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Abstract

In this work we present Cunei, a hybrid, open-source platform for machine translation that models

each example of a phrase-pair at run-time and combines them in dynamic collections. This results in

a flexible framework that provides consistent modeling and the use of non-local features.

1 Introduction

In this work we present Cunei [14], a hybrid platform for machine translation that draws upon the depth

of research in Example-Based MT (EBMT) and Statistical MT (SMT). In particular, Cunei uses a data-

driven approach that extends upon the basic thesis of EBMT–that some examples in the training data are

of higher quality or are more relevant than others. Yet, it does so in a statistical manner, embracing much

of the modeling pioneered by SMT, allowing for efficient optimization. Instead of using a static model

for each phrase-pair, at run-time Cunei models each example of a phrase-pair in the corpus with respect

to the input and combines them into dynamic collections of examples. Ultimately, this approach provides

a more consistent model and a more flexible framework for integration of novel run-time features.

Cunei is open-source software and may freely be downloaded from http://www.cunei.org/.

2 Comparing Example-Based and Statistical Machine Translation

Example-Based MT posits translations that closely match previous training examples. Many methods

have been employed, but the unifying theme is that the system searches the corpus and extracts examples

of translations that have a high degree of similarity with the input. Thus, the simplest representation or

model of the translation process is itself the training corpus. Examples of translations may be retrieved

based on a deeper structure such as the syntax or semantics of a phrase. Alternatively, a shallow approach

as described in [2], which only retrieves exact lexical matches, may be employed. In this case, all

retrieved examples are lexically equivalent to the input, but still vary according to their surrounding

context, alignment probability, genre, location in the corpus, etc. This example-specific knowledge

is a crucial component of all EBMT systems, and it is the mechanism by which they select the most

appropriate translation.

There is no clear modeling approach favored by EBMT. Scoring is performed on an example-by-

example basis. The probability of a particular translation is usually obtained by summing over the scores

of all examples that are consistent with the translation. However, this summation makes optimization

inefficient. Lacking better alternatives, the example-specific features of an EBMT system are typically

tuned by hill-climbing each parameter independently, e.g. as described in [4].

Statistical MT’s key contribution to the field has been promoting simple models that can be easily

optimized. In both early word-based incarnations and more modern phrase-based systems, the funda-

mental approach has been to model a limited quantity of information that can adequately represent the

translation process in a consistent manner.

SMT originally leveraged the source-channel paradigm using Bayes’ rule and a well-structured prob-

abilistic model. However, the log-linear model, introduced to SMT by Berger et al. [1] (and popularized
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by Och and Ney [11]), threw away the a priori structure in the model and has since become the de-

facto modeling approach. Log-linear models not only incorporate all the information of their Bayesian

counterparts, but they can be easily extended with more features. Crucially, the system builder does not

need to understand how all the features interact. Optimization of the model will automatically deter-

mine the relative importance of each feature and account for dependencies. Furthermore, optimization

of log-linear models within a translation system is straight-forward. A common technique is Och’s [10]

minimum error rate training (MERT) which uses linear programming to maximize the objective function.

A more recent approach by Smith and Eisner [15] uses an annealing-based method that is more likely to

find the global optimum, albeit with more computation.

Due both in part to its origins in the source-channel paradigm and the desire to build simple models,

SMT has adopted a static, top-down approach to modeling the translation process. Each combination of

a source-phrase and a target-phrase, commonly referred to as a phrase-pair, is represented by one log-

linear model that represents the probability that the target-phrase is a translation of the source-phrase. The

feature functions for each phrase-pair are calculated over the aggregate of all instances of the the phrase-

pair in the training data. Generally, they are the maximum likelihood estimates of some attribute of the

phrase-pair in the bilingual corpus where each occurance of the phrase-pair is considered equal. Once

the model is constructed the training data can be “thrown away” as it provides no further information.

In its default configuration, the popular open-source software package Moses [7] creates a log-linear

model with eight features. Each phrase-pair is assigned five features: two lexical scores estimating the

conditional probability in each direction using word-translation probabilities, two maximum-likelihood

estimates of the conditional probability in each direction based on the phrasal-alignment links, and a

constant phrase penalty to prefer the use of longer phrases. The last three features are applied during

decoding: a language model score, a distortion penalty, and a word penalty. Nearly all extant SMT

systems have these features at their core because their log-linear combination has been found to perform

quite well.

3 Cunei: A Hybrid Approach

Cunei is distinguished from a traditional SMT system in that it delays as much computation as possi-

ble until run-time. In particular, translations are not retrieved from a pre-built phrase-table, but rather

generated dynamically at run-time. Like in pure EBMT systems, the corpus is available at run-time and

features are calculated for each example of a translation separately. But, as in SMT, this information

is collected into a single log-linear model that is straight-forward to optimize. Cunei achieves this by

dynamically modeling collections of translation examples, as described in §3.4, instead of using static

phrase-pairs. This approach has three key advantages:

1. Run-time feature extraction makes it easy to model non-local features dependent on the partic-

ular input or surrounding translations. For example, Cunei applies a feature to each translation

indicating the number of words to the left and right that are not covered by the translation be-

ing considered, but also matched the context from the input. Similarly, document-level context

features can also be applied, as in [3], by measuring the cosine or Jensen-Shannon distance [9]

between the input document and each document in the corpus where a translation occurs.

2. Generating the translations at run-time produces a more consistent translation model. A traditional

SMT system performs alignment and phrase-extraction once when the phrase-table is constructed.

Typically this is done through a series of heuristics that determine whether two phrases may legit-

imately form a phrase-pair. Moses provides multiple heuristics for this very task with the default
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method known as ‘grow-diag-final’. However, phrase-alignment in reality is not so neatly de-

terministic. For each source phrase in the parallel corpus, there is some probability (perhaps very

small) that it translates to any given target phrase with which it has ever co-occurred. Cunei models

the phrase extraction at run-time as part of the translation process with a series of alignment fea-

tures that determine the probability that a given source phrase and target phrase are aligned. These

alignment features are part of the final translation model and during each iteration of optimization

the weights for these features are modified. The new weights change the probability distribution

over the alignments and have the potential to extract different translation. Thus, the extraction and

scoring of translations are not two processes, but form one consistent model (described in §3.2).

3. This approach can efficiently search a larger space of possible translations. Phrase-tables quickly

grow quite large–consuming gigabytes of disk space–but only a fraction of the phrases are ulti-

mately used while translating a given test set. This problem is exacerbated even more when one

allows for translations with gaps, which we do. By generating translations on-the-fly, Cunei only

allocates its computation to modeling translations that are required for the input. First, Cunei looks

up translations for phrases that exactly, word-for-word match some span of the input. If the given

phrase occurs frequently and Cunei believes it can model the translation well, then we can move

on. In situations where this is not sufficient, the range of possible translations is no longer limited

a priori. Cunei can extend the search space and retrieve similar phrases or generalized templates

in order to better model the translation process.

The remainder of this section will describe in detail how translations are constructed at run-time.

3.1 Translation Selection

When given a new input to translate, Cunei searches the source-side of the corpus for phrases that match

any sub-section of the input.

In order to accomplish this task, during training Cunei constructs a suffix-array index for each type

of sequence present in the parallel corpus. Minimally, the corpus will contain a lexical sequence repre-

senting the unaltered surface-strings (or less precisely, ‘words’). Lemmas, part-of-speech, or statistical

cluster labels may be used to generate alternative types of sequences. The suffix array for each type of

sequence is queried with the input to locate matches within the parallel corpus. A match may contain

as few as one of the tokens from the input or exactly match the entire input. The collection of corpus

matches is stored as a lattice with each element indexed by the span of the input it covers.

The corpus matches are not required to be exact representations of the input. For example, a source

phrase retrieved by matching only a part-of-speech sequence may be structurally similar to the input, but

it is likely to be semantically unrelated. Matches such as these do not ‘as-is’ provide valid translations,

but they do still contain useful information about the translation process. For each token in a match that

does not lexically match the input, a gap is formed. The gaps are projected to the target during phrase-

alignment in order to form translation templates. Meta-information about the gap, such as the part-of-

speech tag, is preserved in order to aid selection of a valid replacement. These translation templates

allow for the formation of novel phrases, but also add risk. As such, if exact phrasal translations are

present, they are preferred.

For efficiency, not all matches present in the corpus are retrieved. Each match is scored individually

by several feature functions to determine its relevance, e.g. how similar the match is to the input. Matches

that have gaps are down-weighted. Matches that have the same context as the input (either sentential or

document) are preferred. Typically, around a thousand matches are retrieved from the corpus for each

span of the input, but only a few hundred are selected as the most promising and retained for alignment.
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3.2 Translation Alignment

After a match is found on the source-side of the corpus, Cunei must determine the target phrase to which

it aligns. The alignment is treated as a hidden variable and not specified during training. Instead, Cunei

uses statistical methods to induce a phrase-alignment. Ideally, the full alignment process could be carried

out dynamically at run-time. Unfortunately, even a simple word-alignment such as IBM Model-1 is too

expensive. Instead, we run a word-aligner offline (output from GIZA++ [12] and Berkeley [8] are both

supported) and use the word alignments as features for an on-line phrase-alignment.

Each source phrase has some probability of aligning to every possible target phrase within a given

sentence. This probability is modeled in Cunei by a series of feature functions over the word-alignments.

When a source phrase is aligned to a target phrase, it implies that the remainder of the source sentence

that is not specified by the source phrase is aligned to the remainder of the target sentence not specified by

the target phrase. Separate features model the probability that the word-alignments for tokens within the

phrase are concentrated within the phrase boundaries and that the word-alignments for tokens outside the

phrase are concentrated outside the phrase boundaries. Additional features model whether to incorporate

unknown words, lexicon-based translation probabilities, and the length ratio between the source and

target phrase. This approach is modeled after the work of [16] and [5].

For each instance of a match in the corpus, Cunei uses the feature functions to extract a scored n-best

list of phrase-alignments. Each possible alignment forms an instance of translation between the source

phrase and target phrase.

3.3 Translation Scoring

Of particular importance to Cunei’s approach is that each instance of a translation from the corpus is

scored individually. Most traditional SMT systems model a phrase-pair based on features that are max-

imum likelihood estimates over all instances of the phrase-pair in the corpus and treat each instance

equally. Cunei, on the other hand, models each instance separately with its own log-linear model. This

allows for features to be dependent on that particular instance of the translation in the parallel corpus.

It explicitly models that some instances of translations are better than others. In the next step, all of the

instances in the corpus that result in the same translation phrase-pair will be combined together with a

single log-linear model for use during decoding.

Many of the per-instance translation features have already been discussed, as they are usually calcu-

lated at the earliest stage at which the information is available. During matching, source-side similarity

and contextual features are generated. These features are dependent on both the input and the particular

sentence or document in the corpus in which the corpus match was found. During phrase-alignment,

additional features are calculated to measure the likelihood of the source phrase aligning to the target

phrase in this particular sentence. Cunei also applies the traditional SMT features based on a transla-

tion’s overall frequency in the corpus and a constant phrase penalty, none of which change from instance

to instance. The scoring framework is intentionally flexible such that features are not hard-coded and

any number of features can be added to the translation model at run-time.

3.4 Translation Combination

Thus far we have shown how each instance of a translation acquires several instance-specific features.

However, we also need to take into account and explicitly model the fact that some translations are only

represented by a few instances in the corpus and other translations occur frequently. This is achieved

by modeling collections of translation instances. The final log-linear model for a translation consists

of a count feature indicating how many instances are present in the collection along with a series of

constraints that indicate the minimum value for each instance-specific feature. A search is performed
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over each instance-specific feature such as the alignment quality, genre, or context to determine the set of

constraint values that maximizes the score. Weights determined during optimization indicate the relative

importance of each constraint and the match count. Lower constraints will allow for more matches,

while higher constraints will likely lead to higher quality phrase-pairs but with a smaller number of

occurrences.

3.4.1 Formalism

By formally defining how collections of translations are modeled, we see how Cunei’s approach encap-

sulates everything represented within a typical SMT model while remaining consistent with the main

idea behind EBMT.

Given translations t, features f , and weights w, a typical SMT model scores translations with a log-

linear model, as shown (converted to real space) in Equation 1.

score(ti) = ∏
k

f
wk

i,k (1)

An EBMT system identifies features for each example e in the corpus. As shown in Equation 2, the

total score is calculated by summing over all examples that are consistent with the translation t.

score(ti) = ∑
∀em∈ti

∏
k

f
wk

m,k (2)

Cunei’s approach, as shown in Equation 3, maximizes over a particular collection of examples c

that are consistent with the translation t. This simultaneously avoids the summation which is difficult to

optimize, explicitly models frequency as a first-class feature, and allows for example-dependent features

continuing to influence the model. Furthermore, the SMT model in Equation 1 is a special case of this

formalism when the features for all examples consistent with a translation are constant.

score(ti) = max
∀c j⊆ti

|c j|
wmatches ∏

k

min
∀em∈c j

f
wk

m,k (3)

3.4.2 Global Features

In the prior description of Moses we explained that each phrase-pair is modeled with two conditional

phrase probabilities. Since conditional probabilities are useful, we add two more features to Cunei’s

simple count of examples: the total number of occurrences of the source phrase, and the total number of

occurrences of the target phrase. The weighting scheme is then different, but combined log-linearly, these

three features have the same expressive power as Moses’ two conditional phrase probabilities. Lastly,

Moses’ phrase penalty and lexical probabilities are incorporated directly as features on each example

that ‘coincidentally’ are constant for all examples that compose a phrase-pair.

3.5 Optimization

Because–at the end of the day–Cunei uses a log-linear model, we can optimize it using the same ap-

proaches developed for SMT. In MERT, after each iteration, a new n-best list is generated with the

optimized weights. Due to pruning and the beam search within the decoder, the new weights may yield

different translations in the n-best list. In our approach, new weights can also change what translations

are found in the corpus and how they are modeled. As a result, the search space is larger, but because we

select the constraints that maximize the score, the model is still consistent and possible to optimize with
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MERT. In practice, MERT is not an ideal choice when the feature-set becomes large. As such, Cunei’s

optimization code closely follows [15], which was also developed for SMT and also fits a log-linear

model to an objective function. The distinction is that this approach minimizes the expected loss over

the entire n-best list, making it more appropriate for larger feature spaces.

4 Evaluation

Cunei’s raison d’être is to provide a machine translation platform in which researchers can exploit fea-

tures that dynamically extract information from the input and the corpus at run-time. Currently, Cunei is

not yet a finished product and only takes advantage of calculating features dynamically for the the align-

ment and context of each example. Nonetheless, for Cunei to be of use to researchers, it is important to

demonstrate that even in its current state, translation quality is comparable to state-of-the-art MT systems

such as Moses.

Finnish-to-English French-to-English German-to-English

Types 499,770 84,257 106,862 87,083 273,960 86,671

Tokens 21,492,772 29,744,581 34,979,287 32,001,553 29,730,317 31,156,576

Sentences 1,121,312 1,207,184 1,165,545

Table 1: Corpora Statistics

To compare Cunei with Moses on several languages, we chose the freely-available Europarl corpus

[6], and evaluated the performance on translating from Finnish, French, and German into English. We

followed the normal practice of reserving the proceedings from the fourth quarter of 2000 for evaluation

and trained each system on the remainder of the parallel corpora. Statistics for each of these three parallel

corpora are shown in Table 1. Cunei applied light pre-processing, filtering, and tokenization suitable for

Western languages to each corpus; the corpora were subsequently word-aligned by GIZA++ in both

directions. As all of the systems translated into English, we built one language model consisting of 243

million words from the Europarl and a portion of the English newswire released by the 2009 Workshop

on Statistical Machine Translation.1 An identical tokenized, word-aligned parallel corpus and language

model were provided to Cunei and Moses for each language pair, and the translation systems were trained

using their default configurations.

The results of the evaluation are shown in Table 2. Each system was evaluated using BLEU [13],

since both Moses and Cunei have built-in support to optimize their parameters toward BLEU using a

development set. The development set and a blind test were extracted from the evaluation portion of the

Europarl collection. Documents were selected using the same set of dates across all corpora, resulting

in the English references consisting of roughly the same text. The development set contained close to

3,000 sentences and the evaluation set was nearly 4,000 sentences, with no overlap.

Finnish-to-English French-to-English German-to-English

Dev Test Dev Test Dev Test

Moses 0.2445 0.2361 0.3207 0.3219 0.2746 0.2546

Cunei 0.2456 0.2369 0.3215 0.3225 0.2813 0.2634

Table 2: Evaluation on Europarl using BLEU

1http://www.statmt.org/wmt09/
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Finnish

-to-

English

Moses mr president, indeed himaren orgy of violence and electoral fraud in local elections in the

province, who were living in the region kreikkalaisvähemmistöön.

Cunei mr president, indeed in the province of violence and electoral fraud in local elections, which

were against the greek minority in the area.

Reference madam president, it is quite right that the municipal elections in himara were marked by

violence and fraud at the expense of the greek minority living there.

French

-to-

English

Moses for some reason, i know that my name is not on the attendance register.

Cunei for some reason i do not know, my name is not on the attendance register.

Reference for some strange reason, my name is missing from the register of attendance.

German

-to-

English

Moses i would like to criticise the lack of initiatives on the new challenges in the safety of em-

ployee participation and in industrial relations.

Cunei i share the criticism of initiatives to the new challenges in the field of health and safety, and

worker participation in the labour relations.

Reference i would like to raise a criticism in connection with the lack of initiatives produced in re-

sponse to the new challenges we face in health and safety at work, employee participation

and labour relations.

Table 3: Comparison of Translation Output

Cunei tops Moses ever so slightly in French-to-English, which is the language pair with the fewest

divergences and highest overall scores. Interestingly, performance is also nearly identical on Finnish-to-

English even though word order in Finnish is much freer and can require substantial reordering during

decoding. This result is even more surprising given that reordering has not (yet) been a significant

focus in Cunei and our reordering model is only informed by how frequently and how far phrases are

moved during decoding. On the other hand, Moses is using a lexicalized distortion model that is much

more sophisticated. Only in German-to-English do we see a distinction between Moses and Cunei. We

suspect that the key linguistic divergence affecting translation is German compounding. This results

in a greater prevalence of one-to-many alignments which makes phrase alignment and extraction more

difficult. Cunei shines due to its run-time phrase-extraction which was able to adapt during optimization

and learn appropriate weights for aligning and extracting German-English phrase-pairs from less-than-

perfect word-alignments.

Table 3 provides one example of translation output for each language-pair (space restrictions prohib-

ited more examples). The most noticeable difference in the output is that Cunei is more likely to find

translations of ‘unknown’ words and tends to exhibit better word selection. However, in comparison to

Moses, this at times comes at the cost of less faithful word ordering.

5 Conclusion

In recent years SMT has dominated the field of machine translation research. Even though SMT in many

respects grew from the data-driven focus of EBMT, the concept of modeling each example individually

has been lost. In this work we attempt to bridge the gap between EBMT and SMT with the introduction

of the Cunei Machine Translation Platform. Cunei is open-source and competitive with state-of-the-

art SMT systems like Moses. Furthermore, this platform provides researchers with the ability to easily

integrate EBMT-style, example-specific features. We achieve this goal by pushing most of the feature

extraction and calculation to run-time which ultimately makes the translation model more consistent

and allows our system to adapt and explore a larger space during optimization. Work is ongoing to

incorporate other sources of information in Cunei. Ultimately, Cunei should be able to use any available

information, be it lexical, syntactic, semantic, grammatical, pragmatic, contextual, etc., to make a case-
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by-case selection of the best possible examples in its corpus–fulfilling the goal of true ‘data-driven’

machine translation.
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