Evaluating Syntax-Driven Approaches to Phrase Extraction for Machine Translation

Ankit Srivastava

CNGL, DCU

Sergio Penkale CNGL, DCU Declan Groves

John Tinsley

3rd International Workshop on Example-Based Machine Translation, 12-13 November, 2009: Dublin, Ireland

about

- EBMT-influenced data sources used in a PB-SMT model (Moses)
 - Marker Hypothesis
 - Parallel Treebanks
 - Lessons learned from work carried out over a number of years at DCU
- Focus on techniques for supplementing Moses phrases with syntactically motivated phrases

Moses phrases: an example

Official journal of the European Communities Journal officiel des Communautés européennes

- Official journal Official journal of Official journal of the \ **European Communities** of of the European Communities \leftrightarrow the European Communities European
- Journal officiel \leftrightarrow
 - ↔ Journal officiel des
 - \leftrightarrow Journal officiel des \ Communautés européennes
 - \leftrightarrow des
 - des Communautés européennes
 - Communautés européennes \leftrightarrow
 - européennes \leftrightarrow

Supplementing with Syntax-driven Phrases

Marker-based

- Chunk sentences on encountering a 'marker' word
 - Founded on the Marker Hypothesis [Green, 1979]
 - Marker words are closed class of lexemes / morphemes
 - Each marker word associated with a marker category (tag)
 - 7 marker categories identified. E.g. DET, PREP, PRON
 - Each marker chunk must contain at least 1 non-marker word
 - Align bilingual marker chunks
 - Use marker tag and relative positions in the sentence
 - Use cognate and MI scores
 - Obtain marker-based phrase pairs

Marker-based: an example

That is almost a personal record for me this autumn C' est pratiquement un record personnel pour moi cet automne

<DET>That is almost <DET>a personal record <PREP>for <PRON>me <DET>this autumn <DET>C' est pratiquement <DET>un record personnel <PREP>pour <PRON>moi <DET>cet automne

CONTENT CONTENT CO <DET>C' est pratiquement <DET>un record personnel <PREP>pour moi cet automne

- That is almost
- \leftrightarrow
 - C' est pratiquement

un record personnel

pour moi cet automne

- a personal record
- for me this autumn \leftrightarrow

 \leftrightarrow

plementing with Syntax-driven Phra November 12, 2009 :: Dublin, Ireland

Marker-based: direct

- Merging phrase pairs in a single phrase table
- Fr-En Europarl data: (3-gram lang model, Pharaoh decoder)
- System performance as training data increases
- 13% new phrases added via marker-based phrases

Es-En Europarl data: (200K train, 5gram lang model, Moses decoder)

Centre for Next Generation Localisation

DCU

Supplementing with Syntax-driven Phrase

treebank-based

- Monolingual parsing of sentences
 - Parse both sides
 - Requires constituency-structure parsers
- Align bilingual parse trees
 - Requires a sub-tree aligner [Zhechev & Way, 2008]
- Get aligned phrases
 - Extract surface-level chunks
- Also implemented using dependency structure
 - Using off-the-shelf dependency parsers
 - Head percolation of constituency trees [Magerman, 1995]

DCU

ementing with Syntax-driven Pl

Centre for Next Generation Localisati

treebank-based: an example [con]

DCU

travilation technology

treebank-based: direct

- En-Es Europarl data: (700K train, 5-gram lang model, Moses decoder)
- Moses (Baseline), Constituency (Syntax)
- Merging phrase pairs in a single phrase table
- 24M phrases in Baseline Vs 6M phrases in Syntax
- 4.87% overlap between Moses and Syntax
- 16.79% new phrases added

System	BLEU	NIST	METEOR
Baseline	0.3341	7.0765	0.5739
+Syntax	0.3397	.0891	0.5782
Syntax_only	0.3153	5.8187	0.5598

DCU

treebank-based: direct

- Fr-En Europarl data: (100K train, 5-gram lang model, Moses decoder)
- Moses (B), Constituency (C), Dependency (D), Percolated (P)
- Merging phrase pairs in a single phrase table (1 / 2 / 3 / 4)
- Compare sizes of B with C/D/P
- Overlap between tables

SMT + Syntax			Pure Syntax					
System		BLEU	NIST	METEOR	System	BLEU	NIST	METEOR
BASELINE(0	0.2850	7.00	0.5783				
B + C		0.2950	7.10	0.5855	CON(C)	0.2564	6.55	0.5526
B + D		0.2930	7.08	0.5843	DEP(D)	0.2524	6.59	0.5465
$\mathbf{B} + \mathbf{P}$		0.2945	7.10	0.5854	Perc(P)	0.2587	6.59	0.5563
B + C + D	Γ	0.2929	7.09	0.5848	C + D	0.2632	6.69	0.5556
B + C + P		0.2949	7.10	0.5850	C + P	0.2637	6.62	0.5605
B + D + P		0.2939	7.09	0.5849	D + P	0.2657	6.74	0.5583
B + C + D	Ρ	0.2940	7.09	0.5849	C + D + P	0.2690	6.75	0.5614

recap

Baseline system (Moses):

- source_phrase ||| target_phrase ||| [feature_value]
- Alternate phrase pairs
 - Marker-based: src ||| tgt
 - Treebank-based (con, dep): src ||| tgt
- Experiments on direct combination
 - Merging phrase pairs and re-estimating probabilities

Other ways to supplement the Moses phrase table with alternate phrase segmentation approaches

DCU

Combining strategies

- Direct combination
- Weighted combination
- **Prioritised combination**
- Feature-based
- System combination

Supplementing with Syntax-driven Phra November 12, 2009 :: Dublin, Ireland

Weighted combination

- Instead of simple merging, add 'n' copies of a type of phrase pair
- This modifies the relative frequency of the syntax-based phrase pairs
- Generally does not improve over direct combination
- Experiments on adding n copies of marker-based phrases
- Experiments on adding n copies of constituency-based phrases

System	BLEU	NIST	METEOR	EBMT%
Baseline	0.3079	7.5590	0.6025	24.21
1-count	0.3078	7.5775	0.6024	23.47
2-count	0.3076	7.5582	0.6020	23.64
4-count	0.3071	7.5609	0.6015	24.34
8-count	0.3083	7.5969	0.6018	26.64
16-count	0.3042	7.5386	0.5986	29.71

System	BLEU	NIST	METEOR
Baseline+Syntax	0.3397	7.0891	0.5782
+Syntax x2	0.3386	7.0813	0.5776
+Syntax x3	0.3361	7.0584	0.5756
+Syntax x5	0.3377	7.0829	0.5771
Half-weights	0.3404	7.1050	0.5792

DCU

Supplementing with Syntax-driven Phrase

Prioritized combination

- A phrase pair consists of src ||| tgt ||| [feature_value]
 - Alternative to direct combination
 - Prioritize set A over set B
 - Add only those B phrase pairs when src not in A
 - Experiments on baseline & constituency
 - No improvements over direct combination

System	BLEU	NIST	METEOR
Baseline	0.3341	7.0765	0.5739
+Syntax	0.3397	7.0891	0.5782
Syntax_only	0.3153	6.8187	0.5598
Syntax Prioritised	0.3339	6.9887	0.5723
Baseline Prioritised	0.3381	7.0835	0.5789

DCU

16

feature-based combination

- A phrase pair consists of src ||| tgt ||| [feature_value]
- Add a new feature
 - Binary: type of phrase pair
 - MERT tuning assigns weight like other features
- Merging like direct combination
- **Experiments on marker-based**
 - Improvements in translation quality

System	BLEU	NIST	METEOR	EBMT%
Baseline	0.3079	7.5590	0.6025	24.21
1-count	0.3078	7.5775	0.6024	23.47
Feature	0.3111	7.6004	0.6055	35.09

DCU

System combination

- So far, all methods have altered how phrases merged into one phrase table
- An alternative is to combine translated sentences (after decoding) rather than phrase pairs (during training)
- Use MBR-CN system combination [Du et al., 2009]
 - Experiments on B/C/D/P
 - Output sentences are unique enough to profit
 - 7.16% relative (4 systems), 12.3% relative (15 systems)

System	BLEU	NIST	METEOR
MBR (4 systems)	0.2952	6.85	0.5784
CN (4 systems)	0.3070	7.06	0.5852
MBR (15 systems)	0.3260	7.32	0.6050
CN (15 systems)	0.3251	7.33	0.6039

DCU

lessons learned

- Syntax-based phase pairs are a unique knowledge source
 - Overlap between phrase pairs
- Using only syntax-based phrases deteriorates
 - Large coverage of PB-SMT method
- Supplementing PB-SMT with syntax-based helps
 - Explored 5 different strategies for combining
 - System combination helps the most
- Decrease in gains as training data increases

lessons learned

Syntax-based phase pairs
Overlap between phrase pairs
Using only syntax-based p
Large coverage of PB-SM1
Supplementing PB-SMT w
Explored 5 different strateg
System combination helps
Decrease in gains as training

traslân

travilation the biology

DCU

Supplementing with Syntax-driven Phrase

endnote

- Examined a number of different phrase segmentation approaches for MT
- Explored ways of using linguistic information (borrowed from EBMT research) in a PB-SMT system
- Level of improvement is dependent on amount of training data
- Useful for languages with limited training data and MT systems with a smaller footprint
- Difficult to improve the PB-SMT alignment / extraction / decoding pipeline without significant remodeling

DCU

travilation the biology

regulation technology