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Abstract

We present a sub-sentential alignment al-
gorithm that relies on association scores
between words or phrases. This algorithm
is inspired by previous work on alignment
by recursive binary segmentation and on
document clustering. We evaluate the re-
sulting alignments on machine translation
tasks and show that we can obtain state-of-
the-art results, with gains up to more than
4 BLEU points compared to previous work,
with a method that is simple, independent
of the size of the corpus to be aligned, and
directly computes symmetric alignments.
This work also provides new insights re-
garding the use of “heuristic” alignment
scores in statistical machine translation.

1 Introduction

Sub-sentential alignment consists in identifying
translation units in sentence-aligned parallel cor-
pora, i.e. in texts in which each sentence has been
matched with its translation. This task constitutes
the first step in the process of training most data-
driven machine translation (MT) systems (statistical
or example-based). The most prominent approach
nowadays is phrase-based statistical machine trans-
lation (SMT), where the core model is a translation
table derived from sub-sentential mappings. This ta-
ble consists in a pre-computed list of phrase1 pairs,
where each (source, target) pair is associated with
a certain number of scores loosely reflecting the
likelihood that source translates to target.

The problem of identifying sub-sentential map-
pings from parallel texts, e.g. between isolated
words or n-grams of words, is well-known, and nu-
merous proposals have been put forward to perform
this task. Those methods roughly fall into two main

c© 2012 European Association for Machine Translation.
1In this context, a phrase is a sequence of words and does not
necessarily correspond to a syntactic phrase.

categories. On the one hand, the probabilistic ap-
proach, introduced by Brown et al. (1988), consid-
ers the problem of identifying links between words
or groups of words in parallel sentences. This ap-
proach consists in defining a probabilistic model of
the parallel corpus, the parameters of which are es-
timated by a global maximization process which si-
multaneously considers all possible associations in
the corpus. The goal is to determine the best set of
alignment links between all source and target words
of every parallel sentence pair. The most famous
representatives in this category are the IBM models
(Brown et al., 1993) for aligning isolated words,
which have given rise to an impressive series of
variants and amendments (see e.g. (Vogel et al.,
1996; Wu, 1997; Deng and Byrne, 2005; Liang
et al., 2006; Fraser and Marcu, 2007; Ganchev et
al., 2008), to cite a few). Generalizing word align-
ment models to phrase alignment proves to be a
much more difficult problem, and in the view of
work of Marcu and Wong (2002) and Vogel (2005),
such alignments are generally produced by heuristi-
cally combining asymmetric 1–n word alignments
(“oriented”) in both directions (Koehn et al., 2003;
DeNero and Klein, 2007). Once the set of align-
ment links is constituted, it is possible to assign
scores to each pair of segments extracted.

On the other hand, associative approaches (also
called heuristic by Och and Ney (2003)), were in-
troduced by Gale and Church (1991). They do
not rely on an alignment model: in order to detect
translations, they rely on independence statistical
measures such as, for instance, Dice coefficient,
mutual information (Gale and Church, 1991; Fung
and Church, 1994), or likelihood ratio (Dunning,
1993)—see also more recent work by Melamed
(2000) and by Moore (2005). Computations are
generally limited to a list of association candidates
precomputed using patterns and filters, for instance,
by focusing exclusively on the most frequent word
n-grams. In this approach, a local maximisation
process is used, where each sentence is processed
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independently. Alignment links can then be com-
puted, using for instance the greedy algorithm pro-
posed by Melamed (2000) (competitive linking).

The probabilistic approach is the most widely
used, mainly due to its tight integration with SMT,
of which it constitutes a cornerstone since the in-
troduction of IBM models (Brown et al., 1993).
The two approaches have shown complementary
strengths and weaknesses, as acknowledged by e.g.
Johnson et al. (2007), where phrase associations
extracted from word alignments are filtered out ac-
cording to statistical association measures.

Anymalign, introduced in (Lardilleux and Lep-
age, 2009; Lardilleux et al., 2011a), aims at ex-
tracting sub-sentential associations, addressing a
number of issues that are often overlooked. It can
process any number of languages simultaneously, it
does not make any distinction between source and
target, is amenable to massive parallelism, scales
easily, and is very simple to implement. Anyma-
lign’s association scores have proven to produce bet-
ter results than state-of-the-art methods on bilingual
lexicon constitution tasks (evaluation performed by
comparing word associations with reference dic-
tionaries). However, Anymalign’s phrase tables
are not as good as those obtained with standard
methods (evaluation performed with standard MT
metrics) (Lardilleux et al., 2011b).

One possible explanation for these contrasted re-
sults is that, Anymalign does not compute any align-
ment at the word or at the phrase level; instead, it
directly computes translation tables along with their
associated scores. Those tables have very different
profiles than those obtained with probabilistic meth-
ods, mainly in terms of their n-gram distribution
(Luo et al., 2011). In particular, despite recent im-
provements (Lardilleux et al., 2011b), the quantity
of long n-grams produced remains relatively small
compared with Moses’s translation tables.

In this paper, we complement Anymalign with a
simple alignment algorithm, so as to better under-
stand its current limitations. The resulting align-
ments improve Anymalign’s phrase tables to a point
where they can be used to obtain state-of-the art re-
sults. In passing, we also propose a computationally
cheap way to compute ITG alignments based on
arbitrary word level association scores.

The rest of this paper is organized as follows:
Section 2 describes the alignment method in detail,
Section 3 presents an evaluation on machine trans-
lation tasks and an analysis of the results, and Sec-
tion 4 concludes and discusses further prospects.

2 Description of the Method

In a nutshell, out method segments pairs of parallel
sentences in two parts, linking the two resulting tar-
get segments with their proper translation amongst
the two source segments (monotonous or inverted
translation), and repeats this process recursively on
the segment pairs thus obtained.

This work is strongly inspired by that of Wu
(1997) and Deng et al. (2006). The former in-
troduces inversion transduction grammars, which
generate synchronized binary parse trees in source
and target languages. This formalism models both
variable-length associations at leaf (terminal) nodes,
and reorderings (inversions) at any level of the parse
tree. As we are only interested in computing align-
ment based on arbitrary lexical association scores,
we will dispense here from using the full apparatus
of stochastic grammars, yielding algorithms that
are computationally much cheaper. The latter uses
a similar concept, where more or less coarse bi-
segments are extracted from non-sentence-aligned
parallel texts by iteratively recursively applying a
top-down binary segmentation algorithm. We repro-
duce the same approach here at the sentence level,
using different local association scores.

2.1 Alignment Matrix
Our starting point are (1) a sentence-aligned bitext;
and (2) a function w measuring the strength of the
translation link between any source and target pair
of words. Several definitions of w are possible; it is
nevertheless natural to define it endogenously from
word occurrences in the bitext. The scores we will
first use will be obtained using Anymalign’s output.
We will see later that they lead to better results than
scores obtained using other standard measures.

In the following, the score w(s, t) between a
source word s and a target word t is defined as
the product of the two translation probabilities
p(s|t)×p(t|s), produced by Anymalign:

w(s,c) = p(s|t)×p(t|s)
= ∑

N
n=1[[(s,t)∈(Sn,Tn)]]kn

∑
N
n′=1[[s∈Sn′ ]]kn′

× ∑
N
n=1[[(s,t)∈(Sn,Tn)]]kn

∑
N
n′=1[[t∈Tn′ ]]kn′

=
(∑

N
n=1[[(s,t)∈(Sn,Tn)]]kn)

2

(∑
N
n′=1[[s∈Sn′ ]]kn′)×(∑

N
n′=1[[t∈Tn′ ]]kn′)

where:
• [[x]] = 1 if x is true, 0 otherwise;
• N is the number of entries (source–target

phrase pairs) in Anymalign’s translation table;
• Sn (resp. Tn) is the source (resp. target) part of

an entry in the translation table;
• kn is the count associated to the pair (Sn, Tn) in

the translation table. This figure is not by itself
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Sn Cn kn

pays countries 151,190
pays country 17,717
pays tiers third countries 10,865
les pays countries 6,284
mon pays my country 4,057
ces pays these countries 3,742
pays . country . 2,007
état country 122

w(pays,country) = p(pays|country)×p(country|pays)
= 17,717 + 4,057 + 2,007

151,190 + 17,717 + 10,865 + 6,284 + 4,057 + 3,742 + 2,007

× 17,717 + 4,057 + 2,007
17,717 + 4,057 + 2,007 + 122

' 0.121

Figure 1: Computing a score between source word
pays and target word country from a subset of a
translation table produced by Anymalign with the
French and English parts of the Europarl corpus
(Koehn, 2005).

an indicator of the quality of the entry; it is just
the number of times the translation pair has
been produced by Anymalign (see (Lardilleux
et al., 2011a) for details).

This computation is illustrated on Figure 1.
What we do here is tantamount to a very simpli-

fied version of the algorithm that is used to train
standard translation models: starting with lexical
associations, we derive by heuristic means an opti-
mal (Viterbi) alignment, from which the translation
tables are finally computed. Our procedure is much
simpler, though, as we do not iterate the procedure
(like in EM training) and directly manipulate sym-
metric representations at the phrase level.

2.2 Segmentation Criterion
The segmentation criterion described hereafter is
inspired by the work of Zha et al. (2001) on docu-
ment clustering. Their problem consists in comput-
ing the optimal joint clustering of a bipartite graph
representing occurrences of terms inside a set of
documents. We adapt it to the search of the best
alignment between words of a source sentence and
those of a target sentence.

To this end, we consider a pair of sentences (S,T )
from the parallel corpus, where the source sentence
S is made up of I source words and the target sen-
tence T is made up of J target words: S = [s1 . . .sI]
and T = [t1 . . . tJ]. Moreover, we consider “split”
indices x and y which define a binary segmentation
of the source and target sentences (the “.” symbol
refers to the concatenation of word strings):

S = A. Ā with A = [s1 . . .sx−1] and Ā = [sx . . .sI]

T = B. B̄ with B = [t1 . . . ty−1] and B̄ = [ty . . . tJ]

B B̄
t1 . . . ty−1 ty . . . tJ

s1

A
... W (A,B) W (A, B̄)

sx−1
sx

Ā
... W (Ā,B) W (Ā, B̄)
sI

Figure 2: Schematic representation of the segmen-
tation of a pair of sentences S = A. Ā and T = B. B̄.

The choice of x and y will be guided by the sum W
of the association scores between each source and
target words of a block (X ,Y ) ∈ {A, Ā}×{B, B̄}:

W (X ,Y ) = ∑
s∈X ,t∈Y

w(s, t)

These notations are summarized in Fig. 2.
Then, we define the total score of a segmentation:

cut(X ,Y ) =W (X ,Ȳ )+W (X̄ ,Y )

Note that cut(X ,Y ) = cut(X̄ ,Ȳ ). In our case, a low
value indicates that the association scores between
the words of X and that of Ȳ on the one hand, and
between the words of X̄ and that of Y on the other
hand, are low; in other words, those two blocks are
unlikely to correspond to good translations, con-
trarily to (X ,Y ) and (X̄ ,Ȳ ). We would thus like
to identify the pair (x,y) that leads to the lowest
possible value of cut(X ,Y ).

As pointed out by Zha et al. (2001), this quantity
tends to produce unbalanced segments (document
clusters in their case) because of the absence of
normalisation, which warrants its replacement by:

Ncut(X ,Y ) = cut(X ,Y )
cut(X ,Y )+2×W (X ,Y ) +

cut(X̄ ,Ȳ )
cut(X̄ ,Ȳ )+2×W (X̄ ,Ȳ )

This variant adds a density constraint on (X ,Y ) and
(X̄ ,Ȳ ), which is partially satisfied by the introduc-
tion of the denominators in the above expression.
Its values are in the range [0,2].

Our problem eventually consists in determining
the pair (x,y) that minimizes Ncut. Although effi-
cient search methods exist and are commonly used
in graph theory, our “graphs” (pairs of sentences)
are small in practice: about 30 words per sentence
in average in the Europarl corpus used in the fol-
lowing experiments. We thus content ourselves
with determining the best segmentation through an
exhaustive enumeration.

2.3 Alignment Algorithm
We can now recursively segment and align a pair
of sentences. At each step, we test every pos-
sible pair (x,y) of indices in order to determine
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procedure align(S,T ) :
if length(S) = 1 or length(T ) = 1 :

link each word of S to each word of T
stop procedure

minNcut = 2
(X ,Y ) = (S,T )
for each (i, j) ∈ {2 . . . I}×{2 . . .J} :

if Ncut(A,B)< minNcut :
minNcut = Ncut(A,B)
(X ,Y ) = (A,B)

if Ncut(A, B̄ < minNcut :
minNcut = Ncut(A, B̄)
(X ,Y ) = (A, B̄)

align(X ,Y )
align(X̄ ,Ȳ )

Figure 3: Recursive alignment algorithm.

the lowest Ncut. The worst case happens when
the matrix is cut in the most unbalanced possible
way; the complexity of the algorithm is thus cubic
(O(I×J×min(I,J))) in the length of the input sen-
tences. Using a greedy strategy only delivers sub-
optimal solutions, yet it does so much faster than
exact ITG parsing, which is cubic in the product
I×J (Wu, 1997). For a given pair (x,y), two values
are computed: one corresponds to a monotonous
alignment (Ncut(A,B)) and the other one to an in-
version of the two segments (Ncut(A, B̄)). We then
apply the process recursively on each of the two
segment pairs that correspond to the minimal Ncut.
It ends when one of the segments contains only one
word and produces 1–n or n–1 alignments. In this
approach, all words are aligned. By considering
different stopping criteria, eg. based on thresholds
on Ncut, variants of the algorithm are readily ob-
tained, which enable to balance the granularity of
the alignment with its precision, by choosing to
build larger and safer blocks (m–n alignments) in-
stead of smaller and less sure ones. We leave this
for future work. Figure 3 presents the complete
algorithm, and Fig. 4 illustrates the process on two
actual examples. In the following, we refer to this
algorithm under the name of “Cutnalign.”

The algorithm itself is independent of the size
of the parallel corpus to align, because each sen-
tence pair is processed independently. Aligning a
corpus can thus easily be made parallel: the total
running time is divided by the number of available
processors. Another advantage is that the align-
ments produced are symmetric during the whole
process, contrary to more widely spread models
such as IBM models that produce better result when
run in both translation directions and their outputs
combined using heuristics.

3 Evaluation

3.1 Description of Experiments
Our alignment method is evaluated within a
phrase-based SMT system. We use the Moses
toolkit (Koehn et al., 2007), and data extracted
from the Europarl corpus (Koehn, 2005), in
three languages: Finnish–English (agglutinating
language–isolating language), French–Spanish, and
Portuguese-Spanish (very close languages). For
each pair, we use a training set made up of
350,000 sentence pairs (avg.: 30 words/sentence in
English), and development and test sets made up
of 2,000 sentence pairs each. The systems are opti-
mized with MERT (Och, 2003). Unless otherwise
specified, a lexicalized reordering model is used.
Translations are evaluated using BLEU (Papineni
et al., 2002) and TER2 (Snover et al., 2006).

Five approaches are compared:

MGIZA++ (Gao and Vogel, 2008), implements
the IBM models (Brown et al., 1993) and the HMM
of Vogel et al. (1996). Integrated to Moses, it re-
mains the reference in the domain. It is run with
default settings: 5 iterations of IBM1, HMM, IBM3,
and IBM4, in both directions (source to target and
target to source). The alignments are then made
symmetric and a translation table is produced from
the alignments using Moses tools (grow-diag-final-
and heuristic for phrase pair extraction).

Anymalign (Lardilleux et al., 2011a), used to di-
rectly build the translation tables. As this tool can
be stopped at any time, its running time is set so that
it runs for the same duration as MGIZA++. The
same experiment is repeated by varying the length
of output phrases from 1 to 4 (see (Lardilleux et al.,
2011b) for details). In the following, we refer to it
under the names “Anymalign-1” to “Anymalign-4.”
The reordering model used in this configuration is a
simple distance-based model, because Anymalign
alone cannot provide the information required for a
lexicalized reordering model.

Anymalign + Cutnalign: we apply the algo-
rithm described in previous section to each of the
four translation tables produced by Anymalign-1
to Anymalign-4. Although every intermediary seg-
mentation step (all possible rectangles in Fig. 4) ac-
tually corresponds to a phrase pair that could be ex-
tracted and fit in a phrase-table, in our experiments,
we only rely on terminal alignment points, that are
then passed to the Moses toolkit to build new trans-
lation tables (using again the grow-diag-final-and

2Contrary to BLEU, lower scores are better.
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the level of budgetary implementation ;
le 0.037 ε 0.001 ε ε ε

niveau ε 0.591 ε ε ε ε

d’ ε ε 0.003 ε ε ε

exécution ε ε ε ε 0.060 ε

budgétaire ε ε ε 0.659 ε ε

; ε ε ε ε ε 0.287

finally , what our fellow citizens are demanding is the right to information .
enfin 0.607 0.001 ε ε 0 ε ε 0 ε ε ε ε ε ε

, 0.001 0.445 ε ε ε ε ε ε ε 0.001 ε 0.001 ε 0.001
c’ ε ε 0.001 ε ε ε ε 0 0.036 0.001 ε ε ε ε

est ε ε 0.001 ε ε ε ε 0 0.223 0.016 ε 0.001 ε 0.001
un ε ε ε ε ε ε ε ε 0.005 ε ε ε ε ε

droit ε ε ε ε ε ε ε 0 ε ε 0.084 ε ε ε

à ε ε ε ε ε ε 0.001 ε 0.001 0.003 0.001 0.018 ε ε

l’ ε ε ε ε ε ε ε ε 0.002 0.009 ε 0.002 ε ε

information ε ε ε ε ε ε ε ε ε ε ε ε 0.499 ε

que ε ε 0.002 ε ε ε 0.001 ε 0.002 0.001 ε 0.001 ε ε

réclament 0 0 ε ε ε ε ε 0.152 ε ε 0 0 0 ε

nos ε ε ε 0.171 0.004 0.001 ε ε ε ε ε ε ε ε

concitoyens 0 ε ε 0.001 0.323 0.009 ε ε ε ε 0 ε 0 ε

. ε ε ε ε ε ε ε ε 0.001 0.001 ε ε ε 0.954

Figure 4: Two examples of segmentation-alignment. The number in each cell corresponds to the value of
the function w, with 0 < ε ≤ 0.001. A null value indicates that the two words never appear together in
the translation table. Alignment points retained by the algorithm, i.e. at maximum level of recursion, are
in boldface. In the first example, the translation is monotonous except for the name/adjective inversion
(exécution budgétaire/budgetary implementation), therefore most alignment links are along the diagonal.
The second example, more complex, attests for the inversion of propositions inside the sentence.

heuristic). This approach yields more phrase pairs
as it allows to extract together segments on both
sides of a split point, e.g. le niveau/the level.

Simple probabilities + Cutnalign: the purpose
of this configuration is to evaluate the choice of w,
rather than the algorithm itself. To this end, we
use a very simple association score: the probability
that a source word and a target word are transla-
tions of one another (product of the two translation
probabilities), where this probability is computed
from their co-occurrence counts over the training
corpus. The definition of w is thus the same as in
Sec. 2.1, with two minor differences: (1) counts
are directly computed over the training bitext; and
(2) kn = 1,∀n.

Anymalign + Cutnalign / MGIZA++: This is
a combination of the MGIZA++ and Anyma-
lign+Cutnalign approaches. We do this by taking
the union of the two alignment sets. In pratice,
we simply concatenate the two alignment files pro-
duced by the aligners, and duplicate the training
bicorpus so that we end up with a new, twice as
large, training bicorpus and alignment file, from
which the phrase table is extracted.

In terms of runtime, although Cutnalign is cur-
rently implemented in a high-level programming
language (Python) and its complexity is cubic in the

length of the sentence pairs to process, the fact that
each sentence pair can be aligned independently
makes it amenable to massive parallelism if numer-
ous CPUs are available.

3.2 Results
Results are in Table 1. For each task, using the ba-
sic version of Anymalign yields worse scores than
MGIZA++-based system, even though extending
the phrase length reduces this gap by roughly a half,
except for the Finnish–English pair. Those results
are in line with (Lardilleux et al., 2011b).

Cutnalign leads to significant gains in all con-
figurations: from 1.6 to 4.6 BLEU points (fr–en,
Anymalign-1 + Cutnalign), with an average gain
of 2.6 BLEU and 2.7 TER points. Anymalign
+ Cutnalign is still 1.1 to 1.6 BLEU points be-
low in Finnish–English relatively to MGIZA++ but
produces results of comparable quality in French–
English and Portuguese–Spanish.

The “simple probabilities + Cutnalign” configu-
ration produces intermediary quality results, gen-
erally between “basic” Anymalign and Anymalign
+ Cutnalign. This shows that the function w has a
significant impact on the behavior of the alignment
method. Assuming the function used in these ex-
periments is one of the simplest possible, there is
ample room here for improvements. Merging both
phrase tables is almost always the best strategy, at
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Task System BLEU
(%)

TER
(%)

Entries
(millions)

Length of
entries

Links Length of
extracted blocks

MGIZA++ 22.27 62.92 22.2 3.24 26 1.16

Anymalign-1 18.68 67.30 11.8 1.87
Anymalign-2 17.86 68.60 4.4 2.09
Anymalign-3 18.06 68.13 3.0 2.32
Anymalign-4 18.06 68.53 2.1 2.42

Anymalign-1 + Cutnalign 21.14 63.74 7.7 3.26 62 1.45
fi–en Anymalign-2 + Cutnalign 21.14 64.69 7.5 3.27 69 1.48

Anymalign-3 + Cutnalign 20.83 64.18 7.3 3.29 73 1.50
Anymalign-4 + Cutnalign 20.64 64.52 7.1 3.29 78 1.53

Simple prob. + Cutnalign 19.09 67.09 5.5 3.23 74 1.78

Anymalign-1 + Cutnalign / MGIZA++ 22.66 62.45 27.0 3.24 44 1.30
Anymalign-2 + Cutnalign / MGIZA++ 22.68 62.91 26.9 3.24 47 1.31
Anymalign-3 + Cutnalign / MGIZA++ 22.73 62.82 26.8 3.24 49 1.32
Anymalign-4 + Cutnalign / MGIZA++ 22.78 62.11 26.7 3.24 52 1.33

MGIZA++ 29.65 55.25 25.6 4.29 31 1.17

Anymalign-1 25.10 59.36 6.1 1.27
Anymalign-2 26.60 58.16 6.3 1.99
Anymalign-3 27.02 57.96 3.9 2.29
Anymalign-4 26.85 58.00 2.6 2.42

Anymalign-1 + Cutnalign 29.65 55.22 12.9 4.21 50 1.49
fr–en Anymalign-2 + Cutnalign 29.69 55.44 13.1 4.22 48 1.48

Anymalign-3 + Cutnalign 29.26 55.49 13.0 4.23 50 1.49
Anymalign-4 + Cutnalign 29.16 55.46 12.8 4.23 52 1.51

Simple prob. + Cutnalign 27.97 56.85 10.2 3.95 54 1.62

Anymalign-1 + Cutnalign / MGIZA++ 30.02 54.81 31.9 4.24 41 1.32
Anymalign-2 + Cutnalign / MGIZA++ 29.91 54.88 31.9 4.24 40 1.32
Anymalign-3 + Cutnalign / MGIZA++ 30.22 54.94 31.9 4.24 41 1.32
Anymalign-4 + Cutnalign / MGIZA++ 29.91 54.87 31.8 4.24 42 1.33

MGIZA++ 38.53 48.46 32.2 4.30 30 1.09

Anymalign-1 35.20 50.89 5.7 1.26
Anymalign-2 36.80 49.60 5.9 1.99
Anymalign-3 36.82 49.67 3.7 2.26
Anymalign-4 36.96 49.80 2.4 2.37

Anymalign-1 + Cutnalign 37.35 49.55 17.9 4.30 50 1.32
pt–es Anymalign-2 + Cutnalign 38.96 48.04 18.0 4.30 48 1.32

Anymalign-3 + Cutnalign 38.55 48.40 17.7 4.31 50 1.33
Anymalign-4 + Cutnalign 38.56 48.37 17.3 4.31 54 1.35

Simple prob. + Cutnalign 37.71 49.04 13.9 4.09 50 1.41

Anymalign-1 + Cutnalign / MGIZA++ 38.77 48.12 37.7 4.25 40 1.20
Anymalign-2 + Cutnalign / MGIZA++ 38.69 48.39 37.9 4.25 39 1.20
Anymalign-3 + Cutnalign / MGIZA++ 38.94 48.12 37.8 4.25 40 1.20
Anymalign-4 + Cutnalign / MGIZA++ 38.82 48.18 37.8 4.25 42 1.21

Table 1: Summary of results obtained in our experiments. The first two columns (BLEU and TER)
report performance in machine translation. The two middle columns diplay various characteristics of
the translation tables: the number of entries and their length in words. The last two columns present
characteristics of the alignments prior to the production of the translation table: average number of
alignment links per training sentence pair and average length of the source part of minimal blocks
extracted (translations of the phrases that are consistent with word alignments).
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the most of much larger models.

3.3 Analysis of Alignments
One motivation for proposing this new alignment
method is that Anymalign still lacks the ability to
extract long n-gram translations in sufficient quan-
tity. In this section, we study some characteristics
of the alignments thus produced (see Table 1).

Regarding translation tables first, we observe
that those obtained from Cutnalign contain many
more entries than those produced by Anymalign
alone3 (three times more in average), except for
Anymalign-1 in Finnish–English. Nevertheless,
they are still much smaller than tables obtained
from MGIZA++, as they contain twice less en-
tries in average. In addition, the average length
of those entries is almost equal to that of those
in MGIZA++’s translation tables, while those pro-
duced by Anymalign are much shorter: producing
a translation table from alignment links allows to
make up for the lack of long n-grams as desired.

Secondly, we study the alignment links them-
selves. The column “Links” of Table 1 shows that
our method produces more alignment links than
MGIZA++: between 1.5 and 3 times more, depend-
ing on the task. The last column gives the main
reason: alignment blocks extracted by our method,
i.e. rectangles obtained at maximal recursion depth,
are always longer than minimum blocks obtained
from MGIZA++’s alignments (+ 26% in average).
Since we systematically align all source words with
all target words in such a rectangle, and since all
words of a sentence pair are therefore necessarily
aligned, the total number of alignments produced is
naturally high. This also explains the fact that the
number of entries in our translation tables is always
much lower than those obtained from MGIZA++,
as the latter produces 0–1 alignments that are at
the origin of numerous phrases extracted during the
constitution of the table by Moses (grow-diag-final-
and heuristic by default) (Ayan and Dorr, 2006).
Despite this, alignments produced by our method
lead to state-of-the-art scores in two machine trans-
lation tasks over three in our experiments.

4 Conclusion

We have presented a sub-sentential alignment
method based on a recursive binary segmentation
process of the alignment matrix between a source
sentence and its translation. Inspired by work on

3These tables were produced by running Anymalign for an
identical amount of time in all configurations, which explains
why larger values of the length parameter lead to smaller
tables—see details in (Lardilleux et al., 2011b).

alignment by Wu (1997) and Deng et al. (2006)
and work on document clustering by Zha et al.
(2001), we have shown that despite its simplicity,
this method leads to state-of-the-art results in two
tasks over three in our experiments. When fed with
Anymalign’s scores, it yields significant gains (up
to 4.6 BLEU points in French–English) in com-
parison with Anymalign alone. These experiments
confirm that Anymalign’s main handicap concerns
the translation of long n-grams. A complementary
alignment step, strictly speaking, is thus desired
in order to improve its results in machine trans-
lation. The alignment method proposed here is
simple, symmetric with respect to the translation
direction, and the use of local computations makes
it scale up easily. Many improvements are possible,
amongst which the use of early stopping criteria
during segmentation of the alignment matrix so as
to trade alignment granularity for confidence; the
use more sophisticated metrics for scoring blocks,
or the exploration of richer (e.g. ternary) segmenta-
tion schemes, enabling to account for more complex
linguistic constructs.
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