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Abstract
Given a parallel parsed corpus, statistical tree-
to-tree alignment attempts to match nodes in
the syntactic trees for a given sentence in
two languages. We train a probabilistic tree
transduction model on a large automatically
parsed Chinese-English corpus, and evaluate re-
sults against human-annotated word level align-
ments. We find that a constituent-based model
performs better than a similar probability model
trained on the same trees converted to a depen-
dency representation.

1 Introduction
Statistical approaches to machine translation, pio-
neered by Brown et al. (1990), estimate parame-
ters for a probabilistic model of word-to-word cor-
respondences and word re-orderings directly from
large corpora of parallel bilingual text. In re-
cent years, a number of syntactically motivated ap-
proaches to statistical machine translation have been
proposed. These approaches assign a parallel tree
structure to the two sides of each sentence pair, and
model the translation process with reordering oper-
ations defined on the tree structure. The tree-based
approach allows us to represent the fact that syn-
tactic constituents tend to move as unit, as well as
systematic differences in word order in the gram-
mars of the two languages. Furthermore, the tree
structure allows us to make probabilistic indepen-
dence assumptions that result in polynomial time
algorithms for estimating a translation model from
parallel training data, and for finding the highest
probability translation given a new sentence.

Wu (1997) modeled the reordering process with
binary branching trees, where each production
could be either in the same or in reverse order going
from source to target language. The trees of Wu’s
Inversion Transduction Grammar were derived by
synchronously parsing a parallel corpus, using a
grammar with lexical translation probabilities at the
leaves and a simple grammar with a single nonter-
minal providing the tree structure. While this gram-
mar did not represent traditional syntactic categories

such as verb phrases and noun phrases, it served to
restrict the word-level alignments considered by the
system to those allowable by reordering operations
on binary trees.

Yamada and Knight (2001) present an algorithm
for estimating probabilistic parameters for a simi-
lar model which represents translation as a sequence
of re-ordering operations over children of nodes in
a syntactic tree, using automatic parser output for
the initial tree structures. This gives the translation
model more information about the structure of the
source language, and further constrains the reorder-
ings to match not just a possible bracketing as in Wu
(1997), but the specific bracketing of the parse tree
provided.

Recent models of alignment have attempted to
exploit syntactic information from both languages
by aligning a pair of parse trees for the same sen-
tence in either language node by node. Eisner
(2003) presented such a system for transforming
semantic-level dependecy trees into syntactic-level
dependency trees for text generation. Gildea (2003)
trained a system on parallel constituent trees from
the Korean-English Treebank, evaluating agreement
with hand-annotated word alignments. Ding and
Palmer (2004) align parallel dependency trees with
a divide and conquer strategy, choosing a highly
likely word-pair as a splitting point in each tree. In
addition to providing a deeper level of representa-
tion for the transformations of the translation model
to work with, tree-to-tree models have the advan-
tage that they are much less computationally costly
to train than models which must induce tree struc-
ture on one or both sides of the translation pair.
Because Expectation Maximization for tree-to-tree
models iterates over pairs of nodes in the two trees,
it is O(n2) in the sentence length, rather than O(n6)
for Wu’s Inversion Transduction Grammar or O(n4)
for the Yamada and Knight tree-to-string model.

In this paper, we make a comparison of two tree-
to-tree models, one trained on the trees produced by
automatic parsers for both our English and Chinese
corpora, and one trained on the same parser output



converted to a dependency representation. The trees
are converted using a set of deterministic head rules
for each language. The dependency representation
equalizes some differences in the annotation style
between the English and Chinese treebanks. How-
ever, the dependency representation makes the as-
sumption that not only the bracketing structure, but
also the head word choices, will correspond in the
two trees. Our evaluation is in terms of agreement
with word-level alignments created by bilingual hu-
man annotators. Our model of alignment is that of
Gildea (2003), reviewed in Section 2 and extended
to dependency trees in Section 3. We describe our
data and experiments in Section 4, and discuss re-
sults in Section 5.

2 The Tree-to-Tree Model

A tree-to-tree alignment model has tree transforma-
tion operations for reordering a node’s children, in-
serting and deleting nodes, and translating individ-
ual words at the leaves of the parse trees. The trans-
formed tree must not only match the surface string
of the target language, but also the tree structure as-
signed to the string by the parser. In order to pro-
vide enough flexibility to make this possible, tree
transformation operations allow a single node in the
source tree to produce two nodes in the target tree,
or two nodes in the source tree to be grouped to-
gether and produce a single node in the target tree.
The model can be thought of as a synchronous tree
substitution grammar, with probabilities parameter-
ized to generate the target tree conditioned on the
structure of the source tree.

The probability P (Tb|Ta) of transforming the
source tree Ta into target tree Tb is modeled in a
sequence of steps proceeding from the root of the
target tree down. At each level of the tree:

1. At most one of the current node’s children is
grouped with the current node in a single ele-
mentary tree, with probability Pelem(ta|εa ⇒
children(εa)), conditioned on the current
node εa and its children (ie the CFG produc-
tion expanding εa).

2. An alignment of the children of the current
elementary tree is chosen, with probability
Palign(α|εa ⇒ children(ta)). This alignment
operation is similar to the re-order operation
in the tree-to-string model, with the extension
that 1) the alignment α can include insertions
and deletions of individual children, as nodes
in either the source or target may not corre-
spond to anything on the other side, and 2) in
the case where two nodes have been grouped

into ta, their children are re-ordered together
in one step.

In the final step of the process, as in the tree-to-
string model, lexical items at the leaves of the tree
are translated into the target language according to
a distribution Pt(f |e).

Allowing non-1-to-1 correspondences between
nodes in the two trees is necessary to handle the
fact that the depth of corresponding words in the
two trees often differs. A further consequence of
allowing elementary trees of size one or two is that
some reorderings not allowed when reordering the
children of each individual node separately are now
possible. For example, with our simple tree

A

B

X Y

Z

if nodes A and B are considered as one elementary
tree, with probability Pelem(ta|A ⇒ BZ), their col-
lective children will be reordered with probability
Palign({(1, 1)(2, 3)(3, 2)}|A ⇒ XYZ)

A

X Z Y

giving the desired word ordering XZY. However,
computational complexity as well as data sparsity
prevent us from considering arbitrarily large ele-
mentary trees, and the number of nodes considered
at once still limits the possible alignments. For ex-
ample, with our maximum of two nodes, no trans-
formation of the tree

A

B

W X

C

Y Z

is capable of generating the alignment WYXZ.
In order to generate the complete target tree, one

more step is necessary to choose the structure on the
target side, specifically whether the elementary tree
has one or two nodes, what labels the nodes have,
and, if there are two nodes, whether each child at-
taches to the first or the second. Because we are



Operation Parameterization
elementary tree grouping Pelem(ta|εa ⇒ children(εa))
re-order Palign(α|εa ⇒ children(ta))
insertion α can include “insertion” symbol
lexical translation Pt(f |e)
cloning Pmakeclone(ε)

α can include “clone” symbol

Table 1: The probabilistic tree-to-tree model

ultimately interested in predicting the correct target
string, regardless of its structure, we do not assign
probabilities to these steps. The nonterminals on the
target side are ignored entirely, and while the align-
ment algorithm considers possible pairs of nodes as
elementary trees on the target side during training,
the generative probability model should be thought
of as only generating single nodes on the target side.
Thus, the alignment algorithm is constrained by the
bracketing on the target side, but does not generate
the entire target tree structure.

While the probability model for tree transforma-
tion operates from the top of the tree down, proba-
bility estimation for aligning two trees takes place
by iterating through pairs of nodes from each tree in
bottom-up order, as sketched below:

for all nodes εa in source tree Ta in bottom-up order
do

for all elementary trees ta rooted in εa do
for all nodes εb in target tree Tb in bottom-up or-
der do

for all elementary trees tb rooted in εb do
for all alignments α of the children of ta and
tb do

β(εa, εb) +=
Pelem(ta|εa)Palign(α|εi)

∏
(i,j)∈α β(εi, εj)

end for
end for

end for
end for

end for

The outer two loops, iterating over nodes in each
tree, require O(|T |2). Because we restrict our ele-
mentary trees to include at most one child of the root
node on either side, choosing elementary trees for a
node pair is O(m2), where m refers to the maxi-
mum number of children of a node. Computing the
alignment between the 2m children of the elemen-
tary tree on either side requires choosing which sub-
set of source nodes to delete, O(22m), which sub-
set of target nodes to insert (or clone), O(22m), and
how to reorder the remaining nodes from source to
target tree, O((2m)!). Thus overall complexity of
the algorithm is O(|T |2m242m(2m)!), quadratic in
the size of the input sentences, but exponential in

the fan-out of the grammar.

2.1 Clone Operation

Both our constituent and dependency models make
use of the “clone” operation introduced by Gildea
(2003), which allows words to be aligned even
in cases of radically mismatched trees, at a cost
in the probability of the alignment. Allowing m-
to-n matching of up to two nodes on either side
of the parallel treebank allows for limited non-
isomorphism between the trees. However, even
given this flexibility, requiring alignments to match
two input trees rather than one often makes tree-to-
tree alignment more constrained than tree-to-string
alignment. For example, even alignments with no
change in word order may not be possible if the
structures of the two trees are radically mismatched.
Thus, it is helpful to allow departures from the con-
straints of the parallel bracketing, if it can be done
in without dramatically increasing computational
complexity.

The clone operation allows a copy of a node from
the source tree to be made anywhere in the target
tree. After the clone operation takes place, the trans-
formation of source into target tree takes place using
the tree decomposition and subtree alignment oper-
ations as before. The basic algorithm of the previ-
ous section remains unchanged, with the exception
that the alignments α between children of two ele-
mentary trees can now include cloned, as well as in-
serted, nodes on the target side. Given that α speci-
fies a new cloned node as a child of εj , the choice of
which node to clone is made as in the tree-to-string
model:

Pclone(εi|clone ∈ α) =
Pmakeclone(εi)

∑
k Pmakeclone(εk)

Because a node from the source tree is cloned with
equal probability regardless of whether it has al-
ready been “used” or not, the probability of a clone
operation can be computed under the same dynamic
programming assumptions as the basic tree-to-tree
model. As with the tree-to-string cloning operation,
this independence assumption is essential to keep



the complexity polynomial in the size of the input
sentences.

3 Dependency Tree-to-Tree Alignments

Dependencies were found to be more consistent
than constituent structure between French and En-
glish by Fox (2002), though this study used a tree
representation on the English side only. We wish to
investigate whether dependency trees are also more
suited to tree-to-tree alignment.

Figure 1 shows a typical Xinhua newswire sen-
tence with the Chinese parser output, and the sen-
tence’s English translation with its parse tree. The
conversion to dependency representation is shown
below the original parse trees.

Examination of the trees shows both cases where
the dependency representation is more similar
across the two languages, as well as its potential
pitfalls. The initial noun phrase, “14 Chinese open
border cities” has two subphrases with a level of
constituent structure (the QP and the lower NP)
not found in the English parse. In this case, the
difference in constituent structure derives primar-
ily from differences in the annotation style between
the original English and Chinese treebanks (Marcus
et al., 1993; Xue and Xia, 2000; Levy and Man-
ning, 2003). These differences disappear in the con-
stituent representation. In general, the number of
levels of constituent structure in a tree can be rela-
tively arbitrary, while it is easier for people (whether
professional syntacticians or not) to agree on the
word-to-word dependencies.

In some cases, differences in the number of level
may be handled by the tree-to-tree model, for ex-
ample by grouping the subject NP and its base NP
child together as a single elementary tree. How-
ever, this introduces unnecessary variability into the
alignment process. In cases with large difference
in the depths of the two trees, the aligner may not
be able to align the corresponding terminal nodes
because only one merge is possible at each level.
In this case the aligner will clone the subtree, at an
even greater cost in probability.

The rest of our example sentence, however,
shows cases where the conversion to dependency
structure can in some cases exacerbate differences
in constituent structure. For example, jingji and
jianshe are sisters in the original constituent struc-
ture, as are their English translations, economic and
construction. In the conversion to Chinese depen-
dency structure, they remain sisters both dependent
on the noun chengjiu (achievements) while in En-
glish, economic is a child of construction. The
correspondence of a three-noun compound in Chi-

nese to a noun modified by prepositional phrase
and an adjective-noun relation in English means that
the conversion rules select different heads even for
pieces of tree that are locally similar.

3.1 The Dependency Alignment Model
While the basic tree-to-tree alignment algorithm is
the same for dependency trees, a few modifications
to the probability model are necessary.

First, the lexical translation operation takes place
at each node in the tree, rather than only at the
leaves. Lexical translation probabilities are main-
tained for each word pair as before, and the lexical
translation probabilities are included in the align-
ment cost for each elementary tree. When both el-
ementary trees contain two words, either alignment
is possible between the two. The direct alignment
between nodes within the elementary tree has prob-
ability 1−Pswap. A new parameter Pswap gives the
probability of the upper node in the elementary tree
in English corresponding to the lower node in Chi-
nese, and vice versa. Thus, the probability for the
following transformation:

A

B

X Y

⇒ B’

A’

X Y

is factored as Pelem(AB|A⇒B) Pswap Pt(A
′|A)

Pt(B
′|B) Palign({(1, 1)(2, 2)}|A ⇒ XY ).

Our model does not represent the position of the
head among its children. While this choice would
have to be made in generating MT output, for the
purposes of alignment we simply score how many
tree nodes are correctly aligned, without flattening
our trees into a string.

We further extended the tree-to-tree alignment al-
gorithm by conditioning the reordering of a node’s
children on the node’s lexical item as well as its syn-
tactic category at the categories of its children. The
lexicalized reordering probabilities were smoothed
with the nonlexicalized probabilities (which are
themselves smoothed with a uniform distribution).
We smooth using a linear interpolation of lexical-
ized and unlexicalized probabilities, with weights
proportional to the number of observations for each
type of event.

4 Experiments
We trained our translation models on a parallel
corpus of Chinese-English newswire text. We re-
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Figure 1: Constituent and dependency trees for a sample sentence



Alignment
Precision Recall Error Rate

IBM Model 1 .56 .42 .52
IBM Model 4 .67 .43 .47
Constituent Tree-to-Tree .51 .48 .50
Dependency Tree-to-Tree .44 .38 .60
Dependency, lexicalized reordering .41 .37 .61

Table 2: Alignment results on Chinese-English corpus. Higher precision and recall correspond to lower
alignment error rate.

stricted ourselves to sentences of no more than 25
words in either language, resulting in a training cor-
pus of 18,773 sentence pairs with a total of 276,113
Chinese words and 315,415 English words. The
Chinese data were automatically segmented into to-
kens, and English capitalization was retained. We
replace words occurring only once with an unknown
word token, resulting in a Chinese vocabulary of
23,783 words and an English vocabulary of 27,075
words. Chinese data was parsed using the parser
of Bikel (2002), and English data was parsed us-
ing Collins (1999). Our hand-aligned test data were
those used in Hwa et al. (2002), and consisted of 48
sentence pairs also with less than 25 words in either
language, for a total of 788 English words and 580
Chinese words. The hand aligned data consisted of
745 individual aligned word pairs. Words could be
aligned one-to-many in either direction. This limits
the performance achievable by our models; the IBM
models allow one-to-many alignments in one direc-
tion only, while the tree-based models allow only
one-to-one alignment unless the cloning operation
is used. A separate set of 49 hand-aligned sentence
pairs was used to control overfitting in training our
models.

We evaluate our translation models in terms of
agreement with human-annotated word-level align-
ments between the sentence pairs. For scoring
the viterbi alignments of each system against gold-
standard annotated alignments, we use the align-
ment error rate (AER) of Och and Ney (2000),
which measures agreement at the level of pairs of
words:1

AER = 1 −
2|A ∩ G|

|A| + |G|

where A is the set of word pairs aligned by the auto-
matic system, and G the set aligned in the gold stan-
dard. For a better understanding of how the models

1While Och and Ney (2000) differentiate between sure and
possible hand-annotated alignments, our gold standard align-
ments come in only one variety.

differ, we break this figure down into precision:

P =
|A ∩ G|

|A|

and recall:

R =
|A ∩ G|

|G|

Since none of the systems presented in this com-
parison make use of hand-aligned data, they may
differ in the overall proportion of words that are
aligned, rather than inserted or deleted. This affects
the precision/recall tradeoff; better results with re-
spect to human alignments may be possible by ad-
justing an overall insertion probability in order to
optimize AER.

Table 2 provides a comparison of results using the
tree-based models with the word-level IBM models.
IBM Models 1 and 4 refer to Brown et al. (1993).
We used the GIZA++ package, including the HMM
model of Och and Ney (2000). We trained each
model until AER began to increase on our held-out
cross validation data, resulting in running Model 1
for three iterations, then the HMM model for three
iterations, and finally Model 4 for two iterations
(the optimal number of iterations for Models 2 and
3 was zero). “Constituent Tree-to-Tree” indicates
the model of Section 2 trained and tested directly
on the trees output by the parser, while “Depen-
dency Tree-to-Tree” makes the modifications to the
model described in Section 3. For reasons of com-
putational efficiency, our constituent-based training
procedure skipped sentences for which either tree
had a node with more than five children, and the
dependency-based training skipped trees with more
than six children. Thus, the tree-based models were
effectively trained on less data than IBM Model 4:
11,422 out of 18,773 sentence pairs for the con-
stituent model and 10,662 sentence pairs for the de-
pendency model. Our tree-based models were ini-
tialized with lexical translation probabilities trained
using IBM Model 1, and uniform probabilities for
the tree reordering operations. The models were
trained until AER began to rise on our held-out



cross-validation data, though in practice AER was
nearly constant for both tree-based models after the
first iteration.

5 Discussion

The constituent-based version of the alignment
model significantly outperforms the dependency-
based model. The IBM models outperform the con-
stituent tree-to-tree model to a lesser degree, with
tree-to-tree achieving higher recall, and IBM higher
precision. It is particularly significant that the tree-
based model gets higher recall than the other mod-
els, since it is limited to one-to-one alignments un-
less the clone operation is used, bounding the recall
it can achieve.

In order to better understand the differences be-
tween the constituent and dependency representa-
tions of our data, we analyzed how well the two
representations match our hand annotated alignment
data. We looked for consistently aligned pairs of
constituents in the two parse trees. By consistently
aligned, we mean that all words within the English
constituent are aligned to words inside the Chinese
constituent (if they are aligned to anything), and
vice versa. In our example in Figure 1, the NP “14
Chinese border cities” and the Chinese subject NP
“Zhongguo shisi ge bianjing kaifang chengshi” are
consistenly aligned, but the PP “in economic con-
struction” has no consistently aligned constituent in
the Chinese sentence. We found that of the 2623
constituents in our English parse trees (not count-
ing unary consituents, which have the same bound-
aries as their children), for 1044, or 40%, there ex-
ists some constituent in the Chinese parse tree that
is consistently aligned. This confirms the results of
Fox (2002) and Galley et al. (2004) that many trans-
lation operations must span more than one parse tree
node. For each of our consistently aligned pairs, we
then found the head word of both the Chinese and
English constituents according to our head rules.
The two head words correspond in the annotated
alignments 67% of the time (700 out of 1044 con-
sistently aligned constituent pairs). While the head-
swapping operation of our translation model will be
able to handle some cases of differing heads, it can
only do so if the two heads are adjacent in both tree
structures.

Our system is trained and test on automatically
generated parse trees, which may contribute to the
mismatches in the tree structures. As our test
data was taken from the Chinese Treebank, hand-
annotated parse trees were available for the Chinese,
but not the English, sentences. Running the analy-
sis on hand-annotated Chinese trees found slightly

better English/Chinese agreement overall, but there
were still disagreements in the head words choices
for a third of all consistently aligned constuent pairs.
Running our alignment system on gold standard
trees did not improve results. The comparison be-
tween parser output and gold standard trees is sum-
marized in Table 3.

We used head rules developed for statistical
parsers in both languages, but other rules may be
better suited to the alignment task. For example,
the tensed auxiliary verb is considered the head of
English progressive and perfect verb phrases, rather
than the present or past particple of the main verb.
Such auxiliaries carry agreement information rele-
vant to parsing, but generally have no counterpart in
Chinese. A semantically oriented dependency struc-
ture, such as Tree Adjoining Grammar derivation
trees, may be more appropriate for alignment.

6 Conclusion

We present a comparison of constituent and de-
pendency models for tree-to-tree alignment. De-
spite equalizing some mismatches in tree structure,
the dependency representation does not perform as
well, likely because it is less robust to large differ-
ences between the tree structures.
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