
Hybrid Parallel Sentence Mining from Comparable Corpora 

Dan Ștefănescu 
RACAI 

Calea 13 Septembrie, 13 

Bucharest, Romania 

danstef@racai.ro 

Radu Ion 
RACAI 

Calea 13 Septembrie, 13 

Bucharest, Romania 

radu@racai.ro 

Sabine Hunsicker 
DFKI 

Stuhlsatzenhausweg 3, 66123  

Saarbrücken, Germany 

sabine.hunsicker@dfki.de 

 

 


Abstract 

This paper presents a fast and accurate 

parallel sentence mining algorithm for 

comparable corpora called LEXACC 

based on the Cross-Language Infor-

mation Retrieval framework combined 

with a trainable translation similarity 

measure that detects pairs of parallel and 

quasi-parallel sentences. LEXACC ob-

tains state-of-the-art results in compari-

son with established approaches. 

1 Introduction 

Mining for parallel sentences in comparable cor-

pora is much more difficult than aligning sen-

tences in parallel corpora. Sentence alignment in 

parallel corpora usually exploits simple empirical 

evidence (turned into assumptions) such as (i) the 

length of a sentence is proportional with the 

length of its translation and (ii) the discourse 

flow is necessarily the same in both parts of the 

bi-text (Gale and Church, 1993). Thus, the ex-

traction tools search for parallel sentences around 

the same (relative) text positions, making sen-

tence alignment a much easier task when com-

pared to kind of work undertaken here. 

For comparable corpora, the second assump-

tion does not hold. Parallel sentences, should 

they exist at all, are scattered all around the 

source and target documents, and so, any two 

sentences
1
 have to be processed in order to de-

termine if they are parallel or not. Also, we aim 

at finding pairs of quasi-parallel sentences that 

are not entirely parallel but contain spans of con-

tiguous text that is parallel. Thus, finding parallel 

sentences in comparable corpora is confronted 
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1 Or a carefully selected set of sentence pairs as we will see 

in the next sections. 

with the vast search space one has to consider 

since any positional clues indicating parallel or 

partially parallel sentences are not available. 

The brute force approach is to analyze every 

element of the Cartesian product between the two 

sets containing sentences in the source and target 

languages. This approach is clearly impractical 

since the resulting algorithm would be very slow 

and/or memory consuming.
2

 To reduce the 

search space, we turned to a framework that be-

longs to Information Retrieval: Cross-Language 

Information Retrieval (CLIR). The idea is simple: 

use a search engine to find sentences in the target 

corpus that are the most probable translations of 

a given sentence from the source corpus. The 

first step is to consider the target sentences as 

documents and index them. Then, for each sen-

tence in the source corpus, one selects the con-

tent words and translates them into the target 

language according to a given dictionary. The 

translations are used to form a Boolean query 

which is then fed to the search engine. The top 

hits are considered to be translation candidates. 

Using the CLIR approach to select a set of 

candidate target sentences (out of all target sen-

tences) for the input source sentence is one way 

to dramatically reduce the search space. The re-

duced search space will serve another practical 

concern: the execution time. Thus, each candi-

date target sentence can be compared with the 

input sentence using a computationally much 

more complex translation similarity measure that 

would otherwise require an unacceptable amount 

of time to finish analyzing all possible pairs. 

In what follows, we present our own adapta-

tion of the hybrid CLIR/translation similarity 

measure approach to parallel sentence mining 

from comparable corpora called “Lucene-based 

Parallel Sentence Extraction from Comparable 

Corpora” (LEXACC). We describe the indexing 

                                                 
2 With the possible exception of the parallelizing the com-

putations but this issue is beyond the scope of this paper. 
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of the target corpus in subsection 3.1, the Boole-

an query generation for the input sentence in 

subsection 3.2, an additional filtering step on the 

output of the Lucene search engine in subsection 

3.3 and our design of the translation similarity 

measure in section 4. We present a host of exper-

iments aimed at assessing the performance of 

LEXACC from both the CLIR perspective (pre-

cision, recall and F1-measure) and practical SMT 

experimenting with data produced by LEXACC. 

2 Related Work 

Parallel data mining from comparable corpora 

receives its share of attention from the statistical 

machine translation scientific community, one of 

the major reasons being the fact that the Web can 

be seen as a vast source of comparable corpora. 

The CLIR approach to finding translation can-

didates for sentences (reducing the search space) 

has received significant attention. While Rauf 

and Schwenk (2011) index the target sentences 

directly, Munteanu and Marcu (2005) index tar-

get documents for retrieving similar ones. 

Another approach to cutting the search space 

is to perform document alignment inside the 

comparable corpus first and then to attempt ex-

tracting parallel sentences by inspecting the con-

structed document pairs only. This road has been 

taken by Fung and Cheung (2004) who perform 

document alignment using a simple dictionary-

based, translation similarity measure. Recently, 

Ion (2011) proposes an EM algorithm that finds 

document alignments in a comparable corpus. 

The way a pair of sentences is deemed parallel 

or not is usually specified with three different 

approaches: binary classifiers (Munteanu and 

Marcu, 2005; Tillman, 2009), translation similar-

ity measures (Fung and Cheung, 2004) and gen-

erative models (Quirk et al., 2007). Our approach 

is somewhat similar to that of Munteanu and 

Marcu (2005) who used a dictionary to translate 

some of the words of the source sentence, and 

then used these translations to query a database 

for finding matching translation candidates. The 

difference resides in the fact that they choose 

candidate sentences based on word overlap and 

the decision whether a sentence pair is parallel or 

not is performed by a Maximum Entropy classi-

fier trained on parallel sentences. With respect to 

Rauf and Schwenk (2011) who also index target 

sentences, our approach benefits of some filter-

ing steps, the query is formulated using addition-

al fields and we use a much more elaborated 

translation similarity measure. 

3 Indexing, Searching and Filtering 

3.1 Indexing target sentences 

Our goal is to implement a simple yet effective 

solution, easily replicable. First, we split the tar-

get corpus into sentences and transform them so 

that we keep only stemmed non-functional 

words.
3
 We also compute the average length in 

words (µ) and the standard deviation (σ) for tar-

get sentences. We consider a sentence   to be 

short if       ( )      and long if 

      ( )     . We consider the medium-

sized sentences for which            ( )  
   , to be both short and long. 

Following the general description presented in 

the introduction, we use the C# implementation 

of Lucene
4
 to index the target sentences as Lu-

cene documents. For each such document, we 

introduce three additional searchable fields, two 

of them corresponding to the sentence length: 

(i) a field specifying if the sentence is small; 

(ii) a field specifying if the sentence is long; 

(iii) a field specifying the document where 

the target sentence belongs; this field is based on 

the document alignment information of the com-

parable corpus being processed and it is optional 

if such alignment information is not supplied. 

3.2 Finding translation candidates for 

source sentences 

Given an input source sentence (out of the total S 

source sentences), the role of the search engine is 

to return a list of translation candidates that are to 

be further analyzed. The number of hits h we 

take into account regulates the size of the new 

search space: h * S. The larger it is, the higher 

the number of candidates which can potentially 

increase the recall but also the computational 

complexity. For each sentence in the source cor-

pus, we generate a Lucene query as follows: 

(i) We employ a GIZA++ (Och and Ney, 

2000) dictionary previously created from existing 

parallel documents. This dictionary is expected 

to be small due to the lack of necessary resources. 

For each content word we keep the best 50 trans-

lation equivalents, which are also content words, 

having translation probabilities above 0.1. Each 

of them is stemmed and added as an disjunctive 

query term (SHOULD occur); 

(ii) We add two disjunctive query terms 

(SHOULD occur) standing for the length of the 

source sentence: short and long. Each of these 

                                                 
3 We keep functional words lists for all languages. 
4 http://incubator.apache.org/lucene.net/download.html 
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terms can be boosted according to the importance 

one wants to give to matching source and target 

lengths. In our implementation, the value of the 

boosting factor is 2; 

(iii) We add a compulsory query term 

(MUST occur) specifying the target document 

where the source sentence translation should be 

searched. However, this term can be added only 

if the document alignment information exists and 

it has been used at index creation as well. 

After the query is constructed, we use it to in-

terrogate the default Lucene search engine (no 

modifications on the relevance method) in order 

to get the best h hits. 

3.3 Filtering 

The filtering step is designed to further reduce 

the new search space, selecting only the best 

candidates for the final stage in which the trans-

lation similarity measure (Section 4) is applied. 

Filtering must be very fast and good enough not 

to filter out parallel data. We do this by compu-

ting a viability score for each candidate sentence 

pair and then keeping only those above the aver-

age. For a candidate pair formed by a source sen-

tence s and a target sentence t, the formula is: 

                           (1) 

where se represents the score returned by the 

search engine and sim is a similarity score we 

will come back to later. The other factors are 

aiming at favoring high scores for sentences with 

similar (α) and large (β) lengths. In our imple-

mentations they are computed as: 

     
   (| |  | |)

   (| | | |)
 (2) 

  
    (| | | |)

 
 (3) 

where abs is the absolute value, |s| is the length 

in words of sentence s and λ is an integer con-

stant representing the length threshold from 

which we consider a sentence to be very long 

(λ=100 in our implementation, but it can be cho-

sen depending on the given corpora). 

The similarity score (sim) from equation 1 is 

calculated according to the formula: 

    
            

| |  | |
 

 

√   
 (4) 

where teFound is the total number of words in s 

for which we found translation equivalents in t, 

coh is the cohesion score computed as the aver-

age distance between the sorted positions of the 

translation equivalents found in t (the lower the 

better)
5
 and te is calculated as: 

  (   )  ∑    
    

        (     )

    

 (5) 

where dicScore is the translation probability 

score from the dictionary. The rationale behind 

equation 5 is induced by the assumption that a 

word ws is translated by only one word wt and so, 

dicScore(ws,wt) ≥ dicScore(ws,wi) for any wi in t. 

We should note that since we aim at gathering 

parallel data which is not already in the diction-

ary with started with, we are more interested in 

finding long parallel texts. It is more probable 

that such texts would contain (beside already 

known translations) unknown parallel data. 

4 The Translation Similarity Measure 

The binary classifier of Munteanu and Marcu 

(2005) associate a confidence probability with its 

decision but setting this confidence at 0.5 or 0.7 

as they do, is equivalent to saying that sentence 

pairs with a score below the confidence level are 

not interesting for SMT.
6

 Our view is that 

whatever sentence pairs actually improve the 

output of an SMT system are important and we 

found that these range from parallel, quasi-

parallel to strongly comparable. 

We modeled our translation similarity measure 

as a weighted sum of feature functions that indi-

cate if the source piece of text is translated by the 

target. Given two sentences   in the source lan-

guage and   in the target language, then the trans-

lation similarity measure  (   ) is 

 (   )  ∑    (   )

 

 (6) 

such that ∑      . Each feature function 

  (   ) will return a real value between 0 (  and 

  are not related at all) and 1 (  is a translation of 

 ) and contributes to the overall parallelism score 

with a specific fraction    that is language-pair 

dependent and that will be automatically deter-

mined by training a logistic regression classifier 

on existing parallel data (see next subsection). 

Each of the feature functions   (   ) has been 

designed to return a value close to 1 on parallel   
and   by manually inspecting a fair amount of 

parallel examples in the English-Romanian pair 

of languages. By negation, we assume that the 

                                                 
5 We experimented with different power values for the co-

hesion score. For ½ (the square root) we had the best results. 
6
 But we acknowledge the fact that the probability of a sen-

tence pair being parallel as computed by the classifier of 

Munteanu and Marcu is a proper model of parallelism 
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same feature functions will return a value close 

to 0 for non-parallel, not-related   and   but this 

behavior is critically influenced by the quality 

and completeness of the linguistic computational 

resources that we use: bilingual translation lexi-

cons, lists of inflectional suffixes used for stem-

ming and lists of stop-words. Thus, generally, a 

feature function that uses one (or more) of the 

resources mentioned above can falsely return a 

value close to 0 for parallel   and   due to the 

fact that this decision was made in the absence of 

the relevant entries in that resource. The proto-

typical example here is that the translation lexi-

con does not contain the relevant translations for 

the words in  . 

4.1 Features 

Before being processed, sentences   and   are 

tokenized, functional words are identified and 

content word are stemmed using language-

dependent inflectional suffixes. Given these 

transformations of   and  , all features   (   ) 
are language-independent. We use 5 features. 

  (   )  is the “content words translation 

strength” feature. Given a statistical translation 

dictionary obtained by e.g. applying GIZA++ on 

a parallel corpus,
7
 we find the best 1:1 alignment 

  between content words in   and   such that the 

translation probability
8

 is maximized. If 

〈   
     

 〉 is a word pair from  ,  (〈   
     

 〉) 

is the translation probability of the word pair 

from the dictionary and | | is the length (in con-

tent words) of sentence  , then 

  (   )  
∑  (〈   

     
 〉)〈   

     
 〉  

| |
 (7) 

This feature has a maximum value of 1 if all con-

tent words from   are translated in   with the 

maximum probability of 1. 

  (   ) is the “functional words translation 

strength” feature. The intuition is that functional 

words around content words aligned as in 

ture  (   ), will also align for parallel   and   
because of the fact that, from a dependency-

syntactic point of view, functional words (prepo-

sitions, determiners, articles, particles, etc.) are 

                                                 
7 To obtain the dictionaries mentioned throughout this sec-

tion, we have applied GIZA++ on the JRC Acquis corpus 

(http://langtech.jrc.it/JRC-Acquis.html). 
8 For two source and target words, if the pair is not in the 

dictionary, we use a 0 to 1 normalized version of the Le-

venshtein distance in order to assign a “translation probabil-

ity” based on string similarity alone. If the source and target 

words are similar above a certain threshold (experimentally 

set to 0.7), we consider them to be translations. 

usually governed by or govern nearby content 

words. Mathematically, if 〈   
     

 〉  is the 

highest scored pair of aligned functional words 

near (in a window of ±3 words) the aligned pair 

of content words 〈   
     

 〉 from  , | |  is the 

cardinal of the best alignment as found by 

  (   ) and  (〈   
     

 〉) is the probability of 

the functional word pair from the dictionary, then 

  (   )  
∑  (〈   

     
 〉)〈   

     
 〉  

| |
 (8) 

The maximal value of   (   )  is 1 and it is 

reached when for each aligned pair of content 

words from  , there is a pair of functional words 

that align with the maximum probability of 1. 

  (   )  is the “alignment obliqueness” fea-

ture (Tufiş et al., 2006). Here we have redefined 

it to be a discounted correlation measure because 

there are pairs of languages for which the natural 

word order implies crossing word alignment 

links.   (   )  also uses the alignment set   of 

content words described for feature   (   ) from 

which we derive two source and target vectors    
and    of the same length containing the indices 

  in the ascending order (1   | |) and   re-

spectively (1   | |) of content words    
  and 

   
  that form an alignment pair in  . Alignment 

obliqueness is computed as 

  (   )     (      )
 

   
   

| |

   (| | | |)
  

 (9) 

where        is the Pearson correlation coeffi-

cient of the    and    vectors and    ( ) is the 

absolute value function. The second term is a 

modified sigmoid function  ( )  
 

         
 de-

signed to be a discount factor with values be-

tween 0 and 1 when   takes on values between 0 

and 1. The rather steep variation of  ( )  was 

experimentally modeled in order to heavily dis-

count “rare” alignments for which the Pearson 

correlation is high. Thus, if    contains only a 

few alignments relative to    (| | | |) (the size 

of   is at most    (| | | |)), then even if        

is high,   (   ) should be small because a few 

alignments usually do not indicate parallelism. 

  (   ) is the “strong translation sentinels” 

feature. Intuitively, if sentences   and   are paral-

lel then, frequently (at least in our studied exam-

ples), one can find content words that align near 

the beginning and end of the considered sentenc-

es.   (   ) is a binary-valued feature which is 1 

if we can find “strong” translation pairs (proba-

bility greater than 0.2; set experimentally) be-

tween the first 2 content words at the beginning 
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of   and   and between the last 2 content words 

at the end of   and  .   (   ) is 0 otherwise. 

Finally,   (   )  is the “end with the same 

punctuation” feature. This is also a binary-

valued feature which is 1 if both   and   end with 

the same type of punctuation: period, exclama-

tion mark, etc. It is also 1 if both   and   lack 

final punctuation.   (   ) is 0 otherwise. 

The observant reader has noticed by now that 

all the features with the exception of   (   ) are 

not symmetrical because they all depend on the 

alignment   computed for   (   )  which is not 

symmetrical and as such, the measure from equa-

tion 6 is not symmetrical as well. In order to have 

evidence from both directions, we will use the 

arithmetic mean to get the final measure: 

 (   )   (   )  
 (   )   (   )

 
 (10) 

4.2 Learning the optimal weights 

The weights   and    corresponding to the fea-

tures “functional words translation strength” and 

“alignment obliqueness” are language-pair de-

pendent because of the specific word ordering of 

the source and target languages. At the same 

time,    through    have to be optimized with 

respect to the translation lexicon in use, since the 

construction of the word alignments is based on 

this dictionary. Also, since  (   )  is not sym-

metrical, we will have to learn different    
weights from source to target and vice versa.  

In order to derive a set of optimal weights for 

each language pair and translation lexicon, we 

have trained a standard logistic regression classi-

fier. Briefly, the logistic regression classifier 

learns the    weights that define the hyperplane 

(whose equation is the same as equation 6) that 

best separates the positive training examples 

from the negative ones. In our case, the examples 

are the multidimensional points whose coordi-

nates are given by the feature functions   (   ). 
For each language pair, the training set con-

sists of 9500 parallel sentences
9
 for the positive 

examples and 9500 of non-parallel sentences 

(obtained from the parallel pairs by random shuf-

fling) for the negative examples. For the training 

set in question, we also have 500 additional par-

allel sentences together with 500 non-parallel 

sentences (obtained by random shuffling as well) 

as the test set. An example
10

 is obtained by com-

                                                 
9
 Mostly from the News domain for all language pairs. 

10
 When an example occurs multiple times with both labels, 

we retain all the occurrences of the example with the most 

frequent label and remove all the conflicting occurrences. 

puting all the feature functions   (   )  for the 

given positive (parallel) or negative (non-

parallel)   and  . 
Table 1 summarizes the derived optimal 

weights for 8 language-pairs, in both directions. 

In every pair, one language is English (en) and 

the others are: Croatian (hr), Estonian (et), Ger-

man (de), Greek (el), Lithuanian (lt), Latvian (lv), 

Romanian (ro) and Slovene (sl). 
Lang.                F1/BL 

en–ro 0.31 0.02 0.37 0.21 0.09 0.93/0.88 

ro–en 0.31 0.01 0.37 0.20 0.11 0.93/0.91 

en–de 0.31 0.02 0.3 0.17 0.2 0.94/0.89 

de–en 0.35 0.02 0.28 0.16 0.19 0.96/0.92 

en–sl 0.23 0.01 0.38 0.2 0.18 0.96/0.89 

sl–en 0.2 0.03 0.38 0.19 0.2 0.94/0.89 

en–el 0.61 0.08 0.21 0 0.1 0.99/0.98 

el–en 0.47 0.08 0.28 0.07 0.1 0.98/0.98 

en–lv 0.27 0.05 0.41 0.16 0.1 0.98/0.96 

lv–en 0.49 0.03 0.41 0 0.07 0.99/0.96 

en–lt 0.33 0.01 0.41 0.15 0.1 0.96/0.91 

lt–en 0.28 0.01 0.41 0.15 0.15 0.94/0.90 

en–et 0.28 0.08 0.36 0.17 0.11 0.98/0.96 

et–en 0.27 0.07 0.38 0.18 0.1 0.96/0.93 

en–hr 0.29 0.01 0.41 0.16 0.13 0.98/0.95 

hr–en 0.25 0.02 0.44 0.17 0.12 0.98/0.97 

Table 1: Optimal weights for the translation sim-

ilarity measure 

The column named “F1/BL” (see Table 1) in-

dicates the gain in F1 measure when testing the 

translation similarity measure with the optimal 

weights on the test set as compared to a baseline 

(BL) consisting of applying the measure using 

fixed values of the weights corresponding to our 

intuition of their importance:        , 

      ,        ,        ,        . For 

instance, we imagined that the content words 

translation strength feature   (   ) is much more 

important compared to the rest of the features but 

the training procedure proved us wrong. 

5 Experiments and Results 

5.1 Experiment Setting 

We evaluated our approach on 7 pairs of lan-

guages under the framework of the ACCURAT 

project.
11

 For each pair, the source language is 

English (en), while the target languages are: Es-

tonian (et), German (de), Greek (el), Lithuanian 

(lt), Latvian (lv), Romanian (ro) and Slovene (sl). 

In order to compute precision and recall when 

mining for parallel sentences, we have devised 

                                                 
11 http://www.accurat-project.eu/ 
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artificial comparable corpora for all mentioned 

language pairs, with different levels of controlled 

comparability. Starting from 100 news parallel 

sentences for all language pairs, the corpora were 

created by injecting noise (in specific proportions) 

extracted from the News corpora collected in the 

ACCURAT project. We experimented with 4 

different amounts of noise: 2:1,
12

 5:1, 10:1, 100:1, 

corresponding to different degrees of compara-

bility, from strongly comparable to weakly com-

parable. The worst case scenario is by far the one 

with 100:1 noise and so, most of our experiments 

were developed under this setting. 

We evaluated the efficiency of LEXACC after 

each of its steps: (i) the extraction of translation 

pair candidates using the search engine, (ii) can-

didate pairs filtering and (iii) the usage of the 

translation similarity measure. Moreover, we 

evaluated the impact of the extracted data when 

used for improving SMT translation models. 

5.2 Search Engine Efficiency 

To measure the efficiency of using the search 

engine for finding translation candidates in the 

worst case scenario (100:1 noise ratio), we com-

puted the recall we would obtain if we would 

have kept the best 100 hits (target sentences) re-

turned by the engine for each source sentence. 

Instead of brute force analyzing 10,100
2
 sentence 

pairs, we can now look at only 1 million pairs. 

This means a search space reduction of about 

100 times. Table 2 shows that this approach is 

effective for most of the language pairs, but poor 

for en–el and en–ro. One of the reasons might be 

the quality of the dictionaries we relied on when 

generating the search engine queries. 
Pair Recall  

UB 

Data Size (pairs / disk 

size) 

en–de 0.98 1,009,500 / 323 Mb 

en–el 0.42 1,009,700 / 485 Mb 

en–et 0.89 1,008,800 / 345 Mb 

en–lt 0.93 1,008,200 / 350 Mb 

en–lv 0.92 1,008,300 / 366 Mb 

en–ro 0.69 1,009,800 / 294 Mb 

en–sl 0.80 688,266 / 191 Mb 

Table 2: Recall upper boundary (UB) and size 

(sentence pairs and disk space occupied) for the 

translation candidates returned by Lucene 

5.3 Filtering Efficiency 

As already mentioned, filtering is an intermedi-

ary step designed to further reduce the search 

space used for the final analysis. The filtering 

                                                 
12 For each parallel sentence, 2 noise sentences were added 

module receives high scores for speed and search 

space reduction for all language pairs. However, 

in terms of preserving the recall upper boundary, 

it performs well only for en–lv and en–de and 

acceptable for en–ro and en–el. It loses about 

40% recall for the other 3 language pairs. Table 3 

summarizes the results. 
Pair Recall 

UB 

Recall 

Loss 

Size (pairs / 

disk size) 

Search 

Space 

Drop 

en–de 0.83 15.30% 20,868 / 10 Mb 97.93% 

en–el 0.30 28.57% 108,629/69 Mb 89.24% 

en–et 0.54 39.32% 34,051 / 22 Mb 96.62% 

en–lt 0.57 38.70% 35,831 / 21 Mb 96.44% 

en–lv 0.83 9.78% 91,305 / 45 Mb 90.94% 

en–ro 0.53 23.18% 160,968/67 Mb 84.05% 

en–sl 0.44 45% 65,191 / 28 Mb 90.52% 

Table 3: Recall upper boundary and size after 

the filtering step 

5.4 Translation Similarity Efficiency 

We evaluated the efficiency of the Translation 

Similarity Measure (TSM) from Section 4 by 

comparing it with the MaxEnt classifier by Mun-

teanu and Marcu (2005) on English-German (en–

de) document pairs with different levels of com-

parability (2:1 noise ratio, 5:1 and 10:1; see sec-

tion 5.1). For both TSM and MaxEnt (with the 

associated confidence score for the “parallel” 

label), we took into account all possible thresh-

olds with a granularity of 0.01 above which the 

candidate pairs are considered parallel. We report 

the results corresponding to the threshold that 

maximizes F1 for TSM and F1 for MaxEnt 

(threshold are not the same). We explored 3 pos-

sible scenarios. The first one (Table 4) is to com-

pute TSM for all possible sentence pairs. 

 2:1 5:1 10:1 

ME TSM ME TSM ME TSM 

P 0.800 0.791 0.789 0.760 0.523 0.724 

R 0.560 0.760 0.450 0.700 0.450 0.630 

F1 0.658 0.775 0.573 0.729 0.483 0.673 

Table 4: en–de comparison between the MaxEnt 

classifier (ME) and the TSM when applied indi-

vidually onto all possible sentence pairs 

The second scenario (Table 5) is to compute 

TSM only for the candidate pairs proposed by 

the search engine, without filtering. 
 2:1 5:1 10:1 

ME LEX ME LEX ME LEX 

P 0.800 0.717 0.789 0.650 0.523 0.618 

R 0.560 0.710 0.450 0.650 0.450 0.600 

F1 0.658 0.713 0.573 0.650 0.483 0.609 

Table 5: en–de comparison between the MaxEnt 

classifier and LEXACC with no filtering 
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The third scenario is similar to the second one, 

only this time we use filtering. 
 2:1 5:1 10:1 

ME LEX ME LEX ME LEX 

P 0.800 0.809 0.789 0.737 0.523 0.742 

R 0.560 0.340 0.450 0.450 0.450 0.520 

F1 0.658 0.478 0.573 0.559 0.483 0.611 

Table 6: en–de comparison between the MaxEnt 

classifier and LEXACC with filtering 

For strongly comparable corpora (with less noise, 

like the 2:1 corpus) the filtering step is in fact 

worsening the results. This is something to be 

expected because the filtering step eliminates a 

large proportion of the candidate pairs returned 

by the engine. Thus, filtering should be used only 

for weakly comparable corpora. 

In order to make things more clear, we per-

formed yet another experiment, this time for 

100:1 noise ratio which corresponds to a very 

weakly comparable corpus. In this setting, taking 

into account all possible sentence pairs as candi-

date pairs would result in a huge running time 

and so, we were able to compare only the results 

obtained by LEXACC with and without filtering. 
 LEXACC  

NO filtering 

LEXACC  

WITH filtering 

 Best Same T13 Best 

P 0.327 0.101 0.800 

R 0.370 0.710 0.640 

F1 0.347 0.177 0.711 

Threshold 0.59 0.41 0.41 

Running Time 49.72 minutes 5.53 minutes 

Table 7: En-De comparison between LEXACC 

with and without filtering for 100:1 noise 

We can see that for weakly comparable corpora, 

at the same threshold (0.41), filtering gets rid of a 

lot of noise, keeping the precision high (compare 

0.8 with 0.101) at a modest decrease of the recall 

(compare 0.64 with 0.71). 

Table 8 shows the accuracy of LEXACC when 

running on the 100:1 noise ratio comparable cor-

pora. The running times depend on the sentence 

lengths and the size of the dictionaries. 
Pair P R F1 Thr. Minutes 

en–de 0.800 0.64 0.711 0.41 5.53  

en–el 0.550 0.22 0.314 0.35 27.24 

en–et 0.284 0.23 0.254 0.34 7.11 

en–lt 0.398 0.41 0.403 0.39 8.24 

en–lv 0.357 0.50 0.416 0.51 11.75 

en–ro 0.473 0.27 0.343 0.65 37.33 

en–sl 0.219 0.16 0.185 0.34 7.75 

Table 8: LEXACC (with filtering) run on the 

100:1 noise ratio comparable corpora 

                                                 
13 Same T: results obtained without filtering for the thresh-

old yielding the best results with filtering (0.41). 

5.5 SMT Experiments 

To test the quality of the data extracted by 

LEXACC, we ran a few experiments with do-

main-adapted SMT in the automotive industry 

domain. We manually created a parallel corpus 

from an English-German comparable corpus of 

about 3.5 million sentences per language collect-

ed from the Web. The results of the experiments 

with the LEXACC extracted data were compared 

to the same experiments conducted with the 

manually extracted parallel data, to examine and 

compare the influence of the LEXACC extracted 

data. Table 9 shows the statistics on the sentence 

pairs and sentence counts in the parallel and 

LEXACC extracted data. 
Data #pairs # unique sent. (de/en) 

parallel 44,482 42,396 / 44,290 

extracted 45,952 12,718 / 13,306 

Table 9: Statistics on parallel and extracted data 

We compared three systems in our experiments: 

the “Baseline” system which was trained only on 

the Europarl (EP, (Koehn, 2005)) and News 

Commentary corpus (NC),
14

 “Automo-

tive.parallel” which added only the parallel data 

to the baseline and the “Automotive.extracted” 

which added only the LEXACC extracted data to 

the baseline. All resulting corpora were aligned 

using GIZA++ and the MT systems were trained 

using the Moses SMT Toolkit (Koehn et al., 

2007). The languages models were trained using 

SRILM (Stolcke, 2002). 

The Baseline system only uses Europarl, both 

for the translation and the language model but for 

the two adapted systems we used an additional 

language model trained on the domain-specific 

texts. Tuning via MERT was performed for all 

systems on a domain-specific development set; 

testing also used text from the automotive do-

main. The translations were evaluated using 

BLEU (Papineni et al., 2001).  
System BLEU 

Baseline 18.81% 

Automotive.parallel 30.25% 

Automotive.extracted 25.44% 

Table 10: BLEU scores 

As Table 10 shows, it is possible to gain about 

6.5 BLEU points over the baseline system with 

the extracted data. The parallel data outperforms 

LEXACC, which may be due to the fact that the 

parallel data includes more unique sentences (see 

Table 9). But although only approx. 30% of the 

available unique data was extracted, an increase 

                                                 
14 http://www.statmt.org/wmt11/translation-task.html 

143

http://www.statmt.org/wmt11/translation-task.html


of 6.5 BLEU points is recorded -- more than half 

of the increase achieved with the full parallel 

data. This means that LEXACC is able to dis-

cover salient parallel data that brings significant 

gains in BLUE score despite its size. 

Another area of interest is how the extracted 

parallel and strongly comparable data compares 

to clean parallel data. In the extracted data, every 

German sentence is linked to 3.5 English sen-

tences on average. To examine the effect of this 

noise, we retrained “Automotive.parallel” with 

increasing amounts of data. Table 11 shows that 

the extracted data corresponds to more than 15k 

of parallel data in terms of BLEU improvement.  
System Training Data BLEU score 

Baseline EP+NC 18.81% 

Automotive.5k EP+NC+5k 

Automotive 

22.02% 

Automotive.10k EP+NC+10k 

Automotive 

23.36% 

Automotive.15k EP+NC+15k 

Automotive 

24.98% 

Automotive.20k EP+NC+20k 

Automotive 

26.48% 

Automotive.45k EP+NC+full 

Automotive 

30.25% 

Table 11: Experiments with adding data 

The data LEXACC extracts is of high enough 

quality to be useful for SMT purposes, as the 

noise is filtered out during the training phase. 

6 Conclusions 

Parallel sentence mining from comparable corpo-

ra is a well-studied problem with several reliable 

solutions already discussed in the literature. We 

present yet another original hybrid approach 

(LEXACC) based on CLIR combined with a 

complex, trainable translation similarity measure 

but with a strong emphasis on practical issues 

such as the reduction of the search space and the 

behaviour of the translation similarity measure as 

a function of the comparability level of the cor-

pus (an aspect that is not well studied).  

LEXACC is currently used in the ACCURAT 

project for parallel data mining from comparable 

corpora and we have presented evidence that it is 

able to extract good quality parallel sentences 

that improve SMT systems. 
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