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Abstract

Current statistical machine translation sys-
tems usually extract rules from bilingual
corpora annotated with 1-best alignments.
They are prone to learn noisy rules due
to alignment mistakes. We propose a new
structure calledweighted alignment matrix
to encode all possible alignments for a par-
allel text compactly. The key idea is to as-
sign a probability to each word pair to in-
dicate how well they are aligned. We de-
sign new algorithms for extracting phrase
pairs from weighted alignment matrices
and estimating their probabilities. Our ex-
periments on multiple language pairs show
that using weighted matrices achieves con-
sistent improvements over usingn-best
lists in significant less extraction time.

1 Introduction

Statistical machine translation (SMT) relies heav-
ily on annotated bilingual corpora. Word align-
ment, which indicates the correspondence be-
tween the words in a parallel text, is one of the
most important annotations in SMT. Word-aligned
corpora have been found to be an excellent source
for translation-related knowledge, not only for
phrase-based models (Och and Ney, 2004; Koehn
et al., 2003), but also for syntax-based models
(e.g., (Chiang, 2007; Galley et al., 2006; Shen
et al., 2008; Liu et al., 2006)). Och and Ney
(2003) indicate that the quality of machine transla-
tion output depends directly on the quality of ini-
tial word alignment.

Modern alignment methods can be divided into
two major categories:generative methods anddis-
criminative methods. Generative methods (Brown
et al., 1993; Vogel and Ney, 1996) treat word
alignment as a hidden process and maximize the
likelihood of bilingual training corpus using the

expectation maximization (EM) algorithm. In
contrast, discriminative methods (e.g., (Moore et
al., 2006; Taskar et al., 2005; Liu et al., 2005;
Blunsom and Cohn, 2006)) have the freedom to
define arbitrary feature functions that describe var-
ious characteristics of an alignment. They usu-
ally optimize feature weights on manually-aligned
data. While discriminative methods show supe-
rior alignment accuracy in benchmarks, genera-
tive methods are still widely used to produce word
alignments for large sentence-aligned corpora.

However, neither generative nor discriminative
alignment methods are reliable enough to yield
high quality alignments for SMT, especially for
distantly-related language pairs such as Chinese-
English and Arabic-English. The F-measures for
Chinese-English and Arabic-English are usually
around 80% (Liu et al., 2005) and 70% (Fraser
and Marcu, 2007), respectively. As most current
SMT systems only use 1-best alignments for ex-
tracting rules, alignment errors might impair trans-
lation quality.

Recently, several studies have shown that offer-
ing more alternatives of annotations to SMT sys-
tems will result in significant improvements, such
as replacing 1-best trees with packed forests (Mi
et al., 2008) and replacing 1-best word segmenta-
tions with word lattices (Dyer et al., 2008). Sim-
ilarly, Venugopal et al. (2008) usen-best align-
ments instead of 1-best alignments for translation
rule extraction. While they achieve significant im-
provements on the IWSLT data, extracting rules
from n-best alignments might be computationally
expensive.

In this paper, we propose a new structure named
weighted alignment matrix to represent the align-
ment distribution for a sentence pair compactly. In
a weighted matrix, each element that corresponds
to a word pair is assigned a probability to measure
the confidence of aligning the two words. There-
fore, a weighted matrix is capable of using a lin-
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Figure 1: An example of word alignment between
a pair of Chinese and English sentences.

ear space to encode the probabilities of exponen-
tially many alignments. We develop a new algo-
rithm for extracting phrase pairs from weighted
matrices and show how to estimate their relative
frequencies and lexical weights. Experimental re-
sults show that using weighted matrices achieves
consistent improvements in translation quality and
significant reduction in extraction time over using
n-best lists.

2 Background

Figure 1 shows an example of word alignment be-
tween a pair of Chinese and English sentences.
The Chinese and English words are listed horizon-
tally and vertically, respectively. The dark points
indicate the correspondence between the words in
two languages. For example, the first Chinese
word “zhongguo” is aligned to the fourth English
word “China”.

Formally, given a source sentencef = fJ
1 =

f1, . . . , fj, . . . , fJ and a target sentencee = eI
1 =

e1, . . . , ei, . . . , eI , we define a linkl = (j, i) to
exist if fj andei are translation (or part of trans-
lation) of one another. Then, an alignmenta is a
subset of the Cartesian product of word positions:

a ⊆ {(j, i) : j = 1, . . . , J ; i = 1, . . . , I} (1)

Usually, SMT systems only use the 1-best align-
ments for extracting translation rules. For exam-
ple, given a source phrasẽf and a target phrase
ẽ, the phrase pair(f̃ , ẽ) is said to beconsistent
(Och and Ney, 2004) with the alignment if and
only if: (1) there must be at least one word in-
side one phrase aligned to a word inside the other

phrase and (2) no words inside one phrase can be
aligned to a word outside the other phrase.

After all phrase pairs are extracted from the
training corpus, their translation probabilities can
be estimated asrelative frequencies (Och and Ney,
2004):

φ(ẽ|f̃) =
count(f̃ , ẽ)∑
ẽ′ count(f̃ , ẽ′)

(2)

wherecount(f̃ , ẽ) indicates how often the phrase
pair (f̃ , ẽ) occurs in the training corpus.

Besides relative frequencies,lexical weights
(Koehn et al., 2003) are widely used to estimate
how well the words inf̃ translate the words in
ẽ. To do this, one needs first to estimate a lexi-
cal translation probability distributionw(e|f) by
relative frequency from the same word alignments
in the training corpus:

w(e|f) =
count(f, e)∑
e′ count(f, e′)

(3)

Note that a special source NULL token is added
to each source sentence and aligned to each un-
aligned target word.

As the alignment̃a between a phrase pair(f̃ , ẽ)
is retained during extraction, the lexical weight
can be calculated as

pw(ẽ|f̃ , ã) =
|ẽ|∏
i=1

1
|{j|(j, i) ∈ ã}|

∑
w(ei|fj) (4)

If there are multiple alignments̃a for a phrase
pair (f̃ , ẽ), Koehn et al. (2003) choose the one
with the highest lexical weight:

pw(ẽ|f̃) = max
ã

{
pw(ẽ|f̃ , ã)

}
(5)

Simple and effective, relative frequencies and
lexical weights have become the standard features
in modern discriminative SMT systems.

3 Weighted Alignment Matrix

We believe that offering more candidate align-
ments to extracting translation rules might help
improve translation quality. Instead of usingn-
best lists (Venugopal et al., 2008), we propose a
new structure calledweighted alignment matrix.

We use an example to illustrate our idea. Fig-
ure 2(a) and Figure 2(b) show two alignments of
a Chinese-English sentence pair. We observe that
some links (e.g., (1,4) corresponding to the word

1018



the
development

of

China
’s

economy

zh
on

gg
uo de

jin
gj

i

fa
zh

an

the
development

of

China
’s

economy

zh
on

gg
uo de

jin
gj

i

fa
zh

an

the
development

of

China
’s

economy

zh
on

gg
uo de

jin
gj

i

fa
zh

an

1.0
0.6

0.40.4
1.0

1.0
0.4

0
0
0

0
0

0
0

0

0

0
0
0
0

0

0
0
0

(a) (b) (c)

Figure 2: (a) One alignment of a sentence pair; (b) another alignment of the same sentence pair; (c)
the resulting weighted alignment matrix that takes the two alignments as samples, of which the initial
probabilities are 0.6 and 0.4, respectively.

pair (“zhongguo”, “ China”)) occur in both align-
ments, some links (e.g., (2,3) corresponding to the
word pair (“de”,“ of”)) occur only in one align-
ment, and some links (e.g., (1,1) corresponding
to the word pair (“zhongguo”, “ the”)) do not oc-
cur. Intuitively, we can estimate how well two
words are aligned by calculating its relative fre-
quency, which is the probability sum of align-
ments in which the link occurs divided by the
probability sum of all possible alignments. Sup-
pose that the probabilities of the two alignments in
Figures 2(a) and 2(b) are 0.6 and 0.4, respectively.
We can estimate the relative frequencies for every
word pair and obtain a weighted matrix shown in
Figure 2(c). Therefore, each word pair is associ-
ated with a probability to indicate how well they
are aligned. For example, in Figure 2(c), we say
that the word pair (“zhongguo”, “ China”) is def-
initely aligned, (“zhongguo”, “the”) is definitely
unaligned, and (“de”, “ of”) has a 60% chance to
get aligned.

Formally, a weighted alignment matrixm is a
J × I matrix, in which each element stores alink
probability pm(j, i) to indicate how wellfj and
ei are aligned. Currently, we estimate link proba-
bilities from ann-best list by calculating relative
frequencies:

pm(j, i) =
∑

a∈N p(a)× δ(a, j, i)∑
a∈N p(a)

(6)

=
∑
a∈N

p(a)× δ(a, j, i) (7)

where

δ(a, j, i) =

{
1 (j, i) ∈ a
0 otherwise

(8)

Note thatN is ann-best list,p(a) is the probabil-
ity of an alignmenta in the n-best list,δ(a, j, i)
indicates whether a link(j, i) occurs in the align-
ment a or not. We assign 0 to any unseen
alignment. Asp(a) is usually normalized (i.e.,∑

a∈N p(a) ≡ 1), we remove the denominator in
Eq. (6).

Accordingly, the probability that the two words
fj andei are not aligned is

p̄m(j, i) = 1.0− pm(j, i) (9)

For example, as shown in Figure 2(c), the prob-
ability for the two words “de” and “of” being
aligned is 0.6 and the probability that they are not
aligned is 0.4.

Intuitively, the probability of an alignmenta is
the product of link probabilities. If a link(j, i)
occurs ina, we usepm(j, i); otherwise we use
p̄m(j, i). Formally, given a weighted alignment
matrix m, the probability of an alignmenta can
be calculated as

pm(a) =
J∏

j=1

I∏
i=1

(pm(j, i) × δ(a, j, i) +

p̄m(j, i) × (1− δ(a, j, i))) (10)

It proves that the sum of all alignment proba-
bilities is always 1:

∑
a∈A pm(a) ≡ 1, whereA
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1: procedure PHRASEEXTRACT(fJ
1 , eI

1, m, l)
2: R ← ∅
3: for j1 ← 1 . . . J do
4: j2 ← j1
5: while j2 < J ∧ j2 − j1 < l do
6: T ← {i|∃j : j1 ≤ j ≤ j2 ∧ pm(j, i) > 0}
7: il ← MIN(T )
8: iu ← MAX (T )
9: for n← 1 . . . l do

10: for i1 ← il − n + 1 . . . iu do
11: i2 ← i1 + n− 1
12: R ← R∪ {(f j2

j1
, ei2

i1
)}

13: end for
14: end for
15: j2 ← j2 + 1
16: end while
17: end for
18: returnR
19: end procedure

Figure 3: Algorithm for extracting phrase pairs
from a sentence pair〈fJ

1 , eI
1〉 annotated with a

weighted alignment matrixm.

is the set of all possible alignments. Therefore, a
weighted alignment matrix is capable of encoding
the probabilities of2J×I alignments using only a
J × I space.

Note thatpm(a) is not necessarily equal top(a)
because the encoding of a weighted alignment ma-
trix changes the alignment probability distribu-
tion. For example, while the initial probability of
the alignment in Figure 2(a) (i.e.,p(a)) is 0.6, the
probability of the same alignment encoded in the
matrix shown in Figure 2(c) (i.e.,pm(a)) becomes
0.1296 according to Eq. (10). It should be em-
phasized that a weighted matrix encodes all pos-
sible alignments rather than the inputn-best list,
although the link probabilities are estimated from
then-best list.

4 Phrase Pair Extraction

In this section, we describe how to extract phrase
pairs from the training corpus annotated with
weighted alignment matrices (Section 4.1) and
how to estimate their relative frequencies (Section
4.2) and lexical weights (Section 4.3).

4.1 Extraction Algorithm

Och and Ney (2004) describe a “phrase-extract”
algorithm for extracting phrase pairs from a sen-
tence pair annotated with a 1-best alignment.
Given a source phrase, they first identify the target
phrase that is consistent with the alignment. Then,
they expand the boundaries of the target phrase if
the boundary words are unaligned.

Unfortunately, this algorithm cannot be directly
used to manipulate a weighted alignment matrix,
which is a compact representation of all pos-
sible alignments. The major difference is that
the “tight” phrase that has both boundary words
aligned is not necessarily the smallest candidate
in a weighted matrix. For example, in Figure
2(a), the “tight” target phrase corresponding to
the source phrase “zhongguo de” is “ of China”.
According to Och’s algorithm, the target phrase
“China” breaks the alignment consistency and
therefore is not valid candidate. However, this is
not true for using the weighted matrix shown in
Figure 2(c). The target phrase “China” is treated
as a “potential” candidate1, although it might be
assigned only a small fractional count (see Table
1).

Therefore, we enumerate all potential phrase
pairs and calculate their fractional counts for
eliminating less promising candidates. Figure 3
shows the algorithm for extracting phrases from
a weighted matrix. The input of the algorithm
is a source sentencefJ

1 , a target sentenceeI
1, a

weighted alignment matrixm, and a phrase length
limit l (line 1). After initializingR that stores col-
lected phrase pairs (line 2), we identify the cor-
responding target phrases for all possible source
phrases (lines 3-5). Given a source phrasef j2

j1
, we

find the lower and upper bounds of target positions
(i.e., il and iu) that have positive link probabili-
ties (lines 6-8). For example, the lower bound is
3 and the upper bound is 5 for the source phrase
“zhongguo de” in Figure 2(c). Finally, we enu-
merate all target phrases that allow for unaligned
boundary words with varying phrase lengths (lines
9-14). Note that we need to ensure that1 ≤ i1 ≤ I
and1 ≤ i2 ≤ I in lines 10-11, which are omitted
for simplicity.

4.2 Calculating Relative Frequencies

To estimate the relative frequency of a phrase pair,
we need to estimate how often it occurs in the
training corpus. Given ann-best list, the fractional
count of a phrase pair is the probability sum of
the alignments with which the phrase pair is con-
sistent. Obviously, it is unrealistic for a weighted
alignment matrix to enumerate all possible align-
ments explicitly to calculate fractional counts. In-
stead, we resort to link probabilities to calculate

1By potential, we mean that the fractional count of a
phrase pair is positive. Section 4.2 describes how to calcu-
late fractional counts.
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Figure 4: An example of calculating fractional
count. Given the phrase pair (“zhongguo de”, “ of
China”), we divide the matrix into three areas: in-
side (heavy shading), outside (light shading), and
irrelevant (no shading).

counts efficiently. Equivalent to explicit enumera-
tion, we interpret the fractional count of a phrase
pair as the probability that it satisfies the two align-
ment consistency conditions (see Section 2).

Given a phrase pair, we divide the elements of
a weighted alignment matrix into three categories:
(1) inside elements that fall inside the phrase pair,
(2) outside elements that fall outside the phrase
pair while fall in the same row or the same col-
umn, and (3)irrelevant elements that fall outside
the phrase pair while fall in neither the same row
nor the same column. Figure 4 shows an exam-
ple. Given the phrase pair (“zhongguo de”, “ of
China”), we divide the matrix into three areas: in-
side (heavy shading), outside (light shading), and
irrelevant (no shading).

To what extent a phrase pair satisfies the align-
ment consistency is measured by calculatingin-
side andoutside probabilities. Although there are
the same terms in the parsing literature, they have
different meanings here. The inside probability in-
dicates the chance that there is at least one word
inside one phrase aligned to a word inside the
other phrase. The outside probability indicates the
chance that no words inside one phrase are aligned
to a word outside the other phrase.

Given a phrase pair(f j2
j1

, ei2
i1

), we denote the in-
side area asin(j1, j2, i1, i2) and the outside area
asout(j1, j2, i1, i2). Therefore, the inside proba-
bility of a phrase pair is calculated as

α(j1, j2, i1, i2) = 1−
∏

(j,i)∈in(j1,j2,i1,i2)

p̄m(j, i) (11)

target phrase α β count

of China 1.0 0.36 0.36
of China ’s 1.0 0.36 0.36

China ’s 1.0 0.24 0.24
China 1.0 0.24 0.24

’s economy 0.4 0 0

Table 1: Some candidate target phrases of the
source phrase “zhongguo de” in Figure 4, whereα
is inside probability,β is outside probability, and
count is fractional count.

For example, the inside probability for (“zhong-
guo de”, “ of China”) in Figure 4 is 1.0, which
means that there always exists at least one aligned
word pair inside.

Accordingly, the outside probability of a phrase
pair is calculated as

β(j1, j2, i1, i2) =
∏

(j,i)∈out(j1,j2,i1,i2)

p̄m(j, i) (12)

For example, the outside probability for
(“zhongguo de”, “ of China”) in Figure 4 is 0.36,
which means the probability that there are no
aligned word pairs outside is 0.36.

Finally, we use the product of inside and outside
probabilities as the fractional count of a phrase
pair:

count(f j2
j1

, ei2
i1

) = α(j1, j2, i1, i2)×
β(j1, j2, i1, i2) (13)

Table 1 lists some candidate target phrases of
the source phrase “zhongguo de” in Figure 4. We
also give their inside probabilities, outside proba-
bilities, and fractional counts.

After collecting the fractional counts from the
training corpus, we then use Eq. (2) to calculate
relative frequencies in two translation directions.

Often, our approach extracts a large amount of
phrase pairs from training corpus as we soften
the alignment consistency constraint. To main-
tain a reasonable phrase table size, we discard any
phrase pair that has a fractional count lower than
a thresholdt. During extraction, we first obtain
a list of candidate target phrases for each source
phrase, as shown in Table 1. Then, we prune the
list according to the thresholdt. For example, we
only retain the top two candidates in Table 1 if
t = 0.3. Note that we perform the pruning locally.
Although it is more reasonable to prune a phrase
table after accumulating all fractional counts from
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training corpus, such global pruning strategy usu-
ally leads to very large disk and memory require-
ments.

4.3 Calculating Lexical Weights

Recall that we need to obtain two translation prob-
ability tablesw(e|f) andw(f |e) before calculat-
ing lexical weights (see Section 2). Following
Koehn et al. (2003), we estimate the two distribu-
tions by relative frequencies from the training cor-
pus annotated with weighted alignment matrices.
In other words, we still use Eq. (3) but the way of
calculating fractional counts is different now.

Given a source wordfj, a target wordei, and
a weighted alignment matrix, the fractional count
count(fj, ei) is pm(j, i). For NULL words, the
fractional counts can be calculated as

count(fj, e0) =
I∏

i=1

p̄m(j, i) (14)

count(f0, ei) =
J∏

j=1

p̄m(j, i) (15)

For example, in Figure 4,count(de, of) is 0.6,
count(de,NULL) is 0.24, andcount(NULL,of) is
0.24.

Then, we adapt Eq. (4) to calculate lexical
weight:

pw(ẽ|f̃ ,m) =
|ẽ|∏
i=1

((
1

{j|pm(j, i) > 0} ×∑
∀j:pm(j,i)>0

p(ei|fj)× pm(j, i)
)

+

p(ei|f0)×
|f̃ |∏
j=1

p̄m(j, i)

)
(16)

For example, for the target word “of” in Figure
4, the sum of aligned and unaligned probabilities
is
1
2
× (p(of|de)× 0.6 + p(of|fazhan)× 0.4) +

p(of|NULL)× 0.24

Note that we take link probabilities into account
and calculate the probability that a target word
translates a source NULL token explicitly.

5 Experiments

5.1 Data Preparation

We evaluated our approach on Chinese-to-English
translation. We used the FBIS corpus (6.9M

+ 8.9M words) as the training data. For lan-
guage model, we used the SRI Language Mod-
eling Toolkit (Stolcke, 2002) to train a 4-gram
model on the Xinhua portion of GIGAWORD cor-
pus. We used the NIST 2002 MT evaluation test
set as our development set, and used the NIST
2005 test set as our test set. We evaluated the trans-
lation quality usingcase-insensitive BLEU metric
(Papineni et al., 2002).

To obtain weighted alignment matrices, we fol-
lowed Venugopal et al. (2008) to producen-
best lists via GIZA++. We first ran GIZA++
to produce 50-best lists in two translation direc-
tions. Then, we used the refinement technique
“grow-diag-final-and” (Koehn et al., 2003) to all
50 × 50 bidirectional alignment pairs. Suppose
thatps2t andpt2s are the probabilities of an align-
ment pair assigned by GIZA++, respectively. We
usedps2t × pt2s as the probability of the result-
ing symmetric alignment. As different alignment
pairs might produce the same symmetric align-
ments, we followed Venugopal et al. (2008) to
remove duplicate alignments and retain only the
alignment with the highest probability. Therefore,
there were 550 candidate alignments on average
for each sentence pair in the training data. We
obtainedn-best lists by selecting the topn align-
ments from the 550-best lists. The probability of
each alignment in then-best list was re-estimated
by re-normalization (Venugopal et al., 2008). Fi-
nally, thesen-best alignments served as samples
for constructing weighted alignment matrices.

After extracting phrase pairs fromn-best lists
and weighted alignment matrices, we ran Moses
(Koehn et al., 2007) to translate the development
and test sets. We used the simple distance-based
reordering model to remove the dependency of
lexicalization on word alignments for Moses.

5.2 Effect of Pruning Threshold

Our first experiment investigated the effect of
pruning threshold on translation quality (BLEU
scores on the test set) and the phrase table size (fil-
tered for the test set), as shown in Figure 5. To
save time, we extracted phrase pairs just from the
first 10K sentence pairs of the FBIS corpus. We
used 12 different thresholds: 0.0001, 0.001, 0.01,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Obvi-
ously, the lower the threshold is, the more phrase
pairs are extracted. Whent = 0.0001, the number
of phrase pairs used on the test set was 460,284
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Figure 5: Effect of pruning threshold on transla-
tion quality and phrase table size.

and the BLEU score was 20.55. Generally, both
the number of phrase pairs and the BLEU score
went down with the increase oft. However, this
trend did not hold within the range [0.1, 0.9]. To
achieve a good tradeoff between translation qual-
ity and phrase table size, we sett = 0.01 for the
following experiments.

5.3 N -best lists Vs. Weighted Matrices

Figure 6 shows the BLEU scores and aver-
age extraction time usingn-best alignments and
weighted matrices, respectively. We used the en-
tire training data for phrase extraction. When us-
ing 1-best alignments, Moses achieved a BLEU
score of 0.2826 and the average extraction time
was 4.19 milliseconds per sentence pair (see point
n = 1). The BLEU scores rose with the in-
crease ofn for using n-best alignments. How-
ever, the score went down slightly whenn = 50.
This suggests that including more noisy align-
ments might be harmful. These improvements
over 1-best alignments are not statistically signif-
icant. This finding failed to echo the promising
results reported by Venogopal et al. (2008). We
think that there are two possible reasons. First,
they evaluated their approach on the IWSLT data
while we used the NIST data. It might be easier
to obtain significant improvements on the IWSLT
data in which the sentences are shorter. Sec-
ond, they used the hierarchical phrase-based sys-
tem while we used the phrase-based system, which
might be less sensitive to word alignments because
the alignments inside the phrase pairs hardly have
an effect.

When using weighted alignment matrices, we
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Figure 6: Comparison ofn-best alignments and
weighted alignment matrices. We usem(n) to de-
note the matrices that taken-best lists as samples.

obtained higher BLEU scores than usingn-best
lists with much less extraction time. We achieved
a BLEU score of 0.2901 when using the weighted
matrices estimated from 10-best lists. The abso-
lute improvement of 0.75 over using 1-best align-
ments (from 0.2826 to 0.2901) is statistically sig-
nificant atp < 0.05 by using sign-test (Collins
et al., 2005). Although the improvements overn-
best lists are not always statistically significant,
weighted alignment matrices maintain consistent
superiority in both translation quality and extrac-
tion speed.

5.4 Comparison of Parameter Estimation

In theory, the set of phrase pairs extracted fromn-
best alignments is the subset of the set extracted
from the corresponding weighted matrices. In
practice, however, this is not true because we use
the pruning thresholdt to maintain a reasonable
table size. Even so, the phrase tables produced by
n-best lists and weighted matrices still share many
phrase pairs.

Table 2 gives some statistics. We usem(10)
to represent the weighted matrices estimated from
10-best lists. “all” denotes the full phrase table,
“shared” denotes the intersection of two tables,
and “non-shared” denotes the complement. Note
that the probabilities of “shared” phrase pairs are
different for the two approaches. We obtained
6.13M and 6.34M phrase pairs for the test set by
using 10-best lists and the corresponding matrices,
respectively. There were 4.58M phrase pairs in-
cluded by both tables. Note that the relative fre-
quencies and lexical weights for the same phrase
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shared non-shared all
method

phrases BLEU phrases BLEU phrases BLEU
10-best 4.58M 28.35 1.55M 12.32 6.13M 28.47
m(10) 4.58M 28.90 1.76M 13.21 6.34M 29.01

Table 2: Comparison of phrase tables learned fromn-best lists and weighted matrices. We usem(10)
to represent the weighted matrices estimated from 10-best lists. “all” denotes the full phrase table,
“shared” denotes the intersection of two tables, and “non-shared” denotes the complement. Note that the
probabilities of “shared” phrase pairs are different for the two approaches.
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Figure 7: Comparison ofn-best alignments and
weighted alignment matrices with varying training
corpus sizes.

pairs might be different in two tables. We found
that using matrices outperformed usingn-best lists
even with the same phrase pairs. This suggests that
our methods for parameter estimation make better
use of noisy data. Another interesting finding was
that using the shared phrase pairs achieved almost
the same results with using full phrase tables.

5.5 Effect of Training Corpus Size

To investigate the effect of training corpus size on
our approach, we extracted phrase pairs fromn-
best lists and weighted matrices trained on five
training corpora with varying sizes: 10K, 50K,
100K, 150K, and 239K sentence pairs. As shown
in Figure 7, our approach outperformed both 1-
best andn-best lists consistently. More impor-
tantly, the gains seem increase when more training
data are used.

5.6 Results on Other Language Pairs

To further examine the efficacy of the proposed ap-
proach, we scaled our experiments to large data
with multiple language pairs. We used the Eu-
roparl training corpus from the WMT07 shared

S↔E F↔E G↔E
Sentences 1.26M 1.29M 1.26M

Foreign words 33.16M 33.18M 29.58M
English words 31.81M 32.62M 31.93M

Table 3: Statistics of the Europarl training data.
“S” denotes Spanish, “E” denotes English, “F” de-
notes French, “G” denotes German.

1-best 10-best m(10)
S→E 30.90 30.97 31.03
E→S 31.16 31.25 31.34
F→E 30.69 30.76 30.82
E→F 26.42 26.65 26.54
G→E 24.46 24.58 24.66
E→G 18.03 18.30 18.20

Table 4: BLEU scores (case-insensitive) on the
Europarl data. “S” denotes Spanish, “E” denotes
English, “F” denotes French, “G” denotes Ger-
man.

task. 2 Table 3 shows the statistics of the train-
ing data. There are four languages (Spanish,
French, German, and English) and six transla-
tion directions (Foreign-to-English and English-
to-Foreign). We used the “dev2006” data in the
“dev” directory as the development set and the
“test2006” data in the “devtest” directory as the
test set. Both the development and test sets contain
2,000 sentences with single reference translations.

We tokenized and lowercased all the training,
development, and test data. We trained a 4-gram
language model using SRI Language Modeling
Toolkit on the target side of the training corpus for
each task. We ran GIZA++ on the entire train-
ing data to obtainn-best alignments and weighted
matrices. To save time, we just used the first 100K
sentences of each aligned training corpus to ex-
tract phrase pairs.

2http://www.statmt.org/wmt07/shared-task.html
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Table 4 lists the case-insensitive BLEU scores
of 1-best, 10-best, andm(10) on the Europarl
data. Using weighted packed matrices continued
to show advantage over using 1-best alignments on
multiple language pairs. However, these improve-
ments were very small and not significant. We at-
tribute this to the fact that GIZA++ usually pro-
duces high quality 1-best alignments for closely-
related European language pairs, especially when
trained on millions of sentences.

6 Related Work

Recent studies has shown that SMT systems
can benefit from making the annotation pipeline
wider: using packed forests instead of 1-best trees
(Mi et al., 2008), word lattices instead of 1-best
segmentations (Dyer et al., 2008), andn-best
alignments instead of 1-best alignments (Venu-
gopal et al., 2008). We propose a compact repre-
sentation of multiple word alignments that enables
SMT systems to make a better use of noisy align-
ments.

Matusov et al. (2004) propose “cost matrices”
for producing symmetric alignments. Kumar et al.
(2007) describe how to use “posterior probabil-
ity matrices” to improve alignment accuracy via
a bridge language. Although not using the term
”weighted matrices” directly, they both assign a
probability to each word pair.

We follow Och and Ney (2004) to develop
a new phrase extraction algorithm for weighted
alignment matrices. The methods for calculating
relative frequencies (Och and Ney, 2004) and lex-
ical weights (Koehn et al., 2003) are also adapted
for the weighted matrix case.

Many researchers (e.g., (Venugopal et al., 2003;
Deng et al., 2008)) observe that softening the
alignment consistency constraint help improve
translation quality. For example, Deng et al.
(2008) define a feature named “within phrase pair
consistency ratio” to measure the degree of consis-
tency. As each link is associated with a probability
in a weighted matrix, we use these probabilities to
evaluate the validity of a phrase pair.

We estimate the link probabilities by calculating
relative frequencies overn-best lists. Niehues and
Vogel (2008) propose a discriminative approach to
modeling the alignment matrix directly. The dif-
ference is that they assign a boolean value instead
of a probability to each word pair.

7 Conclusion and Future Work

We have presented a new structure called weighted
alignment matrix that encodes the alignment dis-
tribution for a sentence pair. Accordingly, we de-
velop new methods for extracting phrase pairs and
estimating their probabilities. Our experiments
show that the proposed approach achieves better
translation quality over usingn-best lists in less
extraction time. An interesting finding is that our
approach performs better than the baseline even
they use the same phrase pairs.

Although our approach consistently outper-
forms using 1-best alignments for varying lan-
guage pairs, the improvements are comparatively
small. One possible reason is that takingn-best
lists as samples sometimes might change align-
ment probability distributions inappropriately. A
more principled solution is to directly model the
weighted alignment matrices, either in a genera-
tive or a discriminative way. We believe that better
estimation of alignment distributions will result in
more significant improvements.

Another interesting direction is applying our ap-
proach to extracting translation rules with hierar-
chical structures such as hierarchical phrases (Chi-
ang, 2007) and tree-to-string rules (Galley et al.,
2006; Liu et al., 2006). We expect that these
syntax-based systems could benefit more from our
approach.
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