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Abstract 

Recently system combination has been shown 

to be an effective way to improve translation 

quality over single machine translation sys-

tems. In this paper, we present a simple and ef-

fective method to systematically derive an en-

semble of SMT systems from one baseline li-

near SMT model for use in system combina-

tion. Each system in the resulting ensemble is 

based on a feature set derived from the fea-

tures of the baseline model (typically a subset 

of it). We will discuss the principles to deter-

mine the feature sets for derived systems, and 

present in detail the system combination mod-

el used in our work. Evaluation is performed 

on the data sets for NIST 2004 and NIST 2005 

Chinese-to-English machine translation tasks. 

Experimental results show that our method can 

bring significant improvements to baseline 

systems with state-of-the-art performance. 

1 Introduction 

Research on Statistical Machine Translation 

(SMT) has shown substantial progress in recent 

years. Since the success of phrase-based methods 

(Och and Ney, 2004; Koehn, 2004), models 

based on formal syntax (Chiang, 2005) or lin-

guistic syntax (Liu et al., 2006; Marcu et al., 

2006) have also achieved state-of-the-art perfor-

mance. As a result of the increasing numbers of 

available machine translation systems, studies on 

system combination have been drawing more and 

more attention in SMT research. 

 There have been many successful attempts to 

combine outputs from multiple machine transla-

tion systems to further improve translation quali-

ty. A system combination model usually takes n-

best translations of single systems as input, and 

depending on the combination strategy, different 

methods can be used. Sentence-level combina-

tion methods directly select hypotheses from 

original outputs of single SMT systems (Sim et 

al., 2007; Hildebrand and Vogel, 2008), while 

phrase-level or word–level combination methods 

are more complicated and could produce new 

translations different from any translations in the 

input (Bangalore et al., 2001; Jayaraman and La-

vie, 2005; Matusov et al., 2006; Sim et al., 

2007). 

 Among all the factors contributing to the suc-

cess of system combination, there is no doubt 

that the availability of multiple machine transla-

tion systems is an indispensable premise. Al-

though various approaches to SMT system com-

bination have been explored, including enhanced 

combination model structure (Rosti et al., 2007), 

better word alignment between translations 

(Ayan et al., 2008; He et al., 2008) and improved 

confusion network construction (Rosti et al., 

2008), most previous work simply used the en-

semble of SMT systems based on different mod-

els and paradigms at hand and did not tackle the 

issue of how to obtain the ensemble in a prin-

cipled way. To our knowledge the only work 

discussed this problem is Macherey and Och 

(2007), in which they experimented with build-

ing different SMT systems by varying one or 

more sub-models (i.e. translation model or dis-

tortion model) of an existing SMT system, and 

observed that changes in early-stage model train-

ing introduced most diversities in translation 

outputs.  

In this paper, we address the problem of build-

ing an ensemble of diversified machine transla-

tion systems from a single translation engine for 

system combination. In particular, we propose a 

novel Feature Subspace method for the ensemble 

construction based on any baseline SMT model 

which can be formulated as a standard linear 

function. Each system within the ensemble is 

based on a group of features directly derived 

from the baseline model with minimal efforts 

(which is typically a subset of the features used 

in the baseline model), and the resulting system 

is optimized in the derived feature space accor-

dingly. 

We evaluated our method on the test sets for 

NIST 2004 and NIST 2005 Chinese-to-English 
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machine translation tasks using two baseline 

SMT systems with state-of-the-art performance. 

Experimental results show that the feature sub-

space method can bring significant improve-

ments to both baseline systems. 

The rest of the paper is organized as follows. 

The motivation of our work is described on Sec-

tion 2. In Section 3, we first give a detailed de-

scription about feature subspace method, includ-

ing the principle to select subspaces from all 

possible options, and then an n-gram consensus –

based sentence-level system combination method 

is presented. Experimental results are given in 

Section 4. Section 5 discusses some related is-

sues and concludes the paper. 

2 Motivation 

Our motivations for this work can be described 

in the following two aspects. 

The first aspect is related to the cost of build-

ing single systems for system combination. In 

previous work, the SMT systems used in combi-

nation differ mostly in two ways. One is the un-

derlying models adopted by individual systems. 

For example, using an ensemble of systems re-

spectively based on phrase-based models, hierar-

chical models or even syntax-based models is a 

common practice. The other is the methods used 

for feature function estimation such as using dif-

ferent word alignment models, language models 

or distortion models. For the first solution, build-

ing a new SMT system with different methodol-

ogy is by no means an easy task even for an ex-

perienced SMT researcher, because it requires 

not only considerable effects to develop but also 

plenty of time to accumulate enough experiences 

to fine tune the system. For the second alterna-

tive, usually it requires time-consuming re-

training for word alignment or language models. 

Also some of the feature tweaking in this solu-

tion is system or language specific, thus for any 

new systems or language pairs, human engineer-

ing has to be involved. For example, using dif-

ferent word segmentation methods for Chinese 

can generate different word alignment results, 

and based on which a new SMT system can be 

built. Although this may be useful to combina-

tion of Chinese-to-English translation, it is not 

applicable to most of other language pairs. 

Therefore it will be very helpful if there is a 

light-weight method that enables the SMT sys-

tem ensemble to be systematically constructed 

based on an existing SMT system. 

 

Source 

sentence 

中国 最大 规模 的 海水 淡化 

工程 落户 舟山 

Ref 

translation 

China's largest sea water desalini-

zation project settles in Zhoushan 

Default 

translation 

China 's largest desalination  

project in Zhoushan 

𝐹𝑆−𝑃𝐸𝐹  
translation 

China 's largest sea water  

desalination project in Zhoushan 

Table 1: An example of translations generated 

from the same decoder but with different feature 

settings. 

 Chinese English 𝑝 𝑒 𝑓  

1 海水 淡化 desalination 0.4000 

2 海水 sea water 0.1748 

3 淡化 desalination 0.0923 

Table 2: Parameters of related phrases for exam-

ples in Table 1. 

The second aspect motivating our work comes 

from the subspace learning method in machine 

learning literature (Ho, 1998), in which an en-

semble of classifiers are trained on subspaces of 

the full feature space, and final classification re-

sults are based on the vote of all classifiers in the 

ensemble. Lopez and Resnik (2006) also showed 

that feature engineering could be used to over-

come deficiencies of poor alignment. To illu-

strate the usefulness of feature subspace in the 

SMT task, we start with the example shown in 

Table 1. In the example, the Chinese source sen-

tence is translated with two settings of a hierar-

chical phrase-based system (Chiang, 2005). In 

the default setting all the features are used as 

usual in the decoder, and we find that the transla-

tion of the Chinese word 海水  (sea water) is 

missing in the output. This can be explained with 

the data shown in Table 2. Because of noises and 

word alignment errors in the parallel training 

data, the inaccurate translation phrase 

海水 淡化 ⇒ 𝑑𝑒𝑠𝑎𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛  is assigned with a 

high value of the phrase translation probability 

feature 𝑝(𝑒|𝑓). Although the correct translation 

can also be composed by two phrases 海水 ⇒

𝑠𝑒𝑎 𝑤𝑎𝑡𝑒𝑟 and 淡化 ⇒ 𝑑𝑒𝑠𝑎𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛, its over-

all translation score cannot beat the incorrect one 

because the combined phrase translation proba-

bility of these two phrases are much smaller 

than  𝑝(𝑑𝑒𝑠𝑎𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛|海水 淡化) . However, if 

we intentionally remove the 𝑝(𝑒|𝑓) feature from 

the model, the preferred translation can be gener-

ated as shown in the result of 𝐹𝑆−𝑃𝐸𝐹  because in 
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this way the bad estimation of 𝑝(𝑒|𝑓)  for this 

phrase is avoided. 

This example gives us the hint that building 

decoders based on subspaces of a standard model 

could help with working around some negative 

impacts of inaccurate estimations of feature val-

ues for some input sentences. The subspace-

based systems are expected to work similarly to 

statistical classifiers trained on subspaces of a 

full feature space – though the overall accuracy 

of baseline system might be better than any indi-

vidual systems, for a specific sentence some in-

dividual systems could generate better transla-

tions. It is expected that employing an ensemble 

of subspace-based systems and making use of 

consensus between them will outperform the 

baseline system. 

3 Feature Subspace Method for SMT 

System Ensemble Construction 

In this section, we will present in detail the me-

thod for systematically deriving SMT systems 

from a standard linear SMT model based on fea-

ture subspaces for system combination. 

3.1 SMT System Ensemble Generation 

Nowadays most of the state-of-the-art SMT sys-

tems are based on linear models as proposed in 

Och and Ney (2002). Let 𝑚 (𝑓, 𝑒) be a feature 

function, and 𝜆𝑚  be its weight, an SMT model 𝐷 

can be formally written as: 

𝑒∗ = argmax
𝑒

 𝜆𝑚𝑚 (𝑓, 𝑒)

𝑚

 (1) 

Noticing that Equation (1) is a general formu-

lation independent of any specific features, tech-

nically for any subset of features used in 𝐷 , a 

new SMT system can be constructed based on it, 

which we call a sub-system. 

Next we will use Ω to denote the full feature 

space defined by the entire set of features used 

in 𝐷, and 𝑠 ⊆ Ω is a feature subset that belongs 

to 𝜌(Ω), the power set of Ω. The derived sub-

system based on subset 𝑠 ⊆ Ω is denoted by 𝑑𝑠 . 

Although in theory we can use all the sub-

systems derived from every feature subset 

in 𝜌(Ω), it is still desirable to use only some of 

them in practice. The reasons for this are two-

fold. First, the number of possible sub-systems 

(2 Ω ) is exponential to the size of Ω. Even when 

the number of features in Ω is relatively small, 

i.e. 10, there will be up to 1024 sub-systems in 

total, which is a large number for combination 

task. Larger feature sets will make the system 

combination practically infeasible. Second, not 

every sub-system could contribute to the system 

combination. For example, feature subsets only 

containing very small number of features will 

lead to sub-systems with very poor performance; 

and the language model feature is too important 

to be ignored for a sub-system to achieve reason-

ably good performance. 

In our work, we only consider feature sub-

spaces with only one difference from the features 

in Ω. For each non- language model feature 𝑖 , a 

sub-system 𝑑𝑖  is built by removing 𝑖  from  Ω . 

Allowing for the importance of the language 

model (LM) feature to an SMT model, we do not 

remove any LM feature from any sub-system. 

Instead, we try to weaken the strength of a LM 

feature by lowering its n-gram order. For exam-

ple, if a 4-gram language model is used in the 

baseline system 𝐷, then a trigram model can be 

used in one sub-system, and a bigram model can 

be used in another. In this way more than one 

sub-system can be derived based on one LM fea-

ture. When varying a language model feature, the 

one-feature difference principle is still kept: if 

we lower the order of a language model feature, 

no other features are removed or changed.  

The remaining issue of using weakened LM 

features is that the resulting ensemble is no long-

er strictly based on subspace of Ω. However, this 

theoretical imperfection can be remedied by in-

troducing Ω′ , a super-space of Ω to include all 

lower-order LM features. In this way, an aug-

mented baseline system 𝐷′  can be built based 

on  Ω′ , and the baseline system 𝐷 itself can also 

be viewed as a sub-system of 𝐷′. We will show 

in the experimental section that 𝐷′  actually per-

forms even slightly better than the original base-

line system 𝐷, but results of sub-system combi-

nation are significantly better that both 𝐷 and 𝐷′ . 

After the sub-system ensemble is constructed, 

each sub-system tunes its feature weights inde-

pendently to optimize the evaluation metrics on 

the development set. 

Let 𝒟 = {𝑑1 ,… , 𝑑𝑛} be the set of sub-systems 

obtained by either removing one non-LM feature 

or changing the order of a LM feature, and ℋ𝑖  be 

the n-best list produced by 𝑑𝑖 . Then ℋ(𝒟), the 

translation candidate pool to the system combi-

nation model can be written as: 

ℋ(𝒟) =  ℋ𝑖

𝑖

 (2) 

The advantage of this method is that it allows 

us to systematically build an ensemble of SMT 

systems at a very low cost. From the decoding 
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perspective, all the sub-systems share a common 

decoder, with minimal extensions to the baseline 

systems to support the use of specified subset of 

feature functions to compute the overall score for 

translation hypotheses. From the model training 

perspective, all the non-LM feature functions can 

be estimated once for all sub-systems. The only 

exception is the language model feature, which 

may be of different values across multiple sub-

systems. However, since lower-order models 

have already been contained in higher-order 

model for the purpose of smoothing in almost all 

statistical language model implementations, there 

is also no extra training cost. 

3.2 System Combination Scheme 

In our work, we use a sentence-level system 

combination model to select best translation hy-

pothesis from the candidate pool  ℋ(𝒟) . This 

method can also be viewed to be a hypotheses re-

ranking model since we only use the existing 

translations instead of performing decoding over 

a confusion network as done in the word-level 

combination method (Rosti et al., 2007). 

The score function in our combination model 

is formulated as follows: 

𝑒∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑒∈ℋ 𝒟 

𝜆𝐿𝑀𝐿𝑀 𝑒 + 𝜆𝑙𝐿 + 𝜓(𝑒, ℋ(𝒟)) 

(3) 

where 𝐿𝑀 𝑒  is the language model score for 𝑒, 

𝐿 is the length of 𝑒, and 𝜓(𝑒, ℋ(𝒟)) is a transla-

tion consensus –based scoring function. The 

computation of 𝜓(𝑒, ℋ(𝒟))  is further decom-

posed into weighted linear combination of a set 

of n-gram consensus –based features, which are 

defined in terms of the order of n-gram to be 

matched between current candidate and other 

translation in ℋ(𝒟). 

Given a translation candidate  𝑒 , the n-gram 

agreement feature between 𝑒  and other transla-

tions in the candidate pool is defined as: 

𝑛
+(𝑒, ℋ 𝒟 ) =  𝐺𝑛 𝑒, 𝑒 ′ 

𝑒 ′ ∈ℋ 𝒟 ,𝑒 ′≠𝑒

 (4) 

where the function  𝐺𝑛 𝑒, 𝑒 ′  counts the occur-

rences of n-grams of 𝑒 in 𝑒 ′ : 

𝐺𝑛 𝑒, 𝑒 ′ =  𝛿(𝑒𝑖
𝑖+𝑛−1, 𝑒 ′)

 𝑒 −𝑛+1

𝑖=1
 (5) 

    Here 𝛿(∙,∙)  is the indicator function - 

𝛿 𝑒𝑖
𝑖+𝑛−1 , 𝑒 ′  is 1 when the n-gram 𝑒𝑖

𝑖+𝑛−1  ap-

pears in 𝑒 ′ , otherwise it is 0. 

In order to give the combination model an op-

portunity to penalize long but inaccurate transla-

tions, we also introduce a set of n-gram disa-

greement features in the combination model: 

𝑛
−(𝑒, ℋ 𝒟 ) =  ( 𝑒 − 𝑛 + 1 − 𝐺𝑛(𝑒, 𝑒 ′))

𝑒 ′ ∈ℋ 𝒟 ,𝑒 ′≠𝑒

 

(6) 

Because each order of n-gram match introduc-

es two features, the total number of features in 

the combination model will be 2𝑚 + 2 if 𝑚 or-

ders of n-gram are to be matched in computing 

𝜓(𝑒, ℋ(𝒟)). Since we also adopt a linear scor-

ing function in Equation (3), the feature weights 

of our combination model can also be tuned on a 

development data set to optimize the specified 

evaluation metrics using the standard Minimum 

Error Rate Training (MERT) algorithm (Och 

2003). 

Our method is similar to the work proposed by 

Hildebrand and Vogel (2008). However, except 

the language model and translation length, we 

only use intra-hypothesis n-gram agreement fea-

tures as Hildebrand and Vogel did and use addi-

tional intra-hypothesis n-gram disagreement fea-

tures as Li et al. (2009) did in their co-decoding 

method. 

4 Experiments 

4.1 Data 

Experiments were conducted on the NIST evalu-

ation sets of 2004 (MT04) and 2005 (MT05) for 

Chinese-to-English translation tasks. Both corpo-

ra provide 4 reference translations per source 

sentence. Parameters were tuned with MERT 

algorithm (Och, 2003) on the NIST evaluation 

set of 2003 (MT03) for both the baseline systems 

and the system combination model. Translation 

performance was measured in terms of case-

insensitive NIST version of BLEU score which 

computes the brevity penalty using the shortest 

reference translation for each segment, and all 

the results will be reported in percentage num-

bers. Statistical significance is computed using 

the bootstrap re-sampling method proposed by 

Koehn (2004). Statistics of the data sets are 

summarized in Table 3. 

 

Data set #Sentences #Words 

MT03 (dev) 919 23,782 

MT04 (test) 1,788 47,762 

MT05 (test) 1,082 29,258 

Table 3: Data set statistics. 
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We use the parallel data available for the 

NIST 2008 constrained track of Chinese-to-

English machine translation task as bilingual 

training data, which contains 5.1M sentence 

pairs, 128M Chinese words and 147M English 

words after pre-processing. GIZA++ toolkit (Och 

and Ney, 2003) is used to perform word align-

ment in both directions with default settings, and 

the intersect-diag-grow method is used to gener-

ate symmetric word alignment refinement. The 

language model used for all systems is a 5-gram 

model trained with the English part of bilingual 

data and Xinhua portion of LDC English Giga-

word corpus version 3. In experiments, multiple 

language model features with the order ranging 

from 2 to 5 can be easily obtained from the 5-

gram one without retraining. 

4.2 System Description 

Theoretically our method is applicable to all li-

near model –based SMT systems. In our experi-

ments, two in-house developed systems are used 

to validate our method. The first one (SYS1) is a 

system based on the hierarchical phrase-based 

model as proposed in (Chiang, 2005). Phrasal 

rules are extracted from all bilingual sentence 

pairs, while hierarchical rules with variables are 

extracted from selected data sets including 

LDC2003E14, LDC2003E07, LDC2005T06 and 

LDC2005T10, which contain around 350,000 

sentence pairs, 8.8M Chinese words and 10.3M 

English words. The second one (SYS2) is a re-

implementation of a phrase-based decoder with 

lexicalized reordering model based on maximum 

entropy principle proposed by Xiong et al. 

(2006). All bilingual data are used to extract 

phrases up to length 3 on the source side. 

    In following experiments, we only consider 

removing common features shared by both base-

line systems for feature subspace generation. 

Rule penalty feature and lexicalized reordering 

feature, which are particular to SYS1 and SYS2, 

are not used. We list the features in consideration 

as follows: 

 PEF and PFE: phrase translation probabili-

ties 𝑝 𝑒 𝑓  and 𝑝 𝑓 𝑒  
 PEFLEX and PFELEX: lexical weights 

𝑝𝑙𝑒𝑥  𝑒 𝑓  and 𝑝𝑙𝑒𝑥  𝑓 𝑒  

 PP: phrase penalty 

 WP: word penalty 

 BLP: bi-lexicon pair counting how many 

entries of a conventional lexicon co-

occurring in a given translation pair 

 LM-n: language model with order n 

    Based on the principle described in Section 

3.1, we generate a number of feature subspaces 

for each baseline system as follows:  

 For non-LM features (PEF, PFE, PEFLEX, 

PFELEX, PP, WP and BLP), we remove one 

of them from the full feature space each 

time. Thus 7 feature subspaces are generated, 

which are denoted as  𝐹𝑆−𝑃𝐸𝐹 , 𝐹𝑆−𝑃𝐹𝐸 , 

𝐹𝑆−𝑃𝐸𝐹𝐿𝐸𝑋 , 𝐹𝑆−𝑃𝐹𝐸𝐿𝐸𝑋 , 𝐹𝑆−𝑃𝑃 , 𝐹𝑆−𝑊𝑃  and 

𝐹𝑆−𝐵𝐿𝑃  respectively. The 5-gram LM feature 

is used in each of them. 

 For LM features (LM-n), we change the or-

der from 2 to 5 with all the other non-LM 

features present. Thus 4 LM-related feature 

subspaces are generated, which are denoted 

as 𝐹𝑆𝐿𝑀−2, 𝐹𝑆𝐿𝑀−3 , 𝐹𝑆𝐿𝑀−4  and 𝐹𝑆𝐿𝑀−5 re-

spectively. 𝐹𝑆𝐿𝑀−5 is essentially the full fea-

ture space of  baseline system. 

   For each baseline system, we construct a total 

of 11 sub-systems by using above feature sub-

spaces. The baseline system is also contained 

within them because of using 𝐹𝑆𝐿𝑀−5. We call 

all sub-systems are non-baseline sub-systems 

except the one derived by using 𝐹𝑆𝐿𝑀−5. 

    By default, the beam size of 60 is used for all 

systems in our experiments. The size of n-best 

list is set to 20 for each sub-system, and for base-

line systems, this size is set to 220, which equals 

to the size of the combined n-best list generated 

by total 11 sub-systems. The order of n-gram 

agreement and disagreement features used in 

sentence-level combination model ranges from 

unigram to 4-gram. 

4.3 Evaluation of Oracle Translations 

We first evaluate the oracle performance on the 

n-best lists of baseline systems and on the com-

bined n-best lists of sub-systems generated from 

each baseline system. 

The oracle translations are obtained by using 

the metric of sentence-level BLEU score (Ye et 

al., 2007). Table 4 shows the evaluation results, 

in which Baseline stands for baseline system 

with a 5-gram LM feature, and FS stands for 11 

sub-systems derived from the baseline system.  

 

 SYS1 SYS2 

 BLEU/TER BLEU/TER 

MT04 
Baseline  49.68/0.6411 49.50/0.6349 

FS 51.05/0.6089 50.53/0.6056 

MT05 
Baseline 48.89/0.5946 48.37/0.5944 

FS 50.69/0.5695 49.81/0.5684 

Table 4: Oracle BLEU and TER scores on base-

line systems and their generated sub-systems. 
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For both SYS1 and SYS2, feature subspace 

method achieves higher oracle BLEU and lower 

TER scores on both MT04 and MT05 test sets, 

which gives the feature subspace method more 

potential to achieve higher performance than the 

baseline systems. 

We then investigate the ratio of translation 

candidates in the combined n-best lists of non-

baseline sub-systems that are not included in the 

baseline’s n-best list. Table 5 shows the statistics. 

 

 MT04 MT05 

SYS1 69.71% 69.69% 

SYS2 59.07% 58.54% 

Table 5: Ratio of unique translation candidates 

from non-baseline sub-systems. 

From Table 5 we can see that only less than 

half of the translation candidates of sub-systems 

overlap with those the of baseline systems. This 

result, together with the oracle BLEU and TER 

score estimation, helps eliminate the concern that 

no diversities or better translation candidates can 

be obtained by using sub-systems. 

4.4 Feature Subspace Method on Single 

SMT System 

Next we validate the effect of feature subspace 

method on single SMT systems. 

Figure 1 shows the evaluation results of dif-

ferent systems on the MT05 test set. From the 

figure we can see that the overall accuracy of 

baseline systems is better than any of their de-

rived sub-systems, and except the sub-system 

derived by using 𝐹𝑆𝐿𝑀−2, the performance of all 

the systems are fairly similar. 

 

 

Figure 1: Performances of different systems. 

We then evaluate the system combination me-

thod proposed in Section 3.2 with all the sub-

systems for each baseline system. Table 6 shows 

the results on both MT04 and MT05 data sets, in 

which FS-Comb denotes the system combination 

using 11 sub-systems.  

From Table 6 we can see that by using FS-

Comb we obtain about 1.1~1.3 points of BLEU 

gains over baseline systems. We also include in 

Table 6 the results for Baseline+mLM, which 

stands for the augmented baseline system as de-

scribed in Section 3.1 using a bunch of LM fea-

tures from bigram to 5-gram. It can be seen that 

both augmented baseline systems outperform 

their corresponding baseline systems slightly but 

consistently on both data sets. 

 

 MT04 MT05 

SYS1 

Baseline 39.07 38.72 

Baseline+mLM 39.34+ 39.14+ 

FS-Comb 40.43++ 39.79++ 

SYS2 

Baseline 38.84 38.30 

Baseline+mLM 38.95* 38.63+ 

FS-Comb 39.92++ 39.49++ 

Table 6: Translation results of Baseline, Base-

line+mLM and FS-Comb (+: significant better 

than baseline system with 𝑝 < 0.05; ++: signifi-

cant better than baseline system with 𝑝 < 0.01; *: 

no significant improvement). 

We also investigate the results when we in-

crementally add the n-best list of each sub-

system into a candidate pool to see the effects 

when different numbers of sub-systems are used 

in combination. In order to decide the sequence 

of sub-systems to add, we first evaluate the per-

formance of pair-wise combinations between 

each sub-system and its baseline system on the 

development set. That is, for each sub-system, 

we combine its n-best list with the n-best list of 

its baseline system and perform system combina-

tion for MT03 data set. Then we rank the sub-

systems by the pair-wise combination perfor-

mance from high to low, and use this ranking as 

the sequence to add n-best lists of sub-systems. 

Each time when a new n-best list is added, the 

combination performance based on the enlarged 

candidate pool is evaluated. Figure 2 shows the 

results on both MT04 and MT05 test sets, in 

which SYS1-fs and SYS2-fs denote the sub-

systems derived from SYS1 and SYS2 respec-

tively, and X-axis is the number of sub-systems 

used for combination each time and Y-axis is the 

BLEU score. From the figure we can see that 

although in some cases the performance slightly 

drops when a new sub-system is added, generally 

using more sub-systems always leads to better 

results.  

31
32
33
34
35
36
37
38
39

SYS1 SYS2

Baseline
FS-PEF
FS-PFE
FS-PEFLEX
FS-PFELEX
FS-PP
FS-WP
FS-BLP
FS-LM-2
FS-LM-3
FS-LM-4
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Next we examine the performance of baseline 

systems when different beam sizes are used in 

decoding. The results on MT05 test set are 

shown in Figure3, where X-axis is the beam size. 

In Figure 3, SYS1+mLM and SYS2+mLM de-

note augmented baseline systems of SYS1 and 

SYS2 with multiple LM features. 

From Figure 3 we can see that augmented 

baseline systems (with multiple LM features) 

outperform the baseline systems (with only one 

LM feature) for all beam sizes ranging from 20 

to 220. In this experiment we did not observe any 

significant performance improvements when us-

ing larger beam sizes than the default setting, but 

using more sub-systems in combination almost 

always bring improvements. 

 

 

Figure 2: Performances on different numbers of 

sub-systems.  

 

Figure 3: Performances on different beam sizes. 

 MT04 MT05 

SYS1-fs 44.63% 46.12% 

SYS2-fs 47.54% 44.73% 

Table 7: Ratio of final translations coming from 

non-baseline sub-systems. 

Finally, we investigate the ratio of final trans-

lations coming from the n-best lists of non-

baseline sub-systems only. Table 7 shows the 

results on both MT04 and MT05 test sets, which 

indicate that almost half of the final translations 

are contributed by the non-baseline sub-systems. 

4.5 The Impact of n-best List Size 

In order to find the optimal size of n-best list for 

combination, we compare the combination re-

sults of using list sizes from 10-best up to 500-

best for each sub-system. 

In this experiment, system combination was 

performed on the combined n-best list from total 

11 sub-systems with different list size each time. 

Figure 4 shows the results on the MT03 dev set 

and the MT04 and MT05 test sets for both SYS1 

and SYS2. X-axis is the n-best list size of each 

sub-system. 

 

 

Figure 4: Performances on different n-best sizes. 

    We can see from the figure that for all data 

sets the optimal n-best list size is around 50, but 

the improvements are not significant over the 

results when 20-best translations are used. The 

reason for the small optimal n-best list size could 

be that the low-rank hypotheses might introduce 

more noises into the combined translation candi-

date pool for sentence-level combination (Hasan 

et al., 2007; Hildebrand and Vogel, 2008).  

4.6 Feature Subspace Method on Multiple 

SMT Systems 

In the last experiment, we investigate the effect 

of feature subspace method when multiple SMT 

systems are used in system combination.  

Evaluation results are reported in Table 8. The 

system combination method described in Section 

3.2 is used to combine outputs from two baseline 

systems (with only one 5-gram LM feature) and 

sub-systems generated from both baseline sys-

tems (22 in total), with their results denoted as 

Baseline Comb (both) and FS Comb (both) re-

spectively. We also include the combination re-

sults of sub-systems based on one baseline sys-

tem for reference in the table. 
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On both MT04 and MT05 test sets, the results 

of system combination based on sub-systems are 

significantly better than those of baseline sys-

tems, which show that our method can also help 

with system combination when more than one 

system are used. We can also see that using mul-

tiple systems based on different SMT models and 

using our subspace based method can help each 

other: the best performance can only be achieved 

when both are employed. 

 

 MT04 MT05 

Baseline Comb (both) 39.98 39.43 

FS-Comb (SYS1) 40.43 39.79 

FS-Comb (SYS2) 39.92 39.49 

FS Comb (both) 40.96 40.38 

Table 8: Performances of sentence-level combi-

nation on multiple SMT systems. 

5 Conclusion 

In this paper, we have presented a novel and ef-

fective Feature Subspace method for the con-

struction of an ensemble of machine translation 

systems based on a baseline SMT model which 

can be formulated as a standard linear function. 

Each system within the ensemble is based on a 

subset of features derived from the baseline 

model, and the resulting ensemble can be used in 

system combination to improve translation quali-

ty. Experimental results on NIST Chinese-to-

English translation tasks show that our method 

can bring significant improvements to two base-

line systems with state-of-the-art performance, 

and it is expected that our method can be em-

ployed to improve any linear model -based SMT 

systems. There is still much room for improve-

ments in the current work. For example, we still 

use a simple one-feature difference principle for 

feature subspace generation. In the future, we 

will explore more possibilities for feature sub-

spaces selection and experiment with our method 

in a word-level system combination model. 
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