
Top-Down Transfer in Example-based MT
Vincent Vandeghinste

Centrum voor Computerlinguı̈stiek
K.U.Leuven
Belgium

vincent@ccl.kuleuven.be

Scott Martens
Centrum voor Computerlinguı̈stiek

K.U.Leuven
Belgium

scott.martens@ccl.kuleuven.be

Abstract

In this paper we describe and evaluate a top-down transfer component of a hybrid example-based
machine translation system with an architecture similar to that of transfer MT systems, but with
automatically derived transfer-rules and dictionary entries based on a parallel treebank. The tests
were applied on the translation pair Dutch to English. Evaluation and error analysis have shown that
the top-down transfer process has a number of shortcomings on which we wish to report and which
we will try to solve in future work by applying bottom-up transfer.

1 Introduction

In this paper1 we present a top-down transfer component of an example-based transfer system. Although
there seems to be no clear definition of example-based machine translation, most people would agree
that an EBMT system requires a parallel corpus containing example translations. [19] mention three
main directions for extending and augmenting the original EBMT ideas in [14]. One is to augment the
example database with linguistic annotations and perform the same type of linguistic analysis on the
input before matching it with the examples. A second extension is through the use of templates rather
than sentences in the example database. In these templates, some parts of the input sentence have been
replaced by variables, annotated with linguistic information. A third extension is to use a combination
of examples that match fragments of the sentence and recombine their translations into a target language
sentence.

Our system uses a parallel corpus as an example database and extends the original EBMT approach
along all three of these lines. We annotate the examples using a deep syntactic parse that marks both de-
pendency and constituent structure. We use abstractions over lexical items to deduce a set of templates,
which we call transfer rules, and we combine unlexicalized and lexicalized transfer rules - those contain-
ing just syntactic categories and relations and those containing both syntactic information and words or
roots - into a target language structure (a bag of bags) from which we generate a target language sentence.

The system can also be considered a rule-based transfer system. It conforms to the general architec-
ture of a rule-based system: the source sentence is parsed, the transfer rules and dictionary are applied
to generate target language parse trees, and a surface form of the sentence is generated from the target
parse tree. The rules and dictionary are automatically induced from a parallel corpus.

The approach we take is in many aspects similar to Data-Oriented Translation (DOT) ([16, 7]), but
while DOT uses the specific formalism of Data-Oriented Parse Trees ([3]), we use already existing
monolingual parsers that are either rule-based with a stochastic disambiguation component or stochastic
parsers trained on a manually parsed or corrected treebank. The DOT approach only uses small corpora
and a limited domain, whereas we use large corpora and a general domain (news). The extraction of
transfer rules resembles the work of [6] and [5], but we map from source tree to target tree, whereas they
map from source string to target tree. It is also similar to the work of [2], but they limit their transfer
rules to depth 2 to produce synchronous context-free grammars, first introduced by [1].

1The research presented in this paper was done in the PaCo-MT project, sponsored by the STEVIN-programme and by the
AMASS++ project sponsored by IWT - Vlaanderen.

Mikel L. Forcada, Andy Way �eds.)
Proceedings of the 3rd Workshop on ExampleBased Machine Translation, p. 69–76
Dublin, Ireland, November 2009



Figure 1: Architecture of our system

At the moment the system is not available in open source as it is too immature and will still undergo
many changes. All components and tools used are either open source or freely available, and we are open
to sharing the tools we built with other researchers.

Section 2 describes our MT system, section 3 describes an evaluation of our system, and section 4
concludes the paper.

2 System description

Figure 1 shows the general architecture of our system. The source language for which we tested our
system is Dutch. We use the wide-coverage dependency parser Alpino [20] which is freely available,
and which generates a deep syntactic analysis of the sentence, containing both the dependency structure
as well as the phrase structure. The transfer and dictionary component are described in section 2.1 and
the target language generation component is described in 2.2.

2.1 From Source to Target Language

In order to transfer the source language tree into the target language tree, we must identify examples in
the example database that match some or all of an input source language tree. Section 2.1.1 describes
how the example trees are preprocessed for matching, and section 2.1.2 describes the matching process
itself.

2.1.1 Preprocessing the parallel data

The parallel tree data we used is derived from the Dutch and English sections of the Europarl corpus
[11]. Dutch was parsed using the Alpino parser ([20]) and English was parsed using the factored models
of the Stanford parser[9, 10].2

Our system requires sentence and word alignments, but also sub-sentential alignments on interme-
diate (non-root and non-leaf) nodes. How the sub-sentential alignments were generated is described in
[18]. From the alignments, we derive one uniform set of both lexicalized and unlexicalized rules.

2Thanks to Jörg Tiedemann for parsing these corpora.

70



Figure 2: An example alignment containing POS and phrase category information.

For each pair of aligned nodes, we extracted the subtrees rooted at those nodes, in both source
and target language, down to a maximum tree depth of 3.3 Figure 2 shows an example alignment and
Figure 3 shows the set of transfer rules extracted from this alignment. Transfer rules are constructed
for each node, including nodes that are already included in other transfer rules. For example, in Figure
2, in addition to the transfer rule for the entire NP “Goedkeuring van de Notulen” ↔“Approval of the
Minutes”, the NP containing the words “the Minutes” is aligned with the np containing the words “de
Notulen” as a separate alignment from which transfer rules are also extracted. We make abstraction over
the sequential ordering of the children of a parent, representing all different permutations under the same
transfer rule, modeling only structural transfer. Ordering is solved in target language modeling (section
2.2), the transfer rules only capture hierarchical relations.

We extract unlexicalized rules by ignoring the tokens. We proceed top-down from the root of the
source and target alignments, extracting the subtrees of up to depth 3 from each root alignment. The
result is up to three source language subtrees and three target language subtrees. We then consider the
leaf nodes of each subtree, and in each case where all the leaves of the source subtree align with all the
leaves of a target language subtree, we accept that tree pair as a mapping from source to target languages
- in effect a transfer rule. A transfer rule is defined by one source language tree, one target language tree,
and an alignment table of each leaf node in the source tree to a target language tree leaf node. When a
mapping between two subtrees does not include a complete alignment of all the leaves, but is otherwise
identical to a rule that does have a complete leaf alignment, its frequency and weight are added to that
transfer rule. The procedure for constructing lexicalized rules is identical, but we add the words to the
leaves of both sides of the transfer rules in those cases where it concerns terminal nodes in the alignment.

The extraction of transfer rules bears many resemblances to the work of [2]: both induce lexical and
structural rules for building syntactic translation models, respecting the constraints that are imposed by
the underlying word alignment and syntax. [2] generates a synchronous context-free grammar based on
the alignments, whereas we generate transfer rules with a maximum depth > 2 on both the source and
the target side.

NP:[NP:[NNP^1] PP:[IN^2 NP^3]] <=> np:[noun^1 pp:[prep^2 np^3]]

NP^1 => np^1

NP:[NP:[NNP^1:[Approval] PP:[IN^2:[of] NP^3]] <=> np:[noun^1:[Goedkeuring] pp:[prep^2:[van] np]]

Figure 3: Example of extracted transfer rules with full leaf node alignment. The children of each node
on both sides are sorted in alphabetical order, not representing sequential information.

3We use a maximum depth of 3 to prevent useless explosion of the ruleset which would not result in many more matches.

71



Figure 4: An example tree - half translated.

2.1.2 Matching the Source Language Tree with the Example Database

The result of the preprocessing described above is a set of transfer rules such as the ones in Figure 3
which map a portion of a parse tree in the source language to a portion of a parse tree in the target
language. They are stored in a database along with, for each transfer rule, the sum of the confidence
weights derived from the alignments, the node-to-node alignments of the leaf nodes in the source and
target, the frequencies of the source language tree and the target language tree, and the number of times
the two trees are aligned. Each transfer rule is weighted as the product of the average confidence weight4

and the Dice coefficient of source and target.5 The resulting weight is further biased to favour deeper
trees on both the source and target side and to favour transfers that occur frequently in absolute terms
over those that appear only a few times.

Transfer is a breadth-first search with a fixed beam size, starting with the root of the source language
sentence, that tries to maximize the product of the weights of the rules used to generate the target lan-
guage parse tree. Given a node in a source language parse, the transfer engine tries to find rules whose
source side matches the top of the subtree rooted at that node, down to as great a depth as possible, up to
three levels. Transfer proceeds by starting at the root and transferring the top of the parse tree, then, us-
ing the alignment information, determining which subtrees lower in the source sentence attach to which
leaves in the partial target language parse tree, as shown in Figure 4.6

In Figure 4, the phrase “Goedkeuring van de Notulen” is translated by finding a transfer rule with
the top three levels of the source parse on the left hand side. On the right is the partial parse tree
corresponding to “Approval of NP”. The alignment information tells us that the NP in the target side
of the rule aligns with the source side NP “de Notulen”. In the next iteration of the transfer engine, a
rule is found with “de Notulen” on the left-side, if any exists, and then inserts the resulting partial parse
underneath the corresponding target NP, as in Figure 5.

This process proceeds top-down and from left to right, until all of the source tree has been translated.
This procedure is very similar to the generation schemes used in Tree Adjoining Grammar [8].

In many cases, the largest transfer rule translates only a single source node to a single target node
(mapping the source labels onto the target labels). This requires special handling, since it means that
no rule transfers that node and its children - the rule only specifies, for example, that a source language
constituent like NP translates to a target language NP. The children of that node are then translated
individually, and placed underneath that node in the target language. Furthermore, when the transfer
system attempts to translate an unknown word, it finds a rule to translate its part-of-speech or its frame,

4The sum of the individual confidence weights divided by the number of times the source and target are aligned.
5The number of times they overlap divided by the total number of sentences where one or the other appears.
6The transfer rules are completely symmetrical between source and target language, so the translation direction is of no

importance here.

72



Figure 5: The 2nd step in translation.

depending on the experimental condition (cf. section 3), and then copies the word verbatim.

2.2 Target Language Generation

Target language generation is the component that converts the target language trees (bags of bags) into a
target language sentence. The target language parse tree generated by the transfer component described
in section 2.1 has no ordering information. For each parent node, the actual order of the daughters is
determined by the target language model. It determines word and constituent ordering and can play an
important role in lexical selection.

The target language model used here is trained on the target language parts of Europarl, but it can
be trained on large monolingual treebanks (like a parsed British National Corpus) as well. From the
parse trees in the treebank, we extract the context-free rewrite rules, using the phrase category labels on
the left-hand side, but we do not necessarily have to restrict ourselves to the parts-of-speech, the phrase
category labels or the tokens on the right-hand side as we distinguish different abstraction levels. For
English, we distinguish four abstraction levels, as shown in Figure 6:

1. the dependency relations (Rels),

2. the syntactic categories for non-terminal nodes and the parts-of-speech for terminal nodes (Cat/Pos),

3. the dependency relations together with the syntactic categories/parts of speech (Cat+Rel),

4. the dependency relations together with the syntactic categories/parts of speech as well as the head
token information (Cat+Rel+Token).

Rels NP : det amod hd

Cat/Pos NP : AT0 JJ NN1

Cat+Rel NP : AT0|det JJ|amod NN1|hd

Cat+Rel+Token NP : AT0|det|a JJ|amod|legal NN1|hd|reason

Figure 6: Context free rewrite rules for different abstraction levels

For each node in the target language tree, we check if we find a rewrite rule at the least abstract
level (Cat+Rel+Token), cascading down to the most abstract level until we find a solution, estimating

73



Table 1: Evaluation Results

Abstraction Beam Tok/Lem BLEU NIST WER CER PER TER

cat/pos 10 lemma 9.70 4.54 82.72 62.25 62.20 75.52
cat/pos 100 lemma 10.17 4.59 82.06 61.68 61.85 75.16
cat/frame 10 lemma 9.82 4.68 82.63 62.21 61.35 75.28
cat/frame 100 lemma 9.88 4.63 82.42 62.12 61.76 75.30

cat/pos 10 token 12.50 5.30 77.55 62.12 54.99 71.84
cat/pos 100 token 13.18 5.43 76.53 61.36 54.48 70.92
cat/frame 10 token 13.53 5.70 76.20 61.91 52.39 70.36
cat/frame 100 token 13.52 5.61 76.10 61.87 53.12 70.76

the probability of different orderings of the daughters of the node under investigation, selecting the most
probable, by looking at the frequency of occurrence of the patterns in the training data.

A detailed account of this approach for Dutch as a target language is given in [21], as well as an
experiment showing that this approach, at least for Dutch, outperforms a standard trigram target language
model.

3 System evaluation

We evaluated our system, using well-known automated MT metrics, like BLEU ([15]), NIST ([4]), and
TER ([17]), as well as WER (word error rate), PER (position independent word error rate), and CER
(character error rate). We have used a test set of 500 Dutch sentences, with two reference translations for
each sentence. To give an idea about the difficulty of the test set, it scored 29.96 BLEU on Moses ([12])
trained on the same sentences of Europarl as used in our system7 and 38.82 BLEU on Google translate.

We trained the translation model on the parsed versions of Europarl ([11]), and the target language
model only on the English side of Europarl.

We had three independent variables:

1. the abstraction level used: frames + categories (cat/frame) or part-of-speech + categories (cat/pos),

2. the beam width for the transfer component (10 or 100), and

3. whether we use tokens or lemmas in our transfer rules.

Table 1 shows the results of these conditions.
All results are worse than what we expected, and we draw the conclusion that top-down processing

of the transfer rules is not the way to go. Nevertheless we wanted to report this so others can avoid it.
With respect to the beam size, we expected better results with a wider beam, but this is only the case

combined with cat/pos. When using cat/frame, the beam size does not significantly change the scores.
With respect to using tokens or lemmas in the tranfer rules, we expected a wider coverage with the

lemmas, but an extra processing step is required to generate the tokens from the lemmas and part-of-
speech tags, which can introduce additional errors. Combining cat/pos with lemmas we did not expect
good results, as cat/pos in Dutch is clearly not fine-grained enough to allow synthesis of the desired token
form. We found no conditions in which lemmas resulted in better scores than tokens.

7Some sentences timed out in parsing.

74



We expected the cat/frame information to be too fine-grained to have a good coverage as compared
to the cat/pos information, but results show a clear improvement over all scores when using the frames
instead of the pos.

4 Conclusions and Future

The transfer process as described in section 2.1 proved to have a number of shortcomings. Structural
matches are relatively easy to find at the lowest levels. Translating individual NPs and simple VPs by
this method was not difficult. However, the richness of structures closer to the root of each parse made
sparsity of data a major problem, and without sufficient detail about the composition of each phrase, the
target language model used to transform parses into sentences was much less accurate. Sparsity also
produced some surprising and at first illogical translations due to differences in parsing style between
the English and Dutch parses. This model of transfer works best when the parse trees in the source and
target language are not just aligned, but where the structures themselves are very similar. Consider, for
example, the sentence in English “He passed the first time.” A reasonable Dutch translation is “Hij
is van de eerste keer geslaagd.” Using a top-down approach to translating this sentence, an English
adverbial phrase (or perhaps a noun phrase depending on the underlying formalism) becomes a Dutch
prepositional phrase. Using this rule will likely be misleading for many other sentences, and will force
the transfer engine to select, among available translations, ones that have the expected phrase category
and part of speech labels. Given the structural dissimilarities between parsing strategies in the source and
target languages, the imperfect performance of alignment procedures, and the sparsity of the structures in
corpora, the errors accumulate very quickly and are propagated downwards, forcing the transfer system
to select low probability and flatly wrong translations. This problem becomes more acute as the node and
edge labels in the parse tree become more detailed, exacerbating the data sparsity problem even further.
We believe this to account for the relatively poor performance of the category and frame test condition
in comparison to the category and part-of-speech condition.

Possible remedies include a shift to binary trees for all parses (cf [22]), which may reduce the data
sparsity problem because if each node can have no more than two children, the number of feasible
structures of any particular size is dramatically reduced. Ensuring that, in so far as is reasonable, the
source and target language parse trees are comparable will also likely improve performance. Different
theories of syntax yield different approaches to parsing, which in turn yield radically different kinds of
parse trees. This lack of uniformity also increases the number of structural mismatches.

One strategy we are actively pursuing is reversing the direction of transfer and performing transla-
tions from the bottom up. It is relatively easy to identify every node in a source language parse tree that
exactly matches one or more in a bilingual aligned corpus. This is the strategy used by sub-sentential
translation memories. We could then use information about the structure of the source sentence, weighted
transfer rules extracted from the bilingual aligned corpus, and treebank-derived information about the tar-
get language to construct the translation parse tree in much the same way as a monolingual parser. This
is much like the synchronous context-free grammar strategy of [2], but integrated with a sub-sentential
translation memory.

Given the structural richness of any sophisticated written language and the relative sparsity of tree-
bank structured data, it is undoubtedly necessary to consider strategies that involve imperfect structural
matches between a source language sentence and a bilingual aligned treebank, or a ruleset derived from
one. We are actively pursuing approaches along this line which may also deliver benefits in handling
structural mismatches between the source and target due to different parsing methods. This requires
more sophisticated indexing strategies like those described in [13].

75



References

[1] Alfred V. Aho and Jeffrey D. Ullman. Syntax directed translations and the pushdown assembler. J. Comput.
Syst. Sci., 3(1):37–56, 1969.

[2] Vamshi Ambati, Alon Lavie, and Jaime Carbonell. Extraction of Syntactic Translation Models from Parallel
Data using Syntax from Source and Target Languages. In Proceedings of MT Summit XII, 2009.

[3] R. Bod. A Computational Model of Language Performance: Data-Oriented Parsing. In C. Boı̂tet, editor,
Proceedings of the fifteenth International Conference on Computational Linguistics (COLING’92), pages
855–859, 1992.

[4] G. Doddington. Automatic Evaluation of Machine Translation Quality using N-gram Co-occurrence Statis-
tics. In Proceedings of the Second Human Language Technology Conference (HLT), pages 138–145, 2002.

[5] Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. Scalable inference and training of context-rich syntactic translation models. In Proceedings of
44th ACL, 2006.

[6] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s in a translation rule? In Proceedings
of HLT-NAACL04, 2004.

[7] M. Hearne. Data-Oriented Models of Parsing and Translation. Master’s thesis, Dublin City University, 2005.

[8] Aravind K. Joshi, L.S. Levy, and M. Takahashi. Tree adjunct grammars. Journal of Computer and System
Sciences, 10(1), 1975.

[9] D. Klein and C. Manning. Accurate Unlexicalized Parsing. In Proceedings of ACL-2003, pages 423–430,
2003.

[10] D. Klein and C. Manning. Fast Exact Inference with a Factored Model for Natural Language Parsing. In
Advances in Neural Information Processing Systems 15 (NIPS 2002), pages 3–10, Cambridge, MA, 2003.
MIT Press.

[11] P. Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of MT Summit X,
2005.

[12] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen, C Moran,
R. Zens, C. Dyer, O. Bojar, A. Constantin, and E. Herbst. Moses: Open source toolkit for statistical machine
translation. In Proceedings of ACL, Prague, 2007.

[13] Scott Martens. Quantitative analysis of treebanks using frequent subtree mining methods. In Proceedings
of the 2009 Workshop on Graph-based Methods for Natural Language Processing (TextGraphs-4), pages
84–92, Suntec, Singapore, August 2009. Association for Computational Linguistics.

[14] M Nagao. A framework of a mechanical translation btween japanese and english by analogy principle. In
A. Elithorn and Banerji R., editors, Artifical and Human Intelligence, pages 173–180. 1984.

[15] K. Papineni, S. Roukos, T. Ward, and W. Zhu. BLEU: a method for automatic evaluation of Machine Trans-
lation. In Proceedings of ACL-2002, pages 311–318, 2002.

[16] A. Poutsma. Data-Oriented Translation. In Ninth Conference of Computational Linguistics in the Nether-
lands, 1998.

[17] M. Snover, B. Dorr, R. Schwartz, L Micciula, and J. Makhoul. A study of translation edit rate with targeted
human annotation. In Proceedings of AMTA-2006, pages 223–231, 2006.

[18] J. Tiedemann and G. Kotzé. A Discriminative Approach to Tree Alignment. In Proceedings of RANLP-2009,
2009.

[19] D. Turcato and F. Popowich. What is Example-Based Machine Translation. In Michael Carl and Andy Way,
editors, Recent Advances in Example-based Machine Translation, chapter 2, pages 59–81. Kluwer, 2003.

[20] G. van Noord. At Last Parsing Is Now Operational. In In Proceedings of TALN 2006 Verbum Ex Machina,
pages 20–42, Leuven, 2006.

[21] V. Vandeghinste. Tree-based Target Language Modeling. In Proceedings of EAMT-2009, pages 152–159,
Barcelona. Spain, 2009.

[22] Wei Wang, Kevin Knight, and Daniel Marcu. Binarizing Syntax Trees to Improve Syntax-Based Machine
Translation Accuracy. In Proceedings of EMNLP - CoNLL, 2007.

76


