
Context-Aware Machine Translation for Software Localization

Victor Muntés-Mulero
Patricia Paladini Adell

CA Technologies
WTC Almeda Park

08940 Cornellà de Llobregat, Barcelona
Victor.Muntes@ca.com

Patricia.PaladiniAdell@ca.com

Cristina España-Bonet
Lluı́s Màrquez

TALP Research Center
Universitat Politècnica de Catalunya
cristinae@lsi.upc.edu,
lluism@lsi.upc.edu

Abstract

Software localization requires translating
short text strings appearing in user inter-
faces (UI) into several languages. These
strings are usually unrelated to the other
strings in the UI. Due to the lack of se-
mantic context, many ambiguity problems
cannot be solved during translation. How-
ever, UI are composed of several visual
components to which text strings are as-
sociated. Although this association might
be very valuable for word disambiguation,
it has not been exploited. In this paper,
we present the problem of lack of con-
text awareness for UI localization, provid-
ing real examples and identifying the main
research challenges.

1 Introduction

Due to the rapid and worldwide development of
Internet and IT applications, fast software local-
ization is becoming essential, requiring user inter-
faces (UI) to be translated to different languages.
One of the main obstacles when translating UI
is the word sense disambiguation problem since
strings are usually independent from other strings
in the UI and, therefore, it is not possible to infer
semantic information from other parts of the text.

In this paper, we want to show that the meaning
of a string in this environment varies depending on
its position in the UI. For instance, a word associ-
ated to a menu may be interpreted as a name, but
it may be an action if the same word appears on
a button. Although enriching the translation pro-
cess with this alternative contextual information
would benefit quality, previous software localiza-
tion techniques ignore, in general, this approach.

c© 2012 European Association for Machine Translation.

It is commonly accepted that the number of
words processed per day by a human translator is
significantly increased when an efficient machine
translation (MT) engine is used and human trans-
lators intervene in the post-editing phase. Specifi-
cally, it is becoming popular to use MT engines for
software localization. Unfortunately, even if con-
textual information about the UI components asso-
ciated to strings was gathered, current localization
procedures using MT engines are not devised to
absorb and exploit it to improve MT quality. Vi-
sually aided translation tools, like Passolo1 or Cat-
alyst2, leverage contextual information and show
it graphically to human translators. However, they
depend on specific file formats which are not al-
ways available. Improving the quality of the output
of MT allows both (i) to reduce the cost of transla-
tion by increasing translator’s throughput by up to
50%, based on CA Technologies3 experience, and
(ii) to reduce the delay to market of the software
products. The objective is simultaneous shipment.

The main contributions of this paper are as fol-
lows. Section 2 describes the most relevant state of
the art. In Section 3, we define the problem of the
lack of contextual information in UI localization
providing examples extracted from real products
of CA Technologies. In Section 4, we enumerate
the main research challenges in terms of improv-
ing the quality of the output of MT by increasing
the context awareness for UI localization. Finally,
Section 5 concludes this paper.

1www.passolo.com
2www.alchemysoftware.ie
3CA Technologies is a worldwide software and solutions
provider that helps customers to make ICT management more
agile, secure and flexible. The company localizes many of its
applications to several languages, using MT techniques and
human post-editing.

Proceedings of the 16th EAMT Conference, 28-30 May 2012, Trento, Italy

77



2 Previous Work

Incorporating MT in the software localization pro-
cess has been the focus of recent projects. For
instance, Ruopp (2010) adapts well-known open
source translation engines. Also, Hudik and
Ruopp (2011) integrate them into computer-aided
translation tools. However, to our knowledge,
none of these previous works make use of context
extracted from UI.

In general, most MT systems, translate text sen-
tence by sentence independently, ignoring broader
contextual information. Even at sentence level,
a statistical system based on segments or phrases
(phrase-based SMT, (Koehn et al., 2003)) uses the
source lexical context of phrases only locally, con-
sidering a limited number of words next to the
phrase being translated. Because of this, the dis-
course at document level is not considered.

Syntax-based SMT (Chiang (2005) among
many others) tries to alleviate the lack of con-
nection between long distance phrases by consid-
ering syntactic dependencies, still within a sen-
tence. Also, factored models (Koehn and Hoang,
2007) include linguistic information in phrase-
based models as extra factors associated to words.
This information can be anything that can be cod-
ified, although the most extended use is to employ
morphology to generate translations from the lem-
matized text. An alternative way to consider con-
text is by using word sense disambiguation tech-
niques to choose between possible translations of
a word or a phrase. In general, these approaches
use machine learning methods to learn an adequate
word selection model (see for example Giménez
and Màrquez (2008)). None of these advances in
standard phrase-based SMT tackles the context-
aware problem in UI translation.

3 Lack of Context Awareness

In this section, we describe the overall process of
UI software localization in an industrial environ-
ment and describe the problem of the lack of con-
text in UI translation.

3.1 UI Software Localization Process

Figure 1 depicts a high level overview of the pro-
cess for UI localization used at CA Technologies.
A first common aspect that is important to remark
is that, especially in large enterprises, program-
ming and localizing are not only performed by sep-
arate human teams, but this work is usually done
in different departments in very large and complex

development organizations. As a consequence, in
many cases direct collaboration between them is
not straightforward due to different time zones or
due to the fact that they might be using differ-
ent and complex tools, highly specialized for their
day-to-day tasks. Even worse, it is common that
some of the UI to be translated might be coming
from recently acquired software or part of the lo-
calization might be outsourced to third-parties. In
addition, the skills and expertise of developers and
translators are usually completely different. While
developers are not expected to have comprehensive
English language skills, translators are not sup-
posed to interpret the source code of applications.
As a result, development and localization are usu-
ally decoupled, their interaction is in general very
complex and, in addition, translators rarely have
access to the source code.

Usually, different tools are provided to help de-
velopers generating code which is compliant with
internationalization requirements (step 1 in Figure
1). These tools are devised to ensure, for instance,
that text appearing in the code adheres to the basic
formating rules, required in the localization pro-
cess to digest and translate the text properly. Once
a new product or release is ready, the source code is
parsed and the text in the UI is extracted for local-
ization (step 2 in Figure 1). First, text is run against
translation memories in order to leverage previous
translations (step 3). Second, the remaining strings
are run through MT engines to obtain a machine
translated output in the target language (step 4) that
will be post-edited by human translators (step 5).
This is one of the most time-consuming steps in
the localization process since it consists in man-
ually (or semi-automatically) editing the MT en-
gine outputs in order to produce publishable con-
tent. The output is then passed to an automatic
tool that prepares the new translated text to be in-
serted back to the original source code (step 6).
Because in many cases human translators do not
have access to any view of either the final layout
or the source code of large and complex applica-
tion, and therefore the UI components where each
string is associated, they cannot guarantee a correct
translation. As a consequence, it becomes neces-
sary to perform a critical iterative step that we call
Language Quality Assurance (LQA). This process
is usually highly resource-consuming and requires
programmers to generate a sample of evidences,
such as screenshots, to allow translators to validate
the translation in context. If errors are reported,
they have to be solved by developers in an iterative

78



Figure 1: UI Software Internationalization and Localization Process at CA Technologies

procedure. This costly process is very inefficient
and, therefore, expensive.

3.2 Context Description and Examples of
Lack of Context

We define context as the minimum required infor-
mation needed to solve an ambiguity. This contex-
tual information should be added to the raw strings
sent for translation. We classify the different types
of ambiguities found in our scenario in four dif-
ferent categories: (i) part of speech: this is one of
the ambiguities requiring solution and it is needed
in order to provide an accurate translation (Figure

(a)

(b)

(c)

(d)

Figure 2: Examples of lack of context effects

2.a). In this example, the source text was “Ac-
cess”, which in English can be a verb (to access)
or a noun (an access). However, as the text is em-
bedded into a button, it has to be translated as a
verb, in this case “Accedi” (verb in Italian) instead
of “Accesso” (noun in Italian). In most cases, this
ambiguity can also be solved by providing the UI
element in which the text will be showing up (a
button, a menu, a dialog box header, a drop down
list, etc.); (ii) gender: this is the most difficult
ambiguity to solve as the gender will always de-
pend on a different element. For example, in some
languages, the gender of a word included in a ta-
ble cell will depend on the gender of the column
header (Figure 2.b). In the example, you can see
two overlapped ambiguities: first, the original En-
glish word “Open” could be a verb or an adjective,
and it has been translated automatically as a verb
(“Ouvrir”) while it should be translated as an ad-
jective (“Ouvert”) and, second, the gender of the
adjective4 will depend on the gender of the title in
the column header (in English “Request Status” is
translated into French as “Statut de la demande”
which is feminine), in this case, “Ouverte”; (iii)
prepositions: prepositions like “to” or “from” al-
ways need context information for disambiguation
(Figure 2.c). For example, the word “to” has at
least three possible interpretations: destination, re-
cipient or date, and in Spanish this would be trans-
lated to “a”, “para” and “hasta”, respectively; (iv)
syntactic ambiguity: caused by word order in En-
glish: “Display Unit” might be translated to “Unità

4Note that adjectives in roman languages are affected by num-
ber and gender.

79



di visualizzazione” (unit to be displayed) or “Visu-
alizza unità” (to display a unit) (Figure 2.d).

4 Research Challenges

In this section we summarize the main challenges
posed by the ambiguities identified.

Adapting MT engines to exploit contextual in-
formation: MT engines must be improved in or-
der to handle UI contextual information and im-
prove quality. As a first approximation, we en-
visage writing a set of rules. This way the sys-
tem is informed so that it translates, for instance,
an ambiguous word as a noun in a menu and as
a verb in a button. The validity of this approach
depends on the degree of ambiguity and the cov-
erage of the rules. A more competitive method
could be adding the context as factors in phrase-
based SMT. This way, it is different to translate
(archive, noun, menu) from (archive, verb, button)
or (archive, noun, button). Within this framework
the translation is not selected by a rule, but each
alternative translation has a probability estimated
from frequencies in a corpus, and the translation
of a word is also conditioned by the translation of
the neighboring words.

Although the move towards a probabilistic ap-
proach ensures a high coverage, it might not be
enough to solve some kinds of ambiguities. The in-
formation needed to properly translate the gender
and number of a text might be encoded by several
types of context at the same time, so it is necessary
to deal with a high number of features. Factors are
not appropriate for a large number of features, but
machine learning techniques can be used to learn
the best translation according to its context cod-
ified with those features. This methodology has
been already successful as stated in Section 2.

Context extraction and internationalization-
compliant programming standards: all of these
approaches assume that the context can be ex-
tracted from the code. Besides, those which rely
on statistical methods also need to gather an anno-
tated corpus. A second line of research, thus, will
involve establishing automatic methods to extract
context information from the source code. Chal-
lenges range from parsing the information of com-
plex UI components, such as tables, where content
in the table header might affect the translation of
the text in the cells for instance, to defining pro-
gramming standards that make the code compliant
with localization needs or creating new tools that
aid developers to use writing style guidelines that
make the localization process easier.

There may be several ways of including con-
textual information in the files sent for translation:
(a) to include information of the UI components in
which the ambiguous text will be embedded, next
to ambiguous words; (b) for recurrent pre-defined
ambiguities like “To” and “From”, provide a prede-
fined standard explanation of the context, like for
example, “To” as in “date”, or “To” as in “e-mail”;
(c) in case none of the previous options works, to
allow for a free text option to provide information
necessary for disambiguation. Any of these pos-
sible solutions require establishing practical meth-
ods that do not overload developers with unnec-
essary extra work and, specially in the last case,
sophisticated methods to extract information from
free text.

5 Conclusions

Specializing MT engines used in software local-
ization processes is vital for reducing costs both in
terms of time and budget. However, to our knowl-
edge, the problem has not been tackled yet. Re-
ducing the mistranslations produced by the lack of
context will have a direct impact on both the pots-
editing phase and the LQA phase, which are the
most costly phases in such a process. Therefore, it
is necessary to include UI components information
in the localization process. We strongly believe
that near future research efforts should be pointed
towards these types of solution.

References
Chiang, D. 2005. A hierarchical phrase-based model

for statistical machine translation. In Proceedings of
the 43rd Annual Meeting of the ACL, pages 263–270,
June.

Giménez, J. and L. Màrquez, 2008. Discriminative
Phrase Selection for SMT, pages 205–236. NIPS
Workshop Series. MIT Press.

Hudik, T. and A. Ruopp. 2011. The integration of
moses into localization industry. In 15th Annual
Conference of the EAMT, pages 47–53.

Koehn, P. and H. Hoang. 2007. Factored Transla-
tion Models. In Proceedings of the Conference on
EMNLP, pages 868–876.

Koehn, P., F. J. Och, and D. Marcu. 2003. Statisti-
cal phrase-based translation. In Proceedings of the
HLT/NAACL, Edmonton, Canada, May 27-June 1.

Ruopp, A. 2010. The moses for localization open
source project. In Conference of the AMTA, Octo-
ber.

80




