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Abstract

It is possible to reduce the bulk of phrase-
tables for Statistical Machine Translation us-
ing a technique based on the significance
testing of phrase pair co-occurrence in the
parallel corpus. The savings can be quite
substantial (up to 90%) and cause no reduc-
tion in BLEU score. In some cases, an im-
provement in BLEU is obtained at the same
time although the effect is less pronounced
if state-of-the-art phrasetable smoothing is
employed.

1 Introduction

An important part of the process of Statistical Ma-
chine Translation (SMT) involves inferring a large
table of phrase pairs that are translations of each
other from a large corpus of aligned sentences.
These phrase pairs together with estimates of con-
ditional probabilities and useful feature weights,
called collectively a phrasetable, are used to match
a source sentence to produce candidate translations.
The choice of the best translation is made based
on the combination of the probabilities and feature
weights, and much discussion has been made of how
to make the estimates of probabilites, how to smooth
these estimates, and what features are most useful
for discriminating among the translations.

However, a cursory glance at phrasetables pro-
duced often suggests that many of the translations
are wrong or will never be used in any translation.
On the other hand, most obvious ways of reducing
the bulk usually lead to a reduction in translation

quality as measured by BLEU score. This has led to
an impression that these pairs must contribute some-
thing in the grand scheme of things and, certainly,
more data is better than less.

Nonetheless, this bulk comes at a cost. Large ta-
bles lead to large data structures that require more
resources and more time to process and, more im-
portantly, effort directed in handling large tables
could likely be more usefully employed in more fea-
tures or more sophisticated search.

In this paper, we show that it is possible to prune
phrasetables using a straightforward approach based
on significance testing, that this approach does not
adversely affect the quality of translation as mea-
sured by BLEU score, and that savings in terms of
number of discarded phrase pairs can be quite sub-
stantial. Even more surprising, pruning can actu-
ally raise the BLEU score although this phenomenon
is less prominent if state of the art smoothing of
phrasetable probabilities is employed.

Section 2 reviews the basic ideas of Statistical
Machine Translation as well as those of testing sig-
nificance of associations in two by two contingency
tables departing from independence. From this, a
filtering algorithm will be described that keeps only
phrase pairs that pass a significance test. Section 3
outlines a number of experiments that demonstrate
the phenomenon and measure its magnitude. Sec-
tion 4 presents the results of these experiments. The
paper concludes with a summary of what has been
learned and a discussion of continuing work that
builds on these ideas.
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2 Background Theory

2.1 Our Approach to Statistical Machine
Translation

We define a phrasetable as a set of source phrases (n-
grams) s̃ and their translations (m-grams) t̃, along
with associated translation probabilities p(s̃|t̃) and
p(t̃|s̃). These conditional distributions are derived
from the joint frequencies c(s̃, t̃) of source / tar-
get n, m-grams observed in a word-aligned parallel
corpus. These joint counts are estimated using the
phrase induction algorithm described in (Koehn et
al., 2003), with symmetrized word alignments gen-
erated using IBM model 2 (Brown et al., 1993).
Phrases are limited to 8 tokens in length (n, m ≤ 8).

Given a source sentence s, our phrase-based SMT
system tries to find the target sentence t̂ that is the
most likely translation of s. To make search more
efficient, we use the Viterbi approximation and seek
the most likely combination of t and its alignment a
with s, rather than just the most likely t:

t̂ = argmax
t

p(t|s) ≈ argmax
t,a

p(t,a|s),

where a = (s̃1, t̃1, j1), ..., (s̃K , t̃K , jK); t̃k are tar-
get phrases such that t = t̃1...t̃K ; s̃k are source
phrases such that s = s̃j1 ...s̃jK ; and s̃k is the trans-
lation of the kth target phrase t̃k.

To model p(t,a|s), we use a standard loglinear
approach:

p(t,a|s) ∝ exp

[∑
i

λifi(s, t,a)

]
where each fi(s, t,a) is a feature function, and
weights λi are set using Och’s algorithm (Och,
2003) to maximize the system’s BLEU score (Pa-
pineni et al. , 2001) on a development corpus. The
features used are: the length of t; a single-parameter
distortion penalty on phrase reordering in a, as de-
scribed in (Koehn et al., 2003); phrase translation
model probabilities; and 4-gram language model
probabilities log p(t), using Kneser-Ney smooth-
ing as implemented in the SRILM toolkit (Stolcke,
2002).

Phrase translation model probabilities are features
of the form:

log p(s|t,a) ≈
K∑

k=1

log p(s̃k|t̃k)

i.e., we assume that the phrases s̃k specified by a are
conditionally independent, and depend only on their
aligned phrases t̃k.

The “forward” phrase probabilities p(t̃|s̃) are not
used as features, but only as a filter on the set of
possible translations: for each source phrase s̃ that
matches some ngram in s, only the 30 top-ranked
translations t̃ according to p(t̃|s̃) are retained. One
of the reviewers has pointed out correctly that tak-
ing only the top 30 translations will interact with the
subject under study; however, this pruning technique
has been used as a way of controlling the width of
our beam search and rebalancing search parameters
would have complicated this study and taken it away
from our standard practice.

The phrase translation model probabilities are
smoothed according to one of several techniques as
described in (Foster et al., 2006) and identified in the
discussion below.

2.2 Significance testing using two by two
contingency tables

Each phrase pair can be thought of as am n, m-gram
(s̃, t̃) where s̃ is an n-gram from the source side of
the corpus and t̃ is an m-gram from the target side
of the corpus.

We then define: C(s̃, t̃) as the number of parallel
sentences that contain one or more occurrences of
s̃ on the source side and t̃ on the target side; C(s̃)
the number of parallel sentences that contain one or
more occurrences of s̃ on the source side; and C(t̃)
the number of parallel sentences that contain one or
more occurrences of t̃ on the target side. Together
with N , the number of parallel sentences, we have
enough information to draw up a two by two contin-
gency table representing the unconditional relation-
ship between s̃ and t̃. This table is shown in Table
1.

A standard statistical technique used to assess the
importance of an association represented by a con-
tingency table involves calculating the probability
that the observed table or one that is more extreme
could occur by chance assuming a model of inde-
pendence. This is called a significance test. Intro-
ductory statistics texts describe one such test called
the Chi-squared test.

There are other tests that more accurately apply
to our small tables with only two rows and columns.
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Table 1: Two by two contingency table for s̃ and t̃

C(s̃, t̃) C(s̃)− C(s̃, t̃) C(s̃)

C(t̃)− C(s̃, t̃) N − C(s̃)− C(t̃) + C(s̃, t̃) N − C(s̃)

C(t̃) N − C(t̃) N

In particular, Fisher’s exact test calculates probabil-
ity of the observed table using the hypergeometric
distibution.

ph(C(s̃, t̃)) =

(
C(s̃)

C(s̃, t̃)

)(
N − C(s̃)

C(t̃)− C(s̃, t̃)

)
(

N

C(t̃)

)
The p-value associated with our observed table is

then calculated by summing probabilities for tables
that have a larger C(s̃, t̃)).

p-value(C(s̃, t̃)) =
∞∑

k=C(s̃,t̃)

ph(k)

This probability is interpreted as the probability
of observing by chance an association that is at least
as strong as the given one and hence its significance.
Agresti (1996) provides an excellent introduction to
this topic and the general ideas of significance test-
ing in contingency tables.

Fisher’s exact test of significance is considered a
gold standard since it represents the precise proba-
bilities under realistic assumptions. Tests such as the
Chi-squared test or the log-likelihood-ratio test (yet
another approximate test of significance) depend on
asymptotic assumptions that are often not valid for
small counts.

Note that the count C(s̃, t̃) can be larger or
smaller than c(s̃, t̃) discussed above. In most cases,
it will be larger, because it counts all co-occurrences
of s̃ with t̃ rather than just those that respect the
word alignment. It can be smaller though because
multiple co-occurrences can occur within a single
aligned sentence pair and be counted multiple times
in c(s̃, t̃). On the other hand, C(s̃, t̃) will not count

all of the possible ways that an n, m-gram match can
occur within a single sentence pair; it will count the
match only once per sentence pair in which it occurs.

Moore (2004) discusses the use of signifi-
cance testing of word associations using the log-
likelihood-ratio test and Fisher’s exact test. He
shows that Fisher’s exact test is often a practical
method if a number of techniques are followed:

1. approximating the logarithms of factorials us-
ing commonly available numerical approxima-
tions to the log gamma function,

2. using a well-known recurrence for the hyperge-
ometic distribution,

3. noting that few terms usually need to be
summed, and

4. observing that convergence is usually rapid.

2.3 Significance pruning
The idea behind significance pruning of phrasetables
is that not all of the phrase pairs in a phrasetable are
equally supported by the data and that many of the
weakly supported pairs could be removed because:

1. the chance of them occurring again might be
low, and

2. their occurrence in the given corpus may be the
result of an artifact (a combination of effects
where several estimates artificially compensate
for one another). This concept is usually re-
ferred to as overfit since the model fits aspects
of the training data that do not lead to improved
prediction.

Phrase pairs that cannot stand on their own by
demonstrating a certain level of significance are sus-
pect and removing them from the phrasetable may
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be beneficial in terms of reducing the size of data
structures. This will be shown to be the case in rather
general terms.

Note that this pruning may and quite often will
remove all of the candidate translations for a source
phrase. This might seem to be a bad idea but it must
be remembered that deleting longer phrases will al-
low combinations of shorter phrases to be used and
these might have more and better translations from
the corpus. Here is part of the intuition about how
phrasetable smoothing may interact with phrasetable
pruning: both are discouraging longer but infrequent
phrases from the corpus in favour of combinations of
more frequent, shorter phrases.

Because the probabilities involved below will be
so incredibly tiny, we will work instead with the neg-
ative of the natural logs of the probabilities. Thus
instead of selecting phrase pairs with a p-value less
than exp(−20), we will select phrase pairs with a
negative-log-p-value greater than 20. This has the
advantage of working with ordinary-sized numbers
and the happy convention that bigger means more
pruning.

2.4 C(s̃, t̃) = 1, 1-1-1 Tables and the α
Threshold

An important special case of a table occurs when a
phrase pair occurs exactly once in the corpus, and
each of the component phrases occurs exactly once
in its side of the parallel corpus.

These phrase pairs will be referred to as 1-1-1
phrase pairs and the corresponding tables will be
called 1-1-1 contingency tables because C(s̃) = 1,
C(t̃) = 1, and C(s̃, t̃) = 1.

Moore (2004) comments that the p-value for these
tables under Fisher’s exact test is 1/N . Since we are
using thresholds of the negative logarithm of the p-
value, the value α = log(N) is a useful threshold to
consider.

In particular, α + ε (where ε is an appropriately
small positive number) is the smallest threshold that
results in none of the 1-1-1 phrase pairs being in-
cluded. Similarly, α − ε is the largest threshold that
results in all of the 1-1-1 phrase pairs being included.
Because 1-1-1 phrase pairs can make up a large part
of the phrase table, this is important observation for
its own sake.

Since the contingency table with C(s̃, t̃) = 1 hav-

ing the greatest significance (lowest p-value) is the
1-1-1 table, using the threshold of α + ε can be used
to exclude all of the phrase pairs occurring exactly
once (C(s̃, t̃) = 1).

The common strategy of deleting all of the 1-
count phrase pairs is very similar in effect to the use
of the α + ε threshold.

3 Experiments

3.1 WMT06

The corpora used for most of these experiments are
publicly available and have been used for a num-
ber of comparative studies (Workshop on Statisti-
cal Machine Translation, 2006). Provided as part of
the materials for the shared task are parallel corpora
for French–English, Spanish–English, and German–
English as well as language models for English,
French, Spanish, and German. These are all based
on the Europarl resources (Europarl, 2003).

The only change made to these corpora was to
convert them to lowercase and to Unicode UTF-8.
Phrasetables were produced by symmetrizing IBM2
conditional probabilities as described above.

The phrasetables were then used as a list of
n, m-grams for which counts C(s̃, t̃), C(s̃), and
C(t̃) were obtained. Negative-log-p-values under
Fisher’s exact test were computed for each of the
phrase pairs in the phrasetable and the entry was
censored if the negative-log-p-value for the test was
below the pruning threshold. The entries that are
kept are ones that are highly significant.

A number of combinations involving many differ-
ent pruning thresholds were considered: no pruning,
10, α−ε, α+ε, 15, 20, 25, 50, 100, and 1000. In ad-
dition, a number of different phrasetable smoothing
algorithms were used: no smoothing, Good-Turing
smoothing, Kneser-Ney 3 parameter smoothing and
the loglinear mixture involving two features called
Zens-Ney (Foster et al., 2006).

3.2 Chinese

To test the effects of significance pruning on larger
corpora, a series of experiments was run on a much
larger corpus based on that distributed for MT06
Chinese–English (NIST MT, 2006). Since the ob-
jective was to assess how the method scaled we used
our preferred phrasetable smoothing technique of
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Figure 1: WMT06: Results for French −→ English.
[to separate the curves, graphs for smoothed meth-
ods are shifted by +1, +2, or +3 BLEU points]

Table 2: Corpus Sizes and α Values

number of
parallel sentences α

WMT06: fr←→ en 688,031 13.4415892
WMT06: es←→ en 730,740 13.501813
WMT06: de←→ en 751,088 13.5292781
Chinese–English: best 3,164,228 14.9674197
Chinese–English: UN-v2 4,979,345 15.4208089

Zens-Ney and separated our corpus into two phrase-
tables, one based on the UN corpus and the other
based on the best of the remaining parallel corpora
available to us.

Different pruning thresholds were considered: no
pruning, 14, 16, 18, 20, and 25. In addition, another
more aggressive method of pruning was attempted.
Moore points out, correctly, that phrase pairs that oc-
cur in only one sentence pair, ( C(s̃, t̃) = 1 ), are less
reliable and might require more special treatment.
These are all pruned automatically at thresholds of
16 and above but not at threshold of 14. A spe-
cial series of runs was done for threshold 14 with all
of these singletons removed to see whether at these
thresholds it was the significance level or the prun-
ing of phrase pairs with ( C(s̃, t̃) = 1 ) that was more
important. This is identified as 14′ in the results.

4 Results

The results of the experiments are described in Ta-
bles 2 through 6.

Table 2 presents the sizes of the various parallel
corpora showing the number of parallel sentences,
N , for each of the experiments, together with the α
thresholds (α = log(N)).

Table 3 shows the sizes of the phrasetables that
result from the various pruning thresholds described
for the WMT06 data. It is clear that this is extremely
aggressive pruning at the given levels.

Table 4 shows the corresponding phrasetable sizes
for the large corpus Chinese–English data. The
pruning is not as aggressive as for the WMT06 data
but still quite sizeable.

Tables 5 and 6 show the main results for the
WMT06 and the Chinese–English large corpus ex-
periments. To make these results more graphic, Fig-
ure 1 shows the French −→ English data from the
WMT06 results in the form of three graphs. Note
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Table 3: WMT06: Distinct phrase pairs by pruning threshold

threshold fr←→ en es←→ en de←→ en

none 9,314,165 100% 11,591,013 100% 6,954,243 100%
10 7,999,081 85.9% 10,212,019 88.1% 5,849,593 84.1%

α− ε 6,014,294 64.6% 7,865,072 67.9% 4,357,620 62.7%
α + ε 1,435,576 15.4% 1,592,655 13.7% 1,163,296 16.7%

15 1,377,375 14.8% 1,533,610 13.2% 1,115,559 16.0%
20 1,152,780 12.4% 1,291,113 11.1% 928,855 13.4%
25 905,201 9.7% 1,000,264 8.6% 732,230 10.5%
50 446,757 4.8% 481,737 4.2% 365,118 5.3%

100 235,132 2.5% 251,999 2.2% 189,655 2.7%
1000 22,873 0.2% 24,070 0.2% 16,467 0.2%

Table 4: Chinese–English: Distinct phrase pairs by pruning threshold

threshold best UN-v2

none 18,858,589 100% 20,228,273 100%
14 7,666,063 40.7% 13,276,885 65.6%
16 4,280,845 22.7% 7,691,660 38.0%
18 4,084,167 21.7% 7,434,939 36.8%
20 3,887,397 20.6% 7,145,827 35.3%
25 3,403,674 18.0% 6,316,795 31.2%

also pruning C(s̃, t̃) = 1

14′ 4,477,920 23.7% 7,917,062 39.1%

that an artificial separation of 1 BLEU point has
been introduced into these graphs to separate them.
Without this, they lie on top of each other and hide
the essential point. In compensation, the scale for
the BLEU co-ordinate has been removed.

These results are summarized in the following
subsections.

4.1 BLEU as a function of threshold

In tables 5 and 6, the largest BLEU score for each
set of runs has been marked in bold font. In addition,
to highlight that there are many near ties for largest
BLEU, all BLEU scores that are within 0.1 of the
best are also marked in bold.

When this is done it becomes clear that pruning
at a level of 20 for the WMT06 runs would not re-
duce BLEU in most cases and in many cases would
actually increase it. A pruning threshold of 20 cor-
responds to discarding roughly 90% of the phrase-
table.

For the Chinese–English large corpus runs, a level
of 16 seems to be about the best with a small in-
crease in BLEU and a 60% − 70% reduction in the
size of the phrasetable.

4.2 BLEU as a function of depth of pruning

Another view of this can be taken from Tables 5
and 6. The fraction of the phrasetable retained is
a more or less simple function of pruning threshold
as shown in Tables 3 and 4. By including the per-
centages in Tables 5 and 6, we can see that BLEU
goes up as the fraction approaches between 20% and
30%.

This seems to be a relatively stable observation
across the experiments. It is also easily explained by
its strong relationship to pruning threshold.

4.3 Large corpora

Table 6 shows that this is not just a small corpus phe-
nomenon. There is a sizeable benefit both in phrase-
table reduction and a modest improvement to BLEU
even in this case.

4.4 Is this just the same as phrasetable
smoothing?

One question that occurred early on was whether this
improvement in BLEU is somehow related to the
improvement in BLEU that occurs with phrasetable
smoothing.
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It appears that the answer is, in the main, yes, al-
though there is definitely something else going on.
It is true that the benefit in terms of BLEU is less-
ened for better types of phrasetable smoothing but
the benefit in terms of the reduction in bulk holds. It
is reassuring to see that no harm to BLEU is done by
removing even 80% of the phrasetable.

4.5 Comment about C(s̃, t̃) = 1

Another question that came up is the role of phrase
pairs that occur only once: C(s̃, t̃) = 1. In particu-
lar as discussed above, the most significant of these
are the 1-1-1 phrase pairs whose components also
only occur once: C(s̃) = 1, and C(t̃) = 1. These
phrase pairs are amazingly frequent in the phrase-
tables and are pruned in all of the experiments ex-
cept when pruning threshold is equal to 14.

The Chinese–English large corpus experiments
give us a good opportunity to show that significance
level seems to be more an issue than the case that
C(s̃, t̃) = 1.

Note that we could have kept the phrase pairs
whose marginal counts were greater than one but
most of these are of lower significance and likely
are pruned already by the threshold. The given con-
figuration was considered the most likely to yield a
benefit and its poor performance led to the whole
idea being put aside.

5 Conclusions and Continuing Work

To sum up, the main conclusions are five in number:

1. Phrasetables produced by the standard Diag-
And method (Koehn et al., 2003) can be aggres-
sively pruned using significance pruning with-
out worsening BLEU.

2. If phrasetable smoothing is not done, the BLEU
score will improve under aggressive signifi-
cance pruning.

3. If phrasetable smoothing is done, the improve-
ment is small or negligible but there is still no
loss on aggressive pruning.

4. The preservation of BLEU score in the pres-
ence of large-scale pruning is a strong effect in
small and moderate size phrasetables, but oc-
curs also in much larger phrasetables.

5. In larger phrasetables based on larger corpora,
the percentage of the table that can be dis-
carded appears to decrease. This is plausible
since a similar effect (a decrease in the benefit
of smoothing) has been noted with phrasetable
smoothing (Foster et al., 2006). Together these
results suggest that, for these corpus sizes, the
increase in the number of strongly supported
phrase pairs is greater than the increase in the
number of poorly supported pairs, which agrees
with intuition.

Although there may be other approaches to prun-
ing that achieve a similar effect, the use of Fisher’s
exact test is mathematically and conceptually one of
the simplest since it asks a question separately for
each phrase pair: “Considering this phase pair in
isolation of any other analysis on the corpus, could it
have occurred plausibly by purely random processes
inherent in the corpus construction?” If the answer
is “Yes”, then it is hard to argue that the phrase pair
is an association of general applicability from the
evidence in this corpus alone.

Note that the removal of 1-count phrase pairs is
subsumed by significance pruning with a threshold
greater than α and many of the other simple ap-
proaches (from an implementation point of view)
are more difficult to justify as simply as the above
significance test. Nonetheless, there remains work
to do in determining if computationally simpler ap-
proaches do as well. Moore’s work suggests that
log-likelihood-ratio would be a cheaper and accurate
enough alternative, for example.

We will now return to the interaction of the se-
lection in our beam search of the top 30 candidates
based on forward conditional probabilities. This will
affect our results but most likely in the following
manner:

1. For very small thresholds, the beam will be-
come much wider and the search will take
much longer. In order to allow the experiments
to complete in a reasonable time, other means
will need to be employed to reduce the choices.
This reduction will also interact with the sig-
nificance pruning but in a less understandable
manner.

2. For large thresholds, there will not be 30

973



choices and so there will be no effect.

3. For intermediate thresholds, the extra prun-
ing might reduce BLEU score but by a small
amount because most of the best choices are
included in the search.

Using thresholds that remove most of the phrase-
table would no doubt qualify as large thresholds so
the question is addressing the true shape of the curve
for smaller thresholds and not at the expected operat-
ing levels. Nonetheless, this is a subject for further
study, especially as we consider alternatives to our
“filter 30” approach for managing beam width.

There are a number of important ways that this
work can and will be continued. The code base for
taking a list of n, m-grams and computing the re-
quired frequencies for signifance evaluation can be
applied to related problems. For example, skip-n-
grams (n-grams that allow for gaps of fixed or vari-
able size) may be studied better using this approach
leading to insight about methods that weakly ap-
proximate patterns.

The original goal of this work was to better un-
derstand the character of phrasetables, and it re-
mains a useful diagnostic technique. It will hope-
fully lead to more understanding of what it takes
to make a good phrasetable especially for languages
that require morphological analysis or segmentation
to produce good tables using standard methods.

The negative-log-p-value promises to be a useful
feature and we are currently evaluating its merits.
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Table 5: WMT06 Results: BLEU by type of smoothing and pruning threshold

threshold phrasetable % fr −→ en es −→ en de −→ en en −→ fr en −→ es en −→ de

relative frequency: no smoothing
none 100% 25.39 27.26 20.74 27.29 27.17 14.71

10 84–88% 25.97 27.81 21.08 27.82 27.71 15.09
α− ε 63–68% 26.32 28.00 21.27 28.11 28.09 15.19
α + ε 14–17% 26.34 28.27 21.22 28.16 28.08 15.24

15 13–15% 26.36 28.50 21.14 28.20 28.18 15.29
20 11–13% 26.51 28.45 21.36 28.28 28.06 15.28
25 8–10% 26.50 28.38 21.28 28.32 27.97 15.25
50 4–5% 26.26 27.88 20.87 28.05 27.90 15.08

100 2% 25.66 27.07 20.07 27.38 27.11 14.66
1000 0.2% 20.49 21.66 15.23 22.51 22.31 11.36

Good-Turing
none 100% 25.96 28.14 21.17 27.84 27.95 15.13

10 84–88% 26.33 28.33 21.38 28.18 28.27 15.22
α− ε 63–68% 26.54 28.63 21.50 28.36 28.39 15.31
α + ε 14–17% 26.24 28.49 21.15 28.22 28.16 15.28

15 13–15% 26.48 28.03 21.21 28.27 28.21 15.31
20 11–13% 26.65 28.45 21.41 28.36 28.14 15.25
25 8–10% 26.54 28.56 21.31 28.35 28.04 15.28
50 4–5% 26.26 27.78 20.94 28.07 27.95 15.08

100 2% 25.70 27.07 20.12 27.41 27.13 14.66
1000 0.2% 20.49 21.66 15.52 22.53 22.31 11.37

Kneser-Ney (3 parameter)
none 100% 26.89 28.70 21.78 28.64 28.71 15.50

10 84–88% 26.79 28.78 21.71 28.63 28.41 15.35
15 13–15% 26.49 28.69 21.34 28.60 28.57 15.52
20 11–13% 26.73 28.67 21.54 28.56 28.44 15.41
25 8–10% 26.84 28.70 21.29 28.54 28.21 15.42
50 4–5% 26.44 28.16 20.93 28.17 28.05 15.17

100 2% 25.72 27.27 20.11 27.50 27.26 14.58
1000 0.2% 20.48 21.70 15.28 22.58 22.36 11.33

Zens-Ney
none 100% 26.87 29.07 21.55 28.75 28.54 15.50

10 84–88% 26.81 29.00 21.65 28.72 28.52 15.54
15 13–15% 26.92 28.67 21.74 28.79 28.32 15.44
20 11–13% 26.93 28.47 21.72 28.69 28.42 15.45
25 8–10% 26.85 28.79 21.58 28.59 28.27 15.37
50 4–5% 26.51 27.96 20.96 28.30 27.96 15.27

100 2% 25.82 27.34 20.02 27.57 27.30 14.51
1000 0.2% 20.50 21.76 15.46 22.68 22.33 11.56

Table 6: Chinese Results: BLEU by pruning threshold

threshold phrasetable % nist04 nist05 nist06-GALE nist06-NIST

Zens-Ney Smoothing applied to all phrasetables
none 100% 32.14 30.69 13.06 27.97

14 40–65% 32.66 31.14 13.11 28.35
16 22–38% 32.73 30.97 13.14 28.00
18 21–36% 31.56 30.45 12.49 27.03
20 20–35% 32.00 30.73 12.50 27.33
25 18–31% 30.54 29.58 11.68 26.12

also pruning C(s̃, t̃) = 1

14′ 23–39% 32.08 30.99 12.75 27.66
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