templates, without using extra lin-
guistic resources. In a broader context more types
of constraints can be included.

For the recombination step we define the con-
strained recombination matrix, which can be
seen as an extended version of the previous recom-
bination matrix (formula 3). Given the outcome
of the alignment – n word-sequences {sequence1,
sequence2, ..., sequencen} that form the out-
put and which are not necessarily different, with
sequencei = wi1wi2 ...wilast

– and a set of con-
straints C = {(wiq , wir)}, with 1 ≤ iq, ir ≤ n,
then A = (ai,j)1≤i,j≤n is a square matrix of order
n that is defined as:

A =



−3, if i = j;
−2, if i <> j,

wilast
wj1 is not in

the corpus or
(wilast

wj1) ∈ C;
2∗count(wilast

wj1
)

count(wilast
)+count(wj1

) , else.
(4)

where count(s), when s is a token, represents the
number of the appearances of s in the corpus. The
bi-grams considered are formed as in the previous
definition (see formula 3). Also the value for the
case “i <> j and count(wilast

wj1) <> 0 and
(wilast

wj1) /∈ C” is computed using the Dice co-
efficient.

As in Lin − EBMT , the recombination algo-
rithm of Lin − EBMTREC+ is based on finding
the maximum value ai,j in the constrained recom-
bination matrix

The algorithm follows the same steps as in
Lin− EBMT 11, when no C.1 constraints can be
applied. When C.1 constrains can be applied the
maximum value is not searched in the whole ma-
trix, but on a specific row: given that the first word
is wFIRST in sequencep, the first maximum value
in the matrix is searched as ap,i. The algorithm
continues considering the previous word found and
incorporated in the output.

For some of our experiments we made the dif-
ference between the case ‘wilast

wj1 is not in the
corpus’ – i.e. no information found in the LM –
11See the previous section.
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and the case ‘(wilast
wj1) ∈ C’ – i.e. there is a

constraint for these specific words. Therefore, we
changed the definition of the constrained recombi-
nation matrix:

A =



−3, if i = j;
−1, if i <> j,

wilast
wj1 is not in

the corpus;
−2, (wilast

wj1) ∈ C;
2∗count(wilast

wj1
)

count(wilast
)+count(wj1

) , else.
(5)

In further work the definition of the matrix could
be more refined, for example by using weights on
the constraints.

4 Evaluation

In this section, before the evaluation results will be
presented, the training and test data used for the
experiments are described.

4.1 Data Description
We chose for our experiments a parallel corpus,
considering four languages (Romanian, German,
English and Russian), called RoGER. The cor-
pus was manually aligned at sentence level. More-
over, its translations were manually verified. It is
a domain-restricted corpus, as the text represents a
users’ manual of an electronic device. The text is
preprocessed, by replacing numbers, web pages,
etc. with ‘meta-notions’, for example numbers
with NUM. More information about RoGER can
be found in (Gavrila and Elita, 2006).

The small size, i.e. 2333 sentences, is compen-
sated by the correctness of the translations and of
the alignments. 133 sentences were randomly ex-
tracted as the test data set; the rest of 2200 sen-
tences remain as the training data. Some statistical
information about the corpus is presented in Ta-
ble 1.

4.2 Results
The obtained translations were evaluated using
three (3) automatic evaluation metrics: BLEU (Pa-
pineni et al., 2002), NIST (Doddington, 2002) and
TER (Snover et al., 2006). The choice of the met-
rics is motivated by the available resources and, for
comparison reason, by the results reported in the
literature. Due to lack of data and further transla-
tion possibilities, we consider the comparison with
only one reference translation.

Data No. of Vocabulary Average
SL words sentence length

English-Romanian
Training 27889 2367 12.68

Test 1613 522 12.13
Romanian-English, Romanian-German

Training 28946 3349 13.16
Test 1649 659 12.40

German-Romanian
Training 28361 3230 12.89

Test 1657 604 12.46

Table 1: RoGER Statistics.

The evaluation of Lin − EBMTREC+, when
changing the combination of constraints, is pre-
sented in Table 2 for Romanian-English and in Ta-
ble 3 for German-Romanian, for both directions
of translation. All possible combinations of con-
straints and definitions of the constrained recom-
bination matrix are tested.

System BLEU NIST TER
English – Romanian

Lin− EBMT 0.2997 5.4093 0.6046
C. 1 0.3067 5.5768 0.5930
C. 2 0.3042 5.4187 0.5991
C. 3 0.3083 5.5836 0.5906

C. 1+2 0.3062 5.5353 0.5930
C. 1+3 0.3083 5.5836 0.5906
C. 2+3 0.3073 5.5638 0.5882

C. 1+2+3 0.3073 5.5638 0.5882
C. 1+2+3 1:2 0.3085 5.5322 0.5864

Romanian – English
Lin− EBMT 0.3597 6.0586 0.5065

C. 1 0.3695 6.2694 0.5034
C. 2 0.3711 6.1625 0.4984
C. 3 0.3633 6.2415 0.5108

C. 1+2 0.3712 6.2879 0.5009
C. 1+3 0.3632 6.2355 0.5114
C. 2+3 0.3656 6.2620 0.5083

C. 1+2+3 0.3656 6.2620 0.5083
C. 1+2+3 1:2 0.3668 6.2991 0.5077

Table 2: Evaluation Results for Lin −
EBMTREC+ – English-Romanian, when
changing the constraints (C=constraint).

In both tables 2 and 3, for the case C. 1+2+3
1:2 the definition of the constrained recombina-
tion matrix presented in formula 5 is used. For
the rest of the experiments, we employ the defi-
nition shown in formula 4. The notation ‘C. num-
ber’ means that only the constraint of type ‘num-
ber’ is used. In ‘C.number1+number2’ two con-
straints are used, and they are of type number1 and
number2, respectively.

The evaluation results show small improve-
ments for (almost all) the cases when constraints
are used. The differences between the Lin −
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System BLEU NIST TER
German – Romanian

Lin− EBMT 0.2643 4.5589 0.6428
C. 1 0.2658 4.6935 0.6422
C. 2 0.2682 4.6074 0.6409
C. 3 0.2627 4.6757 0.6422

C. 1+2 0.2654 4.6745 0.6428
C. 1+3 0.2627 4.6757 0.6422
C. 2+3 0.2633 4.6807 0.6422

C. 1+2+3 0.2633 4.6807 0.6422
C. 1+2+3 1:2 0.2646 4.6559 0.6361

Romanian – German
Lin− EBMT 0.2867 4.9792 0.6795

C. 1 0.2842 5.0664 0.6716
C. 2 0.2857 5.0253 0.6789
C. 3 0.2891 5.0622 0.6716

C. 1+2 0.2836 5.0591 0.6698
C. 1+3 0.2891 5.0622 0.6716
C. 2+3 0.2875 5.0593 0.6722

C. 1+2+3 0.2875 5.0593 0.6722
C. 1+2+3 1:2 0.2894 5.0770 0.6722

Table 3: Evaluation Results for Lin −
EBMTREC+ – German-Romanian, when
changing the constraints (C=constraint).

EBMT scores and the scores obtained by Lin −
EBMTREC+ are higher for English-Romanian
(both directions of translations), than for German-
Romanian (both directions). Analyzing the results
it can be seen that best results (bold-face values in
the tables 2 and 3) are encountered for different
combinations of constraints. However, the combi-
nation C. 1+2+3 1:2 gives best results in 50% of
the cases, when all three evaluation scores and all
combinations of languages are considered. There-
fore, it can be considered the “winner”.

A visual representation of all results is shown in
Figure 1.

Our results of the EBMT systems for Roma-
nian English, in both directions of translations,
are comparable12 with the ones presented in (Ir-
imia, 2009). The system in (Irimia, 2009) is using
extra linguistic resources and as corpus the JRC-
Acquis corpus13. The maximum BLEU scores re-
ported here were 0.3088 and 0.3689, for English-
Romanian and Romanian-English, respectively.
To our knowledge no results were reported for
EBMT systems, for German-Romanian (in both
directions).

Concerning the time of translation for Lin −
EBMTREC+, on the whole, it required less time
than Lin−EBMT . although extra-time is needed

12A 1:1 comparison is excluded, as different type of data is
used.
13http://wt.jrc.it/It/Acquis/

for the extraction of the constraints. This happens
due to the changes in the recombination matrix.

5 Conclusions

In this paper we presented Lin − EBMTREC+,
an extension of the pure linear EBMT system
Lin − EBMT . Lin − EBMTREC+ combines
ideas from linear EBMT systems and template-
based ones. When compared with Lin−EBMT ,
changes appear only in the recombination step
by adding word-order constraints. The other two
EBMT steps – matching and alignment – remain
unchanged. Adding extra word-order informa-
tion in the recombination, as expected, led to an
improvement in the translation results. As the
changes in the recombination matrix might have
a seldom impact on the results – due to the corpus,
due to the fact that only one solution is taken, etc.
– this improvement was not very big. As further
work we plan testing how further constraints could
influence the translation results and how the sys-
tems react to a different type of data, e.g. the JRC-
Acquis corpus. A manual analysis of the results
would show how exactly the results are influenced
by the constraints and how the systems react to the
degree of inflection of the languages involved. Ad-
ditionally, testing n-grams of several lengths could
be of interest.
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