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Abstract

We compare and contrast the strengths
and weaknesses of a syntax-based machine
translation model with a phrase-based ma-
chine translation model on several levels.
We briefly describe each model, highlight-
ing points where they differ. We include a
quantitative comparison of the phrase pairs
that each model has to work with, as well
as the reasons why some phrase pairs are
not learned by the syntax-based model. We
then evaluate proposed improvements to the
syntax-based extraction techniques in light
of phrase pairs captured. We also compare
the translation accuracy for all variations.

1 Introduction

String models are popular in statistical machine
translation. Approaches include word substitution
systems (Brown et al., 1993), phrase substitution
systems (Koehn et al., 2003; Och and Ney, 2004),
and synchronous context-free grammar systems (Wu
and Wong, 1998; Chiang, 2005), all of which train
on string pairs and seek to establish connections be-
tween source and target strings. By contrast, ex-
plicit syntax approaches seek to directly model the
relations learned from parsed data, including models
between source trees and target trees (Gildea, 2003;
Eisner, 2003; Melamed, 2004; Cowan et al., 2006),
source trees and target strings (Quirk et al., 2005;
Huang et al., 2006), or source strings and target trees
(Yamada and Knight, 2001; Galley et al., 2004).

It is unclear which of these important pursuits will
best explain human translation data, as each has ad-

vantages and disadvantages. A strength of phrase
models is that they can acquire all phrase pairs con-
sistent with computed word alignments, snap those
phrases together easily by concatenation, and re-
order them under several cost models. An advan-
tage of syntax-based models is that outputs tend to
be syntactically well-formed, with re-ordering influ-
enced by syntactic context and function words intro-
duced to serve specific syntactic purposes.

A great number of MT models have been re-
cently proposed, and other papers have gone over the
expressive advantages of syntax-based approaches.
But it is rare to see an in-depth, quantitative study
of strengths and weaknesses of particular models
with respect to each other. This is important for a
scientific understanding of how these models work
in practice. Our main novel contribution is a com-
parison of phrase-based and syntax-based extraction
methods and phrase pair coverage. We also add to
the literature a new method of improving that cover-
age. Additionally, we do a careful study of several
syntax-based extraction techniques, testing whether
(and how much) they affect phrase pair coverage,
and whether (and how much) they affect end-to-end
MT accuracy. The MT accuracy tests are needed
because we want to see the individual effects of par-
ticular techniques under the same testing conditions.
For this comparison, we choose a previously estab-
lished statistical phrase-based model (Och and Ney,
2004) and a previously established statistical string-
to-tree model (Galley et al., 2004). These two mod-
els are chosen because they are the basis of two of
the most successful systems in the NIST 2006 MT
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evaluation1.

2 Phrase-based Extraction

The Alignment Template system (ATS) described by
Och and Ney (2004) is representative of statistical
phrase-based models. The basic unit of translation
is the phrase pair, which consists of a sequence of
words in the source language, a sequence of words
in the target language, and a vector of feature val-
ues which describe this pair’s likelihood. Decod-
ing produces a string in the target language, in or-
der, from beginning to end. During decoding, fea-
tures from each phrase pair are combined with other
features (e.g., re-ordering, language models) using a
log-linear model to compute the score of the entire
translation.

The ATS phrase extraction algorithm learns these
phrase pairs from an aligned, parallel corpus.
This corpus is conceptually a list of tuples of
<source sentence, target sentence, bi-directional
word alignments> which serve as training exam-
ples, one of which is shown in Figure 1.

Figure 1: a phrase-based training example

For each training example, the algorithm identi-
fies and extracts all pairs of<source sequence, tar-
get sequence> that are consistent with the align-
ments. It does this by first enumerating all source-
side word sequences up to a length limitL, and for
each source sequence, it identifies all target words
aligned to those source words. For example, in Fig-
ure 1, for the source phrase��� 			��� ���, the target
words it aligns to arefelt, obliged, anddo.
These words, and all those between them, are the
proposed target phrase. If no words in the proposed
target phrase align to words outside of the source
phrase, then this phrase pair is extracted.

The extraction algorithm can also look to the left
and right of the proposed target phrase for neighbor-
ing unaligned words and extracts phrases. For ex-
ample, for the phrase pair���			���↔ felt obliged,

1http://www.nist.gov/speech/tests/mt/
mt06eval official results.html

the wordto is a neighboring unaligned word. It
constructs new target phrases by adding on con-
secutive unaligned words in both directions, and
extracts those in new pairs, too (e.g.,��� 			��� ↔
felt obliged to). For efficiency reasons, imple-
mentations often skip this step.

Figure 2 shows the complete set of phrase pairs
up to length 4 that are extracted from the Figure 1
training example. Notice that no extracted phrase
pair contains the character···. Because of the align-
ments, the smallest legal phrase pair,··· ��� 			��� ���
↔ i felt obliged to do my, is beyond the size
limit of 4, so it is not extracted in this example.��� ↔ felt���			��� ↔ felt obliged���			������ ↔ felt obliged to do			��� ↔ obliged			������ ↔ obliged to do��� ↔ do���PPP ↔ part���PPPÅÅÅ ↔ part���PPPÅÅÅ . ↔ part .ÅÅÅ . ↔ .

. ↔ .

Figure 2: phrases up to length 4 extracted from the
example in Figure 1

Phrase pairs are extracted over the entire train-
ing corpus. Due to differing alignments, some
phrase pairs that cannot be learned from one exam-
ple may be learned from another. These pairs are
then counted, once for each time they are seen in a
training example, and these counts are used as the
basis for maximum likelihood probability features,
such asp(f |e) andp(e|f).

3 Syntax-based Extraction

The GHKM syntax-based extraction method for
learning statistical syntax-based translation rules,
presented first in (Galley et al., 2004) and expanded
on in (Galley et al., 2006), is similar to phrase-based
extraction in that it extracts rules consistent with
given word alignments. A primary difference is the
use of syntax trees on the target side, rather than se-
quences of words. The basic unit of translation is the
translation rule, consisting of a sequence of words
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and variables in the source language, a syntax tree
in the target language having words or variables at
the leaves, and again a vector of feature values which
describe this pair’s likelihood. Translation rules can:

• look like phrase pairs with syntax decoration:

NPB(NNP(prime)

NNP(minister)

NNP(keizo)

NNP(obuchi))

↔BBBÁÁÁÈÈÈ®®®DDD###
• carry extra contextual constraints:

VP(VBD(said)

x0:SBAR-C)
↔��� x0

(according to this rule,��� can translate to
said only if some Chinese sequence to the
right of��� is translated into anSBAR-C)

• be non-constituent phrases:

VP(VBD(said)

SBAR-C(IN(that)

x0:S-C))

↔��� x0

VP(VBD(pointed)

PRT(RP(out))

x0:SBAR-C)

↔���ñññ x0

• contain non-contiguous phrases, effectively
“phrases with holes”:

PP(IN(on)

NP-C(NPB(DT(the)

x0:NNP))

NN(issue))))

↔óóó x0 ¯̄̄���ÞÞÞ
PP(IN(on)

NP-C(NPB(DT(the)

NN(issue))

x0:PP))

↔óóó x0 ¯̄̄���ÞÞÞ
• be purely structural (no words):

S(x0:NP-C x1:VP)↔ x0 x1

• re-order their children:
NP-C(NPB(DT(the)

x0:NN)

PP(IN(of)

x1:NP-C))

↔ x1 {{{ x0

Decoding with this model produces a tree in the
target language, bottom-up, by parsing the foreign
string using a CYK parser and a binarized rule set

(Zhang et al., 2006). During decoding, features from
each translation rule are combined with a language
model using a log-linear model to compute the score
of the entire translation.

The GHKM extractor learns translation rules from
an aligned parallel corpus where the target side has
been parsed. This corpus is conceptually a list of tu-
ples of<source sentence, target tree, bi-directional
word alignments> which serve as training exam-
ples, one of which is shown in Figure 3.

Figure 3: a syntax-based training example

For each training example, the GHKM extrac-
tor computes the set of minimally-sized translation
rules that can explain the training example while re-
maining consistent with the alignments. This is, in
effect, a non-overlapping tiling of translation rules
over the tree-string pair. If there are no unaligned
words in the source sentence, this is a unique set.
This set, ordered into a tree of rule applications, is
called the derivation tree of the training example.
Unlike the ATS model, there are no inherent size
limits, just the constraint that the rules be as small
as possible for the example.

Ignoring the unalignedÅÅÅ for the moment, there
are seven minimal translation rules that are extracted
from the example in Figure 3, as shown in Fig-
ure 4. Notice that rule 6 is rather large and applies
to a very limited syntactic context. The only con-
stituent node that covers bothi and my is the S,
so the rule rooted atS is extracted, with variables
for every branch below this top constituent that can
be explained by other rules. Note also thatto be-
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comes a part of this rule naturally. If the alignments
were not as constraining (e.g., ifmy was unaligned),
then instead of this one big rule many smaller rules
would be extracted, such as structural rules (e.g.,
VP(x0:VBD x1:VP-C)↔ x0 x1) and function word in-
sertion rules (e.g.,VP(TO(to) x0:VP-C)↔ x0).

1. VBD(felt)↔���
2. VBN(obliged)↔			���
3. VB(do)↔���
4. NN(part)↔���PPP
5. PERIOD(.)↔ .

6. S(NP-C(NPB(PRP(I)))

VP(x0:VBD

VP-C(x1:VBN

SG-C(VP(TO(to)

VP-C(x2:VB

NP-C(NPB(PRP$(my)

x3:NN)))))))

x4:PERIOD)↔··· x0 x1 x2 x3 x4

7. TOP(x0:S)↔ x0

Figure 4: rules extracted from training example

We ignored unaligned source words in the exam-
ple above. Galley et al. (2004) attach the unaligned
source word to the highest possible location, in our
example, theS. Thus it is extracted along with our
large rule 6, changing the target language sequence
to “··· x0 x1 x2 x3 ÅÅÅ x4”. This treatment still re-
sults in a unique derivation tree no matter how many
unaligned words are present.

In Galley et al. (2006), instead of a unique deriva-
tion tree, the extractor computes several derivation
trees, each with the unaligned word added to a dif-
ferent rule such that the data is still explained. For
example, for the tree-string pair in Figure 3,ÅÅÅ
could be added not only to rule 6, but alternatively
to rule 4 or 5, to make the new rules:

NN(part)↔���PPPÅÅÅ
PERIOD(.)↔ÅÅÅ .

This results in three different derivations, one
with theÅÅÅ character in rule 4 (with rules 5 and 6
as originally shown), another with theÅÅÅ character
in rule 5 (with rules 4 and 6 as originally shown),
and lastly one with theÅÅÅ character in rule 6 (with
rules 4 and 5 as originally shown) as in the origi-
nal paper (Galley et al., 2004). In total, ten different
rules are extracted from this training example.

As with ATS, translation rules are extracted and
counted over the entire training corpus, a count of

one for each time they appear in a training example.
These counts are used to estimate several features,
including maximum likelihood probability features
for p(etree, fwords|ehead), p(ewords|fwords), and
p(fwords|ewords).

4 Differences in Phrasal Coverage

Both the ATS model and the GHKM model extract
linguistic knowledge from parallel corpora, but each
has fundamentally different constraints and assump-
tions. To compare the models empirically, we ex-
tracted phrase pairs (for the ATS model) and transla-
tion rules (for the GHKM model) from parallel train-
ing corpora described in Table 1. The ATS model
was limited to phrases of length 10 on the source
side, and length 20 on the target side. A super-
set of the parallel data was word aligned by GIZA
union (Och and Ney, 2003) and EMD (Fraser and
Marcu, 2006). The English side of training data was
parsed using an implementation of Collins’ model 2
(Collins, 2003).

Chinese Arabic
Document IDs LDC2003E07 LDC2004T17

LDC2003E14 LDC2004T18
LDC2005T06 LDC2005E46

# of segments 329,031 140,511
# of words in foreign corpus 7,520,779 3,147,420
# of words in English corpus 9,864,294 4,067,454

Table 1: parallel corpora used to train both models

Table 2 shows the total number of GHKM rules
extracted, and a breakdown of the different kinds
of rules. Non-lexical rules are those whose source
side is composed entirely of variables — there are
no source words in them. Because of this, they
potentially apply to any sentence. Lexical rules
(their counterpart) far outnumber non-lexical rules.
Of the lexical rules, a rule is considered aphrasal
rule if its source side and the yield of its target
side contain exactly one contiguous phrase each, op-
tionally with one or more variables on either side
of the phrase. Non-phrasal rules include structural
rules, re-ordering rules, and non-contiguous phrases.
These rules are not easy to directly compare to any
phrase pairs from the ATS model, so we do not focus
on them here.

Phrasal rules can be directly compared to ATS
phrase pairs, the easiest way being to discard the
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Statistic Chinese Arabic
total translation rules 2,487,110 662,037
non-lexical rules 110,066 15,812
lexical rules 2,377,044 646,225
phrasal rules 1,069,233 406,020
distinct GHKM-derived phrase pairs 919,234 352,783
distinct corpus-specific

GHKM-derived phrase pairs 203,809 75,807

Table 2: a breakdown of how many rules the
GHKM extraction algorithm produces, and how
many phrase pairs can be derived from them

syntactic context and look at the phrases contained
in the rules. The second to last line of Table 2 shows
the number of phrase pairs that can be derived from
the above phrasal rules. The number of GHKM-
derived phrase pairs is lower than the number of
phrasal rules because some rules represent the same
phrasal translation, but with different syntactic con-
texts. The last line of Table 2 shows the subset of
phrase pairs that contain source phrases found in our
development corpus.

Table 3 compares these corpus-specific GHKM-
derived phrase pairs with the corpus-specific ATS
phrase pairs. Note that the number of phrase pairs
derived from the GHKM rules is less than the num-
ber of phrase pairs extracted by ATS. Moreover, only
slightly over half of the phrase pairs extracted by the
ATS model are common to both models. The lim-
its and constraints of each model are responsible for
this difference in contiguous phrases learned.

Source of phrase pairs Chinese Arabic
GHKM-derived 203,809 75,807
ATS 295,537 133,576
Overlap between models160,901 75,038
GHKM only 42,908 769
ATS only 134,636 58,538
ATS-useful only 1,994 2,199

Table 3: comparison of corpus-specific phrase pairs
from each model

GHKM learns some contiguous phrase pairs that
the phrase-based extractor does not. Only a small
portion of these are due to the fact that the GHKM
model has no inherent size limit, while the phrase
based system has limits. More numerous are cases
where unaligned English words are not added to an
ATS phrase pair while GHKM adopts them at a syn-

tactically motivated location, or where a larger rule
contains mostly syntactic structure but happens to
have some unaligned words in it. For example, con-
sider Figure 5. Becausebasic andwill are un-
aligned, ATS will learn no phrase pairs that translate
to these words alone, though they will be learned as
a part of larger phrases.

Figure 5: Situation where GHKM is able to learn
rules that translate intobasic andwill, but ATS
is not

GHKM, however, will learn several phrasal rules
that translate tobasic, based on the syntactic con-
text

NPB(x0:DT

JJ(basic)

x1:NN)

↔ x0 ��� x1

NPB(x0:DT
JJ(basic)
x1:NN)

↔ x0 ���äääýýý x1

NPB(x0:DT
JJ(basic)
x1:NN)

↔ x0 äääýýý x1

and one phrasal rule that translates intowill

VP(MD(will)

x0:RB

x1:VP-C)

↔ x0 ���ÄÄÄ x1

The quality of such phrases may vary. For example,
the first translation of��� (literally: “one” or “a”) to
basic above is a phrase pair of poor quality, while
the other two forbasic and one forwill are ar-
guably reasonable.

However, Table 3 shows that ATS was able to
learn many more phrase pairs that GHKM was not.
Even more significant is the subset of these missing
phrase pairs that the ATS decoder used in its best2

2i.e. highest scoring
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translation of the corpus. According to the phrase-
based system these are the most “useful” phrase
pairs and GHKM could not learn them. Since this is
a clear deficiency, we will focus on analyzing these
phrase pairs (which we callATS-useful) and the rea-
sons they were not learned.

Table 4 shows a breakdown, categorizing each of
these missing ATS-useful phrase pairs and the rea-
sons they were not able to be learned. The most
common reason is straightforward: by extracting
only the minimally-sized rules, GHKM is unable to
learn many larger phrases that ATS learns. If GHKM
can make a word-level analysis, it will do that, at
the expense of a phrase-level analysis. Galley et
al. (2006) propose one solution to this problem and
Marcu et al. (2006) propose another, both of which
we explore in Sections 5.1 and 5.2.

Category of missing ATS-useful phrase pairsChinese Arabic
Not minimal 1,320 1,366
Extra target words in GHKM rules 220 27
Extra source words in GHKM rules 446 799
Other (e.g. parse failures) 8 7

Total missing useful phrase pairs 1,994 2,199

Table 4: reasons that ATS-useful phrase pairs could
not be extracted by GHKM as phrasal rules

The second reason is that the GHKM model is
sometimes forced by its syntactic constraints to in-
clude extra words. Sometimes this is only target lan-
guage words, and this is often useful — the rules are
learning to insert these words in their proper context.
But most of the time, source language words are also
forced to be part of the rule, and this is harmful — it
makes the rules less general. This latter case is often
due to poorly aligned target language words (such as
the··· in our Section 3 rule extraction example), or
unaligned words under large, flat constituents.

Another factor here: some of the phrase pairs are
learned by both systems, but GHKM is more specific
about the context of use. This can be both a strength
and a weakness. It is a strength when the syntactic
context helps the phrase to be used in a syntactically
correct way, as in

VP(VBD(said)

x0:SBAR-C)
↔��� x0

where the syntax rule requires a constituent of type
SBAR-C. Conversely its weakness is seen when the

context is too constrained. For example, ATS can
easily learn the phrase���®®®↔ prime minister

and is then free to use it in many contexts. But
GHKM learns 45 different rules, each that translate
this phrase pair in a unique context. Figure 6 shows
a sampling. Notice that though many variations are
present, the decoder is unable to use any of these
rules to produce certain noun phrases, such as “cur-
rent Japanese Prime Minister Shinzo Abe”, because
no rule has the proper number of English modifiers.

NPB(NNP(prime) NNP(minister) x0:NNP)↔ x0 ���®®®
NPB(x0:NNP NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

NPB(x0:JJ NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

NPB(NNP(prime) NNP(minister) x0:NNP)↔���®®® x0

NPB(NNP(prime) NNP(minister))↔���®®®
NPB(NNP(prime) NNP(minister) x0:NNP x1:NNP)↔ x0 x1 ���®®®
NPB(x0:DT x1:JJ JJ(prime) NN(minister))↔ x0 x1 ���®®®
NPB(x0:NNP NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

NPB(x0:NNP NNP(prime) NNP(minister) x1:NNP)↔ x0 ���®®® x1

Figure 6: a sampling of the 45 rules that translate���®®® to prime minister

5 Coverage Improvements

Each of the models presented so far has advantages
and disadvantages. In this section, we consider ideas
that make up for deficiencies in the GHKM model,
drawing our inspiration from the strong points of the
ATS model. We then measure the effects of each
idea empirically, showing both what is gained and
the potential limits of each modification.

5.1 Composed Rules

Galley et al. (2006) proposed the idea of composed
rules. This removes the minimality constraint re-
quired earlier: any two or more rules in a parent-
child relationship in the derivation tree can be com-
bined to form a larger, composed rule. This change
is similar in spirit to the move from word-based to
phrase-based MT models, or parsing with a DOP
model (Bod et al., 2003) rather than a plain PCFG.

Because this results in exponential variations, a
size limit is employed: for any two or more rules
to be allowed to combine, the size of the resulting
rule must be at mostn. The size of a rule is de-
fined as the number of non-part-of-speech, non-leaf
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constituent labels in a rule’s target tree. For exam-
ple, rules 1-5 shown in Section 3 have a size of 0,
and rule 6 has a size of 10. Composed rules are ex-
tracted in addition to minimal rules, which means
that a largern limit always results in a superset of
the rules extracted when a smallern value is used.
Whenn is set to0, then only minimal rules are ex-
tracted. Table 5 shows the growth in the number of
rules extracted for several size limits.

Size limit (n) Chinese Arabic
0 (minimal) 2,487,110 662,037

2 12,351,297 2,742,513
3 26,917,088 4,824,928
4 55,781,061 8,487,656

Table 5: increasing the size limit of composed rules
significantly increases the number of rules extracted

In our previous analysis, the main reason that
GHKM did not learn translations for ATS-useful
phrase pairs was due to its minimal-only approach.
Table 6 shows the effect that composed rule extrac-
tion has on the total number of ATS-useful phrases
missing. Note that as the allowed size of composed
rule increases, we are able to extract an greater per-
centage of the missing ATS-useful phrase pairs.

Size limit (n) Chinese Arabic
0 (minimal) 1,994 2,199

2 1,478 1,528
3 1,096 1,210
4 900 1,041

Table 6: number of ATS-useful phrases still missing
when using GHKM composed rule extraction

Unfortunately, a comparison of Tables 5 and 6 in-
dicates that the number of ATS-useful phrase pairs
gained is growing at a much slower rate than the total
number of rules. From a practical standpoint, more
rules means more processing work and longer de-
coding times, so there are diminishing returns from
continuing to explore larger size limits.

5.2 SPMT Model 1 Rules

An alternative for extracting larger rules called
SPMT model 1 is presented by Marcu et al. (2006).
Though originally presented as a separate model,
the method of rule extraction itself builds upon the

minimal GHKM method just as composed rules do.
For each training example, the method considers all
source language phrases up to lengthL. For each of
these phrases, it extracts the smallest possible syn-
tax rule that does not violate the alignments. Ta-
ble 7 shows that this method is able to extract rules
that cover useful phrases, and can be combined with
size 4 composed rules to an even better effect. Since
there is some overlap in these methods, when com-
bining the two methods we eliminate any redundant
rules.

Method Chinese Arabic
composed alone (size 4) 900 1,041
SPMT model 1 alone 676 854
composed + SPMT model 1 663 835

Table 7: ATS-useful phrases still missing after dif-
ferent non-minimal methods are applied

Note that having more phrasal rules is not the only
advantage of composed rules. Here, combining both
composed and SPMT model 1 rules, our gain in use-
ful phrases is not very large, but we do gain addi-
tional, larger syntax rules. As discussed in (Galley
et al., 2006), composed rules also allow the learning
of more context, such as

ADJP(ADVP(RB(far)

CC(and)

RB(away)

x0:JJ)

↔ÏÏÏÏÏÏ x0

This rule is not learned by SPMT model 1 because
it is not the smallest rule that can explain the phrase
pair, but it is still valuable for its syntactic context.

5.3 Restructuring Trees

Table 8 updates the causes of missing ATS-useful
phrase pairs. Most are now caused by syntactic con-
straints, thus we need to address these in some way.

GHKM translation rules are affected by large,
flat constituents in syntax trees, as in theprime
minister example earlier. One way to soften this
constraint is to binarize the trees, so that wide con-
stituents are broken down into multiple levels of tree
structure. The approach we take here is head-out bi-
narization (Wang et al., 2007), where any constituent
with more than two children is split into partial con-
stituents. The children to the left of the head word
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Category of ATS-useful phrase pairsChinese Arabic
Too large 12 9
Extra target words in GHKM rules 218 27
Extra source words in GHKM rules 424 792
Other (e.g. parse failures) 9 7

Total missing useful phrase pairs 663 835

Table 8: reasons that ATS-useful phrase pairs are
still not extracted as phrasal rules, with composed
and SPMT model 1 rules in place

are binarized one direction, while the children to
the right are binarized the other direction. The top
node retains its original label (e.g. NPB), while the
new partial constituents are labeled with a bar (e.g.
NPB). Figure 7 shows an example.

Figure 7: head-out binarization in the target lan-
guage: S, NPB, and VP are binarized according to
the head word

Table 9 shows the effect of binarization on phrasal
coverage, using both composed and SPMT rules. By
eliminating some of the syntactic constraints we al-
low more freedom, which allows increased phrasal
coverage, but generates more rules.

Category of missing ATS-useful phrase pairsChinese Arabic
Too large 16 12
Extra target words in GHKM rules 123 12
Extra source words in GHKM rules 307 591
Other (e.g. parse failures) 12 7

Total missing useful phrase pairs 458 622

Table 9: reasons that ATS-useful phrase pairs still
could not be extracted as phrasal rules after bina-
rization

6 Evaluation of Translations

To evaluate translation quality of each of these mod-
els and methods, we ran the ATS decoder using its
extracted phrase pairs and the syntax-based decoder
using all the rule sets mentioned above. Table 10 de-
scribes the development and test datasets used, along

with four references for measuring BLEU. Tun-
ing was done using Maximum BLEU hill-climbing
(Och, 2003). Features used for the ATS system were
the standard set. For the syntax-based translation
system, we used a similar set of features.

# of lines
Dataset Chinese Arabic

Development set NIST 2002 MT eval 925 696
(sentences< 47 tokens)

Test set NIST 2003 MT eval 919 663

Table 10: development and test corpora

Table 11 shows the case-insensitive NIST BLEU4
scores for both our development and test decod-
ings. The BLEU scores indicate, first of all, that
the syntax-based system is much stronger in trans-
lating Chinese than Arabic, in comparison to the
phrase-based system. Also, the ideas presented here
for improving phrasal coverage generally improve
the syntax-based translation quality. In addition,
composed rules are shown to be helpful as com-
pared to the minimal runs. This is true even when
SPMT model 1 is added, which indicates that the
size 4 composed rules bring more than just improved
phrasal coverage.

Chinese Arabic
Experiment Dev Test Dev Test

Baseline ATS 34.94 32.83 50.46 50.52
Baseline GHKM (minimal only) 38.02 37.67 49.34 49.99
GHKM composed size 2 40.24 39.75 50.76 50.94
GHKM composed size 3 40.95 40.44 51.56 51.48
GHKM composed size 4 41.36 40.69 51.60 51.71
GHKM minimal + SPMT model 1 39.78 39.16 50.17 51.27
GHKM composed + SPMT model 142.04 41.07 51.73 51.53
With binarization 42.17 41.26 52.50 51.79

Table 11: evaluation results (reported in case-
insensitive NIST BLEU4)

7 Conclusions

Both the ATS model for phrase-based machine
translation and the GHKM model for syntax-based
machine translation are state-of-the-art methods.
Each extraction method has strengths and weak-
nesses as compared to the other, and there are sur-
prising differences in phrasal coverage — neither is
merely a superset of the other. We have shown that
it is possible to gain insights from the strengths of
the phrase-based extraction model to increase both
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the phrasal coverage and translation accuracy of the
syntax-based model.

However, there is still room for improvement in
both models. For syntax models, there are still holes
in phrasal coverage, and other areas are needing
progress, such as decoding efficiency. For phrase-
based models, incorporating syntactic knowledge
and constraints may lead to improvements as well.
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